Exploratory Data Analysis on Blueberry yield through Bayes and Function Models

Main Article Content

S.Britto Raj
G. Shankar
S. Murugesan
M Narasimha Raju
E. Mohan
P. Jona Innisai Rani

Abstract

Agricultural researchers are using machine learning to predict crop yield. Many machine learning algorithms need lots of data. One of the major challenges in training and experimenting with machine learning algorithms is the availability of training data in sufficient quality and quantity remains a limiting factor. The Linear Discriminant Analysis produces 95.88% of accuracy which is most efficient of selected models; The Nave Bayes Multinomial has 69.88% accuracy, while the Linear Discriminant Analysis has 0.96 precision. The NBM has 0.71 precision, while Linear Discriminant Analysis has 0.95 recall. The Linear Discriminant Analysis produces 0.99 of ROC, which is the most efficient outcome of selected models. The NBM gives least ROC, which is 0.80. The Linear Discriminant Analysis produces 0.99 of PRC, which is the most efficient outcome of selected models. The NBM gives least PRC, which is 0.72. The LDA explores efficient outcome with low deviations. Four machine-learning-based predictive models were then built using the simulated dataset. This simulated data provides researchers with actual field observation data and those who want to test machine learning algorithms' response to real data with crop yield prediction models.

Article Details

How to Cite
Raj, S. ., Shankar, G., Murugesan, S., Raju, M. N. ., Mohan, E., & Rani, P. J. I. (2023). Exploratory Data Analysis on Blueberry yield through Bayes and Function Models. International Journal on Recent and Innovation Trends in Computing and Communication, 11(11s), 634–641. https://doi.org/10.17762/ijritcc.v11i11s.8299
Section
Articles

References

Qu, H.; Xiang, R.; Obsie, E.Y.; Wei, D.; Drummond, F. Parameterization and Calibration of Wild Blueberry Machine Learning Models to Predict Fruit-Set in the Northeast China Bog Blueberry Agroecosystem. Agronomy 2021, 11,1736. https://doi.org/10.3390/agronomy11091736

Obsie, Efrem & Qu, Hongchun & Drummond, Francis. (2020). Wild blueberry yield prediction using a combination of computer simulation and machine learning algorithms. Computers and Electronics in Agriculture. 178. 10.1016/j.compag.2020.105778.

H. Qu and F. Drummond, “Simulation-based modeling of wild blueberry pollination,” Comput. Electron. Agric., vol. 144, pp. 94–101, 2018.

F. A. Drummond, “Behavior of bees associated with the wild blueberry agro-ecosystem in the USA,” Int. J. Entomol. Nematol., vol. 2, no. 1, pp. 27–41, 2016.

F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12, no. Oct, pp. 2825–2830, 2011.

https://www.kaggle.com/datasets/saurabhshahane/wild-blueberry-yield-prediction

Golovinskaia, O.; Wang, C.K. Review of Functional and Pharmacological Activities of Berries. Molecules 2021, 26, 3904.

FAOSTAT My Name Is John Doe. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 14 September 2022).

Salvo, S.; Muñoz, C.; Ávila, J.; Bustos, J.; Ramírez-Valdivia, M.; Silva, C.; Vivallo, G. An estimate of potential blueberry yield using regression models that relate the number of fruits to the number of flower buds and to climatic variables. Sci. Hortic. 2012, 133, 56–63. [Google Scholar] [CrossRef]

Piekutowska, M.; Niedba?a, G.; Piskier, T.; Lenartowicz, T.; Pilarski, K.; Wojciechowski, T.; Pilarska, A.A.; Czechowska-Kosacka, A. The Application of Multiple Linear Regression and Artificial Neural Network Models for Yield Prediction of Very Early Potato Cultivars before Harvest. Agronomy 2021, 11, 885

Gorzelany, J.; Belcar, J.; Ku?niar, P.; Niedba?a, G.; Pento?, K. Modelling of Mechanical Properties of Fresh and Stored Fruit of Large Cranberry Using Multiple Linear Regression and Machine Learning. Agriculture 2022, 12, 200.

Niazian, M.; Sadat-Noori, S.A.; Abdipour, M. Modeling the seed yield of Ajowan (Trachyspermumammi L.) using artificial neural network and multiple linear regression models. Ind. Crops Prod. 2018, 117, 224–234.

Sabzi-Nojadeh, M.; Niedba?a, G.; Younessi-Hamzekhanlu, M.; Aharizad, S.; Esmaeilpour, M.; Abdipour, M.; Kujawa, S.; Niazian, M. Modeling the Essential Oil and Trans-Anethole Yield of Fennel (Foeniculumvulgare Mill. var. vulgare) by Application Artificial Neural Network and Multiple Linear Regression Methods. Agriculture 2021, 11, 1191.

Hara, P.; Piekutowska, M.; Niedba?a, G. Selection of Independent Variables for Crop Yield Prediction Using Artificial Neural Network Models with Remote Sensing Data. Land 2021, 10, 609.

He, L.; Fang, W.; Zhao, G.; Wu, Z.; Fu, L.; Li, R.; Majeed, Y.; Dhupia, J. Fruit yield prediction and estimation in orchards: A state-of-the-art comprehensive review for both direct and indirect methods. Comput. Electron. Agric. 2022, 195, 106812.

Ali Raad Mohammed, Sepanta Naimi. (2023). The Effectiveness of Thermal Insulation of the Exterior Composite Walls of Buildings in Iraq Based on Different Materials and Climate Regions using Engineering Applications. International Journal of Intelligent Systems and Applications in Engineering, 11(4s), 594–601. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/2731.

Thambu Gladstan , Dr.E.Mohan. “Object Recognition Based on Wave Atom Transform,” Research Journal of Applied Sciences, Engineering and Technology – Volume 8 ,issue 13, 1613-1617, 2014, ISSN: 2040-7459; e-ISSN: 2040-7467

Khan, H.; Esau, T.J.; Farooque, A.A.; Abbas, F. Wild blueberry harvesting losses predicted with selective machine learning algorithms. Agriculture 2022, 12, 1657.

Huang, W.; Wang, X.; Zhang, J.; Xia, J.; Zhang, X. Improvement of blueberry freshness prediction based on machine learning and multi-source sensing in the cold chain logistics. Food Control 2022, 145, 109496.

Vasconez, J.P.; Delpiano, J.; Vougioukas, S.; Cheein, F.A. Comparison of convolutional neural networks in fruit detection and counting: A comprehensive evaluation. Comput. Electron. Agric. 2020, 173, 105348.

Häni, N.; Roy, P.; Isler, V. A comparative study of fruit detection and counting methods for yield mapping in apple orchards. J. Field Robot. 2020, 37, 263–282. Coviello, L.; Cristoforetti, M.; Jurman, G.; Furlanello, C. GBCNet: In-field grape berries counting for yield estimation by dilated CNNs. Appl. Sci. 2020, 10, 4870. [Google Scholar] [CrossRef]

E.Mohan,Dr.C.Puttamadappa et.al ““Facial Tracking in Video Using Artificial Neural Networks”, International Journal of Soft Computing 3(4):271-276, 2008.

Mekhalfi, M.L.; Nicolò, C.; Ianniello, I.; Calamita, F.; Goller, R.; Barazzuol, M.; Melgani, F. Vision system for automatic on-tree kiwifruit counting and yield estimation. Sensors 2020, 20, 4214.

Gutiérrez, S.; Wendel, A.; Underwood, J. Ground based hyperspectral imaging for extensive mango yield estimation. Comput. Electron. Agric. 2019, 157, 126–135.

Kalantar, A.; Edan, Y.; Gur, A.; Klapp, I. A deep learning system for single and overall weight estimation of melons using unmanned aerial vehicle images. Comput. Electron. Agric. 2020, 178, 105748.

Torres-Sánchez, J.; Mesas-Carrascosa, F.J.; Santesteban, L.G.; Jiménez-Brenes, F.M.; Oneka, O.; Villa-Llop, A.; Loidi, M.; López-Granados, F. Grape cluster detection using UAV photogrammetric point clouds as a low-cost tool for yield forecasting in vineyards. Sensors 2021, 21, 3083.

Di Gennaro, S.F.; Toscano, P.; Cinat, P.; Berton, A.; Matese, A. A low-cost and unsupervised image recognition methodology for yield estimation in a vineyard. Front. Plant Sci. 2019, 10, 559.

Apolo-Apolo, O.E.; Pérez-Ruiz, M.; Martínez-Guanter, J.; Valente, J. A cloud-based environment for generating yield estimation maps from apple orchards using UAV imagery and a deep learning technique. Front. Plant Sci. 2020, 11, 1086.

Khoshnevisan, B.; Rafiee, S.; Mousazadeh, H. Application of multi-layer adaptive neuro-fuzzy inference system for estimation of greenhouse strawberry yield. Measurement 2014, 47, 903–910.

Papageorgiou, E.; Aggelopoulou, K.; Gemtos, T.; Nanos, G. Yield prediction in apples using Fuzzy Cognitive Map learning approach. Comput. Electron. Agric. 2013, 91, 19–29.

Wojciechowski, T.; Mazur, A.; Przybylak, A.; Piechowiak, J. Effect of Unitary Soil Tillage Energy on Soil Aggregate Structure and Erosion Vulnerability. J. Ecol. Eng. 2020, 21, 180–185.

Bai, X.; Li, Z.; Li, W.; Zhao, Y.; Li, M.; Chen, H.; Wei, S.; Jiang, Y.; Yang, G.; Zhu, X. Comparison of machine-learning and casa models for predicting apple fruit yields from time-series planet imageries. Remote Sens. 2021, 13, 3073.

Dr. Naveen Jain. (2020). Artificial Neural Network Models for Material Classification by Photon Scattering Analysis. International Journal of New Practices in Management and Engineering, 9(03), 01 - 04. https://doi.org/10.17762/ijnpme.v9i03.88.

Van Beek, J.; Tits, L.; Somers, B.; Deckers, T.; Verjans, W.; Bylemans, D.; Janssens, P.; Coppin, P. Temporal dependency of yield and quality estimation through spectral vegetation indices in pear orchards. Remote Sens. 2015, 7, 9886–9903.

Li, G.; Suo, R.; Zhao, G.; Gao, C.; Fu, L.; Shi, F.; Dhupia, J.; Li, R.; Cui, Y. Real-time detection of kiwifruit flower and bud simultaneously in orchard using YOLOv4 for robotic pollination. Comput. Electron. Agric. 2022, 193, 106641.

Matese, A.; Di Gennaro, S.F. Beyond the traditional NDVI index as a key factor to mainstream the use of UAV in precision viticulture. Sci. Rep. 2021, 11, 1–13.

Sinwar, D.; Dhaka, V.S.; Sharma, M.K.; Rani, G. AI-based yield prediction and smart irrigation. In Internet of Things and Analytics for Agriculture, Volume 2; Springer: Berlin/Heidelberg, Germany, 2020; pp. 155–180.

Engen, M.; Sandø, E.; Sjølander, B.L.O.; Arenberg, S.; Gupta, R.; Goodwin, M. Farm-scale crop yield prediction from multi-temporal data using deep hybrid neural networks. Agronomy 2021, 11, 2576.

Fukuda, M.; Okuno, T.; Yuki, S. Central Object Segmentation by Deep Learning to Continuously Monitor Fruit Growth through RGB Images. Sensors 2021, 21, 6999.

Cravero, A.; Pardo, S.; Sepúlveda, S.; Muñoz, L. Challenges to Use Machine Learning in Agricultural Big Data: A Systematic Literature Review. Agronomy 2022, 12, 748.