Customized CNN Model for Multiple Illness Identification in Rice and Maize

Main Article Content

Vishnu C. Khade
Sanjay B. Patil

Abstract

Crop diseases imperil global food security and economies, demanding early detection and effective management. Convolutional Neural Networks (CNNs), particularly in rice and maize leaf disease classification, have gained traction due to their automatic feature extraction capabilities. CNN models eliminate manual feature extraction, enabling precise disease diagnosis based on learned features. Researchers have rapidly advanced these models, achieving promising results. Leaf disease characteristics like color changes, texture variations, and lesion appearance have been identified as useful for automated diagnosis using machine learning. Developing CNN models involves crucial stages: dataset preparation, architecture selection, hyperparameter tuning, and model training and evaluation. Diverse and accurately annotated datasets are pivotal, and appropriate CNN architecture selection, such as ResNet101 and XceptionNet, ensures optimal performance. These architectures' pre-training on vast image datasets enhances feature extraction. Hyperparameter tuning fine-tunes the model, and training and evaluation gauge its precision. CNN models hold potential to enhance rice and maize productivity and global food security by effectively detecting and managing diseases.

Article Details

How to Cite
Khade, V. C. ., & Patil, S. B. . (2023). Customized CNN Model for Multiple Illness Identification in Rice and Maize. International Journal on Recent and Innovation Trends in Computing and Communication, 11(8), 331–341. https://doi.org/10.17762/ijritcc.v11i8.8006
Section
Articles

References

L. Alzubaidi et al., “Review of deep learning: concepts, CNN architectures, challenges, applications, future directions,” J. Big Data 2021 81, vol. 8, no. 1, pp. 1–74, Mar. 2021, doi: 10.1186/S40537-021-00444-8.

I. Buja et al., “Advances in Plant Disease Detection and Monitoring: From Traditional Assays to In-Field Diagnostics,” Sensors (Basel)., vol. 21, no. 6, pp. 1–22, Mar. 2021, doi: 10.3390/S21062129.

M. M. Taye, “Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions,” Comput. 2023, Vol. 11, Page 52, vol. 11, no. 3, p. 52, Mar. 2023, doi: 10.3390/COMPUTATION11030052.

H. D. Mafukidze, G. Owomugisha, D. Otim, A. Nechibvute, C. Nyamhere, and F. Mazunga, “Adaptive Thresholding of CNN Features for Maize Leaf Disease Classification and Severity Estimation,” Appl. Sci. 2022, Vol. 12, Page 8412, vol. 12, no. 17, p. 8412, Aug. 2022, doi: 10.3390/APP12178412.

N. Ahmad, H. M. S. Asif, G. Saleem, M. U. Younus, S. Anwar, and M. R. Anjum, “Leaf Image-based Plant Disease Identification using Color and Texture Features,” Wirel. Pers. Commun., vol. 121, no. 2, pp. 1139–1168, Feb. 2021, doi: 10.1007/s11277-021-09054-2.

A. Antunes, B. Ferreira, N. Marques, and N. Carriço, “Hyperparameter Optimization of a Convolutional Neural Network Model for Pipe Burst Location in Water Distribution Networks,” J. Imaging 2023, Vol. 9, Page 68, vol. 9, no. 3, p. 68, Mar. 2023, doi: 10.3390/JIMAGING9030068.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-December, pp. 770–778, Dec. 2015, doi: 10.1109/CVPR.2016.90.

F. Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-January, pp. 1800–1807, Oct. 2016, doi: 10.1109/CVPR.2017.195.

A. Abade, P. A. Ferreira, and F. de Barros Vidal, “Plant Diseases recognition on images using Convolutional Neural Networks: A Systematic Review,” Comput. Electron. Agric., vol. 185, Sep. 2020, doi: 10.1016/j.compag.2021.106125.

V. S. Dhaka et al., “A Survey of Deep Convolutional Neural Networks Applied for Prediction of Plant Leaf Diseases,” Sensors 2021, Vol. 21, Page 4749, vol. 21, no. 14, p. 4749, Jul. 2021, doi: 10.3390/S21144749.

M. Nagaraju and P. Chawla, “Systematic review of deep learning techniques in plant disease detection,” Int. J. Syst. Assur. Eng. Manag., vol. 11, no. 3, pp. 547–560, Jun. 2020, doi: 10.1007/S13198-020-00972-1/FIGURES/9.

A. Kamilaris and F. X. Prenafeta-Boldú, “Deep learning in agriculture: A survey,” Comput. Electron. Agric., vol. 147, pp. 70–90, Apr. 2018, doi: 10.1016/J.COMPAG.2018.02.016.

C. Fernández-Quintanilla, J. M. Peña, D. Andújar, J. Dorado, A. Ribeiro, and F. López-Granados, “Is the current state of the art of weed monitoring suitable for site-specific weed management in arable crops?,” Weed Res., vol. 58, no. 4, pp. 259–272, Aug. 2018, doi: 10.1111/WRE.12307.

W. Setiawan, E. M. S. Rochman, B. D. Satoto, and A. Rachmad, “Machine Learning and Deep Learning for Maize Leaf Disease Classification: A Review,” J. Phys. Conf. Ser., vol. 2406, no. 1, p. 012019, Dec. 2022, doi: 10.1088/1742-6596/2406/1/012019.

J. Lu, L. Tan, and H. Jiang, “Review on Convolutional Neural Network (CNN) Applied to Plant Leaf Disease Classification,” Agric. 2021, Vol. 11, Page 707, vol. 11, no. 8, p. 707, Jul. 2021, doi: 10.3390/AGRICULTURE11080707.

K. Golhani, S. K. Balasundram, G. Vadamalai, and B. Pradhan, “A review of neural networks in plant disease detection using hyperspectral data,” Inf. Process. Agric., vol. 5, no. 3, pp. 354–371, Sep. 2018, doi: 10.1016/J.INPA.2018.05.002.

M. H. Al-Adhaileh, A. Verma, T. H. H. Aldhyani, and D. Koundal, “Potato Blight Detection Using Fine-Tuned CNN Architecture,” Math. 2023, Vol. 11, Page 1516, vol. 11, no. 6, p. 1516, Mar. 2023, doi: 10.3390/MATH11061516.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely Connected Convolutional Networks,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 2261–2269, Aug. 2016, doi: 10.1109/CVPR.2017.243.

W. Li et al., “Fraxin ameliorates lipopolysaccharide-induced acute lung injury in mice by inhibiting the NF-?B and NLRP3 signalling pathways,” Int. Immunopharmacol., vol. 67, pp. 1–12, Feb. 2019, doi: 10.1016/J.INTIMP.2018.12.003.

S. H. Lee, H. Goëau, P. Bonnet, and A. Joly, “New perspectives on plant disease characterization based on deep learning,” Comput. Electron. Agric., vol. 170, p. 105220, Mar. 2020, doi: 10.1016/J.COMPAG.2020.105220.

Y. Mao, Z. He, Z. Ma, X. Tang, and Z. Wang, “Efficient Convolution Neural Networks for Object Tracking Using Separable Convolution and Filter Pruning,” IEEE Access, vol. 7, pp. 106466–106474, 2019, doi: 10.1109/ACCESS.2019.2932733.

P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri, “Acceleration of Deep Convolutional Neural Networks Using Adaptive Filter Pruning,” IEEE J. Sel. Top. Signal Process., vol. 14, no. 4, pp. 838–847, May 2020, doi: 10.1109/JSTSP.2020.2992390.

G. Li, J. Wang, H. W. Shen, K. Chen, G. Shan, and Z. Lu, “CNNPruner: Pruning Convolutional Neural Networks with Visual Analytics,” IEEE Trans. Vis. Comput. Graph., vol. 27, no. 2, pp. 1364–1373, Sep. 2020, doi: 10.1109/TVCG.2020.3030461.

Z. Ma et al., “Maize leaf disease identification using deep transfer convolutional neural networks,” Int. J. Agric. Biol. Eng., vol. 15, no. 5, pp. 187–195, Nov. 2022, doi: 10.25165/IJABE.V15I5.6658.

P. Rawat, A. Pandey, and A. Panaiyappan.k, “Rice Leaf Diseases Classification Using Deep Learning Techniques,” Proc. 1st IEEE Int. Conf. Netw. Commun. 2023, ICNWC 2023, 2023, doi: 10.1109/ICNWC57852.2023.10127315.

L. Yang et al., “Stacking-based and improved convolutional neural network: a new approach in rice leaf disease identification,” Front. Plant Sci., vol. 14, p. 1165940, Jun. 2023, doi: 10.3389/FPLS.2023.1165940/BIBTEX.

H. Yang et al., “Automatic Recognition of Rice Leaf Diseases Using Transfer Learning,” Agron. 2023, Vol. 13, Page 961, vol. 13, no. 4, p. 961, Mar. 2023, doi: 10.3390/AGRONOMY13040961.

S. M. Javidan, A. Banakar, K. A. Vakilian, and Y. Ampatzidis, “Tomato leaf diseases classification using image processing and weighted ensemble learning,” Agron. J., 2023, doi: 10.1002/AGJ2.21293.

A. P. J and G. GOPAL, “Data for: Identification of Plant Leaf Diseases Using a 9-layer Deep Convolutional Neural Network,” vol. 1, 2019, doi: 10.17632/TYWBTSJRJV.1.

H. B. Prajapati, J. P. Shah, and V. K. Dabhi, “Detection and classification of rice plant diseases,” Intell. Decis. Technol., vol. 11, no. 3, pp. 357–373, Jan. 2017, doi: 10.3233/IDT-170301.

R. Hu, S. Zhang, P. Wang, G. Xu, D. Wang, and Y. Qian, “The identification of corn leaf diseases based on transfer learning and data augmentation,” ACM Int. Conf. Proceeding Ser., pp. 58–65, May 2020, doi: 10.1145/3403746.3403905.

A. Hamidisepehr, S. V. Mirnezami, and J. K. Ward, “COMPARISON OF OBJECT DETECTION METHODS FOR CORN DAMAGE ASSESSMENT USING DEEP LEARNING.”

D. A. Padilla, R. A. I. Pajes, and J. T. De Guzman, “Detection of Corn Leaf Diseases Using Convolutional Neural Network with OpenMP Implementation,” 2020 IEEE 12th Int. Conf. Humanoid, Nanotechnology, Inf. Technol. Commun. Control. Environ. Manag. HNICEM 2020, Dec. 2020, doi: 10.1109/HNICEM51456.2020.9400004.

P. K. Singamsetty, G. V. N. D. S. Prasad, N. V. S. Naidu, and R. S. Kumar, “Maize Leaf Disease Detection and Classification Using Deep Learning,” Artif. Intell. Mech. Ind. Eng., pp. 87–102, Jun. 2021, doi: 10.1201/9781003011248-6.

M. S. A. M. Al-Gaashani, N. A. Samee, R. Alnashwan, M. Khayyat, and M. S. A. Muthanna, “Using a Resnet50 with a Kernel Attention Mechanism for Rice Disease Diagnosis,” Life, vol. 13, no. 6, p. 1277, May 2023, doi: 10.3390/LIFE13061277.

M. H. Saleem, J. Potgieter, and K. M. Arif, “Plant Disease Detection and Classification by Deep Learning,” Plants 2019, Vol. 8, Page 468, vol. 8, no. 11, p. 468, Oct. 2019, doi: 10.3390/PLANTS8110468.