
International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 

 
    4123 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

Exploring Software Development Change Analysis 

with an Emphasis on Requirements 
Syed Adnan Afaq 

Department of Computer Application, Integral University  

Lucknow, India 

Email: saafaq@iul.ac.in   

Mohammad Faisal 

Department of Computer Application, Integral University  

Lucknow, India 

Email: mdfaisal@iul.ac.in 

Abstract- Most software requirements are not definitive of the development process. Rapid changes in user expectations, market 

conditions, and company practises all need regular updates to software. Requirement change management is a crucial and difficult 

component of every software development project. Project failure or cancellation often occurs because of requirements changes. 

Requirements Change refers to requirements that are added, removed, or amended during the system development life cycle. Requirements 

Change requires additional work in the design phase, which boosts the cost of developing the system, lengthens the time required, and 

reduces system quality. The paper investigates research efforts in the topic of requirement change and helps in determining the study's 

purpose. Various Requirement Change Management concepts and approaches are provided, and numerous activities are conducted to 

mitigate the effects of requirement changes. The study emphasizes on causes, attributes, prioritization of changed requirement, framework 

for RCM and Change Impact Analysis. This study briefly describes all the possible fact and figure about requirement change.  The study 

includes various phases of requirement change management such as Requirement Elicitation, Requirement Change Identification in 

Requirement Document using Two Phase Requirement Document Comparison Algorithm, Prioritization of Changed Requirement using 

Fuzzy approach, Interdependency analysis and change impact analysis on various software project parameters such as time, cost and 

human resources.  

Keywords- Change Impact Analysis; Prioritization; Requirement Change Causes; Requirement Change Management. 

 

I. INTRODUCTION 

In today's fast-paced and ever-changing business landscape, 

organizations face the challenge of responding to evolving 

market demands, technological advancements, and shifting 

stakeholder expectations. In this dynamic environment, 

managing changes to project or system requirements becomes 

paramount for ensuring successful outcomes. This is where 

requirement change management comes into play [1]. 

Requirement change management refers to the systematic 

process of identifying, evaluating, implementing, and 

tracking changes to project or system requirements 

throughout their lifecycle. It involves a structured approach 

to address modifications to the original set of requirements, 

enabling organizations to adapt and align their solutions with 

the changing environment. 

The need for effective requirement changes management 

arises from several factors. Firstly, businesses operate in a 

world of constant change, driven by market trends, 

competitive pressures, and customer demands. Consequently, 

project requirements often need to be modified to meet 

emerging needs or seize new opportunities [2]. 

Secondly, stakeholders play a critical role in shaping 

requirements. Their evolving expectations, feedback, and 

inputs necessitate adjustments to project goals, features, or 

functionalities. By managing requirement changes, 

organizations can actively engage with stakeholders, foster 

collaboration, and deliver solutions that truly address their 

needs [3]. 

Moreover, technology advancements bring forth new 

possibilities and challenges. As innovative tools, platforms, 

and frameworks emerge, existing requirements may require 

modifications to leverage the potential benefits or mitigate 

http://www.ijritcc.org/
about:blank
mailto:mdfaisal@iul.ac.in


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 

 
    4124 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

risks. Requirement change management helps organizations 

stay abreast of technological advancements and harness them 

to their advantage [4]. 

Additionally, regulatory changes, industry standards, or legal 

obligations can impact project or system requirements. 

Organizations must adapt their solutions to remain compliant, 

adhere to industry best practices, and mitigate legal or 

operational risks. Requirement change management ensures 

that such changes are effectively incorporated, minimizing 

disruptions and maintaining compliance [5]. 

 Implementing effective requirement change management 

involves a series of interrelated steps. It begins with the 

identification of proposed changes, followed by a 

comprehensive impact analysis to assess the implications on 

project scope, timeline, resources, and risks. Change 

evaluation involves prioritizing and evaluating proposed 

changes based on their importance, urgency, and alignment 

with project objectives [6]. 

Once a change is approved, it needs to be properly 

implemented, verified, and validated. Documentation and 

change tracking play a vital role in maintaining a clear record 

of all changes, their rationale, and their traceability.   

II. LITERATURE REVIEW   

Requirement change is an unavoidable state of the software 

development task. There are various model and framework 

for requirement change management which may mitigate the 

change.  The impacts of change are hard to predict because 

of things like bad requirement specifications, the project's 

complexity, the team's lack of experience with handling 

changes, and the number of people involved, unanticipated 

actions, and biased estimation and decision making. Almost 

70% of problems happen because clients' requirements keep 

changing during the requirement design and during the 

development phase, cultural diversity within development 

teams is responsible for 52% of problems, whereas strong 

communication is responsible for 88% of these problems, 70 

percent are due to a lack of requirements management 

practises as suggested by [7] and 7 percent are due to other 

factors (Haleem & Farooqui, 2021a). 

 

Figure 1: Chaos Report outcomes 2015-2019 

 

Table 1: Project Failure Factors 

S. 

No. 

Project Impaired Percentages of 

Response Factors % of   Responses 

1 
Partial Software           

Requirements 
13.00% 

2 Absence User Involvement 12.30% 

3 Incomplete requirements  13.10% 

4 Absence of Resources 10.50% 

5 Impractical Anticipations 9.80% 

6 Inappropriate Executive Support 9.40% 

7 Changes in requirement 8.80% 

8 Unstructured Planning 8.20% 

9 Unmannered IT Management 6.20% 

10 Technical Knowledge 4.31% 

11 Other 9.90% 

 

Most of the software projects are failed due to  

several reasons like- Lack of Requirement Analysis, Poor 

Requirements Quality, Incomplete Requirement, Changing 

Requirements & Specifications. The organizations are 

classified by Standish Group according to their revenue such 

as  

large, intermediate and small organization [8]. 

A. Summary of related work 

Table 2: Brief summary of related work 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 

 
    4125 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

 

III.  CAUSES AND ATTRIBUTES OF REQUIREMENT 

CHANGE  

A. Causes of Requirement Change 

The majority of today's large companies utilise various tools 

and methods to handle the changes to their software as well 

as the requirements for new features. These processes are 

meant to govern any and all change requests, as well as the 

lifecycle of project development [9]. On the other hand, some 

of these tools are software tools, while others are lightweight 

tools (pen and paper). The majority of these procedures 

concentrate on recording change request, tracking 

requirements,  

S. No. Author Suggested 

Approach 

Case Study Attributes Methodology 

 1 M.A. 

Akbar, 

2019 

RCM Framework SRCMIMM 

implementation 

and software 

RCM 

development 

Safety and 

Security 

Stage 1: Establish Change 

Stage 2: SRCMIMM adoption 

 2 A. A. 

Alsanad

, 2019 

Multilevel 

ontology 

framework 

Through the use 

of a survey and a 

case analysis 

Understandabilit

y 

SWOT evaluation of RCM methods 

 3 Saleem, 

2019 

Requirement 

change 

management 

model 

Software 

Configuration 

Management   

Consistency Step1: Examine the causes of change 

Step 2: Prevent situations of change 

4 Pai 

Zheng, 

2019 

Innovative 

strategy 

Indefinite Serviceability Evaluation changes 

5 Y. Yan, 

2019 

Knowledge 

management 

system 

(Knowledge 

transfer and 

sharing 

methods) 

Indefinite Security, Safety, 

Reliability, 

Efficiency 

Design of KMS, factors affecting 

knowledge transfer  and methods used to 

implement knowledge 

Transfer 

 6 M. A. 

Akbar, 

2018 

Requirement 

change 

analysis 

Global Software 

Development 

GSD Paradigm 

Efficiency 

Reliability 

Step 1: Change analysis 

Step 2: Change Identification Step 

3: Handle challenges 

 7 S. 

Answer

, 2018 

CMP Indefinite Risk assessment, 

protection, 

safety, and 

trustworthiness 

Change Analysis 

 8 M. 

Shafiq, 

2018 

RCM 

framework 

Indefinite Serviceability 

Consistency 

For assessment, surveys and expert interviews 

are used. 

 9 K. 

Chari, 

2017 

The waterfall 

method 

Unspecified Serviceability 

Consistency 

Step 1: Compare flaws 

Step 2: Inject flaws 

Step 3: Examine 

10 S. 

Jayatille

ke, 

2017 

RC Analysis Course 

Management 

System 

Comprehensibili

ty  

Effectiveness, 

Consistency 

Step 1: Change evaluation 

Step 2: Alter Identification Step 3: Determine 

the dependencies 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 

 
    4126 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

requirement traceability, and managing change requests. 

However, the subsequent parts will be categorised and 

evaluated based on the techniques that are currently being 

used for change impact analysis. 

The fact that requirements are in a state of change is one of 

the primary reasons why software is frequently updated. The 

requirements for the software can change at any time during 

the process, beginning with the elicitation phase and 

continuing all the way until the completion of the project [10]. 

Changes to requirements also signify how the system has to 

evolve in order to continue providing value to its users and to 

preserve its standing as a competitive product on the market. 

Modifications of this nature, on the other hand, pose a 

substantial threat since they can result in the degradation of 

the programmed system [11]. Therefore, modifications to 

requirements ought to be documented, monitored, and tightly 

regulated in order to assure the system's continuous existence 

from a technical perspective. This may be done by keeping a 

record of the changes and comparing them to the original 

requirements [12]. 

Changes in requirements are caused by many different things. 

Changes in requirements can be caused by both internal and 

external factors [13]. 

 

Figure 2: Causes of Requirement Changes 

 

B. Attributes of requirement change  

Requirement change refers to any modification made to the 

documented specifications, functionalities or features of a 

product, system or service during the development process or 

after it has been deployed [14]. The following are some 

attributes of requirement change: 

Nature: Requirement changes can be minor, such as spelling 

corrections, or major, such as changes to the fundamental 

design or architecture of a system. 

Frequency: Requirement changes can occur at any stage of 

the development lifecycle, from the planning phase to the 

deployment phase, and can occur frequently or infrequently. 

Impact: Changes to requirements can have varying impacts 

on the project. Some changes may be simple to implement, 

while others may require significant effort and resources, 

potentially impacting the timeline and budget of the project. 

Triggers: Requirement changes can be triggered by 

 various factors, such as new business needs, changes in 

regulations, or feedback from users.  

Table 3: Requirement Change Factors 

 

 

Approval process: Most requirement changes require 

approval before they can be implemented. The approval 

process may involve stakeholders, project managers, 

developers, and quality assurance teams. 

Communication: Communication is crucial during the 

requirement change process to ensure that all stakeholders are 

aware of the changes and their impact. 

1. External Factors: Government regulations and Market            

                                                  competitors 

2. Internal Factors: 

1. Technical view point a. Product limitations and constraints  

b. Deficiency in the experience 

d. Size of the software project 

e. Price of Software and hardware  

2. New adaptations to the business and work setting 

3. Requirement changeability  

4. Requirement variety 

5. Analyzability of specifications 

6. User-project team miscommunication. 

7. Irresponsible behavior of clients  

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 

 
    4127 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

Documentation: Changes to requirements should be 

documented thoroughly to ensure that all stakeholders are 

aware of the changes and can reference them in the future. 

Testing: After a requirement change is implemented, it should 

be thoroughly tested to ensure that it does not negatively 

impact the system and that it meets the new requirements. 

Traceability: The traceability of requirement changes is 

important to ensure that changes are properly implemented 

and tested, and to enable effective project management and 

future reference. 

Table 4 precise various attributes and measures associated to 

Requirement Change available in the literature. These 

attributes are suitable in case of well-documented 

requirements. In contrast, because each organisation or 

stakeholder has its unique manner of interpreting or 

expressing requirements, these attributes must be adapted. 

 

Table 4: summary of requirement change attributes 

 

From the above-mentioned measures, most of the attributes 

satisfy basic measurement  

principles, four size measures are shown to be good assessors 

to determine number of changes. 

In this study mainly two factors are focused which is based 

on size of the projects that is No. of lines and No. of words. 

 

IV. REQUIREMENT CHANGE   MANAGEMENT 

FRAMEWORK OUTLINE 

Literature review and analysis reveals the impacts and 

consequences of Requirement Change on the successful 

development of a software product. Hence, there is a need 

for an effective framework to efficiently handle requirement 

changes, and this study introduces an efficient Requirement 

Change Management framework designed for early-stage 

integration within the SDLC. The proposed framework 

concentrates on the core issues associated with the 

emergence of change requirements and proposes an approach 

to avoid project failures. The framework as shown in Figure 

3.1 consist of four major components: Input component in 

the form of Initial Requirements; Core Process as the 

combination of Change Identification Technique including 

Interdependency Analysis, Prioritization of Change 

Requirements, Change Impact Analysis techniques which is 

final output component in the form of Impact on Cost, Time 

and Human Resource. 

The execution of the proposed framework begins with the 

elicitation of requirements from the stakeholders, taking as 

initial requirement as input at "t" time and the Initial 

Requirement Document is generated. After "t+d" time 

change request is generated and Revised Requirement 

Document is generated. 

The next step involves identification of change requirements 

in the requirement document. At this phase requirement 

change is being identified by Two Phase Requirement 

Document Comparison Tool, in which lines of both 

requirement document are compared. After finding the 

changed lines in the requirement changes are identified. 

 Next phase involves the prioritization of change 

requirement. It initially involves analyzing the 

interdependencies among requirements by performing 

interdependency analysis that results in interdependency 

matrix. The prioritization is accomplished through fuzzy 

approach in which three member functions are taken. 

Interdependency Level, Difficulty Index and Change Rating. 

At last, change impact analysis is performed, where three 

parameters have been taken for analysing the change.  

The outcome of this stage includes the impact of change on 

cost, time and human resources. The framework is finally 

validated by using finite state machine and Test cases are 

generated to support the validation of the framework. 

A survey and analysis of the literature reveals the impacts 

and consequences of requirement change on the successful 

development of a software product. As a result, a capable 

framework is required to efficiently manage the requirement 

change.   

The proposed framework focuses on the key difficulties 

related with the establishment of change requirements and 

suggests a strategy for avoiding project failures. 

1. Size of requirements 

Number of lines in requirement document 

Number of words in requirement document 

2.         Change type 

3.         Change request form 

4. Number of Total requirements 

5. Number of revised requirements 

6. Impact of requirement change 

7. Change frequency 

8. Priority of requirement change 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 

 
    4128 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

The proposed framework consists four major phases for 

requirement change management. The initial phase involves 

the collection of requirements from stakeholders. Moving 

on, the second phase is dedicated to the identification of 

requirements for change. Subsequently, in the third phase, 

the emphasis is on prioritizing these changed requirements. 

Finally, the fourth and concluding phase entails a thorough 

analysis of the impact of changes, assessing their impacts 

across various parameters such as time, cost and human 

resources. 

A. Features of Proposed Framework 

• Identify and classify the significant concerns and 

problems of Requirement change and its impact on 

Software projects. 

• Propose an approach for Identification of Requirement 

change in the Requirement Document at an early stage 

using Two Phase Requirement Document Comparison 

Tool. 

• Construct an Algorithm for Identification of 

Requirement Change in Requirement Document.  

• Perform interdependency analysis among various 

changeable requirements and compute the 

interdependency level using interdependency graph and 

matrix. 

• Perform changed Requirement Prioritization using 

Fuzzy logic. 

• Validate framework using finite state machine 

validation technique. 

 

B.  Proposed Framework: Requirement Change    

Management Framework   

In consideration of the ever-evolving requirements of the 

software industry, academic societies used to lend a helping 

hand to the software industry by continuously developing 

more advanced tools, methods, and procedures. This was 

done in response to the ever-shifting demands of the software 

industry. Some of the largest software companies have their 

own research and development centres to ensure their 

software meets their needs as they change. 

Through this research, it is hoped to give the software 

industry and the educational society a conceptual boost by 

coming up with a new way to find changeable requirements 

at the earliest stage of the SDLC and a way to deal with 

requirement change. 

The recommended framework is broken down into 

the following four stages, as shown in figure 3: 

•  Requirement Elicitation and Analysis 

•  Change Identification Analysis 

•  Changed Requirement Prioritization 

• Change Impact Analysis 

 

Figure 3: Proposed Framework for RCM 

          The factors and consequences of requirement change 

must be understood before the framework can be 

implemented. The requirement management process might 

benefit from a deeper comprehension of these factors that 

have an impact in order to be stronger in the face of 

disruptions and more adept at navigating toward the expected 

goal of the changes. 

The following subsections each provide a concise explanation 

of one of the phases of the framework that is suggested in this 

work: 

    a).  Requirement Elicitation and Analysis 

 Requirement Elicitation and Analysis refers to the elicitation 

of requirement from the stakeholders. Requirements are 

collected at time ‘t’ in Initial Requirement Document and 

after ‘t+d’ time change request comes the Revised 

Requirement Document is formulated. 

     b)  Requirement Change Identification 

An accurate identification is required for change prevention 

and control requirement change. In order to identify the 

requirement, change in the Software Requirement Document, 

Two Phase Requirement Document comparison algorithm is 

proposed. 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 

 
    4129 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

Two Phase Requirement Document comparison Tool is 

developed for finding the count of change lines and 

identifying changed lines in the Requirement Documents. 

There are various attributes for requirement change, major 

two key attributes of requirement changes are as follows [15]:  

• The number of lines that need to be modified 

• The number of words that need to be modified 

 

 
Figure 4: Flow diagram of change identification 

analysis 

Steps for Change Identification   

Step 1: Define requirements document 1 at “t” time in terms 

of individual requirements (requirements Sentences in single 

lines).  

Step 2: Define requirements document 2 at “t+d” time in 

terms of individual requirements (requirements Sentences in 

single lines).  

Step 3: Calculate the number of lines for each individual 

requirements of requirements document 1. 

Step 4: Calculate the number of lines for each individual 

requirements of requirements document 2 

Step 5: Calculate the match lines of individual requirements 

line in requirement documents 2  

Step 6: Find the match lines and total number of match lines. 

Two Phase Requirement Comparison Algorithm  

Define Rdt ← {R1, R2, R3 …Rn}; Where Rdt is a 

requirements document and Ri is  

individual requirement of requirements document (Rdt) and 

Ri ∈ Rdt; R i ⊆ Rdt 

Define Rdt+d ← {R1, R2, R3 …Rn}; Where Rdt+d is a 

requirements document and Ri is  

individual requirement of requirements document (Rdt+d) and 

Rij ∈ Rdt+d; Rij ⊆ Rdt+d 

for i ← 1 to n 

 Li ← lines (Ri) // Li ← line of individual requirement 

sentence (Ri) in requirement document (Rdt) 

Lj ← lines (Rj) // Lj ← line of individual requirement 

sentence (Rij) in requirement document (Rdt+d) 

Assign L[i] ← {Li1, Li2, Li3, ……………., Lin}  

Assign L [j]← {Lj1, Lj2, Lj3, ……………., Ljn}  

// Where L[i] is lines of all requirements sentences in 

requirements document1 (Rdt) 

// Where L[j] is lines of all requirements sentences in 

requirements document1 (Rdt+d) 

end for 

for i ← 1 to Li  

 for j ← 1 to Lj 

 if (Ri[i] != “” || “,” || “;”)  

 then NL← Rti[i] // Where NL← New Lines 

 end for 

Initialize count = 0; //Where count is matching count variable 

for i ← 1 to n  

 do  

count ← Match (Rdt, Rdt+d)   

while (count== True) 

count ← count +1 

Print count 

 end do while 

end for 

In the proposed algorithm two attributes are considered. 

Number of words to be changed and Number of lines to be 

changed in the Requirement Document. The amendment in 

the lines is considered as a change in the requirements. 

In the first phase lines of both Requirement Document are 

counted and after finding the count of total number of lines of 

both Requirement Document, it is assumed that in the idle 

condition if the numbers of lines are increased in the updated 

Requirement Document e.g. Revised Requirement Document 

then requirements are added, and if numbers of lines are 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 

 
    4130 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

decreased in Revised Requirement Document then it is 

assumed that requirements are deleted. 

 c). Changed Requirement Prioritization  

It is impossible to always prohibit changes in requirements, 

since the client can return the software if it does not fully 

satisfy his needs. Therefore, these changes must be managed  

extremely well. The only way to determine whether or not a 

system is effective is to examine whether or not it serves the 

needs of both its users and its customers [16]. 

Techniques for requirement prioritizing are utilized to 

categorize the requirements in priority order. Every 

stakeholder in the system has concerns that need to be 

addressed. To begin the process of formulating an approach 

aimed to the prioritizing of change requirements, the 

attributes first need to be specified. These change 

requirements might be prioritized based on a variety of 

factors [17, 18]. 

The following measures have been uncovered as having the 

potential to deliver improved outcomes during the change 

requirement prioritization process [15]:  

i. Interdependency level  

ii. Change Rating  

iii. Difficulty Index 

 

     
 

Figure 5: FIS editor for Change Requirement Prioritization             

                     

 
Figure 6: FIS Variables   

 

      
Figure 7: Rule Editor   

                                                  

  
Figure 8: Rule Output 

 

d). Change Impact Analysis 

Predictive data may be obtained in a number of ways, and one 

of them is through change effect analysis. The software 

maintenance phase is where many modern impact analysis 

approaches were established [19, 20]. 

A comprehensive change impact analysis was conducted to 

assess the potential effects of the identified requirement 

changes on project constraints such as time, cost, and human 

resources, taking into consideration the type and priority of 

each change, units of change, and the frequency of change, 

with the goal of identifying and mitigating any risks or issues 

that may arise as a result of the changes. 

In terms of adaptability, software is the most flexible part of 

any system. It evolves not just during the requirements phase 

but also the rest of the software development lifecycle. To 

keep customers happy as their needs evolve, it is crucial to 

effectively manage software updates. When too many 

changes are approved, the project's completion time increases 

and total amount must be expended. Customers could get 

dissatisfied if you choose to ignore the suggested changes. So, 

it's important for the software project manager to make good 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 

 
    4131 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

decisions about how to handle changes while software is 

being accomplished [21, 22].  

Change impact analysis is one of the techniques that may be 

utilised to give predicted data. For the software maintenance 

phase, a number of current impact analysis approaches have 

been established. These techniques presume that all classes in 

the class artefact are fully built and use the class artefact as 

an analysis source because it represents the final user 

requirements. As some classes in the class artefact are still 

under development or only partially developed, these 

assumptions are impractical for impact analysis during the 

software development period [23,24,25]. 

A survey report says that about 70% of problems happen 

because the customers' needs change all the time during the 

process of requirement engineering.70 percent difficulties are 

attributable bad exercise in requirements management. A 

research report looked at more than 7,500 software system 

from more than 300 various business organisations in the 

United States. It found that only half of the software projects 

were finished, and almost a 30 percent were never finished. 

As per a 2018 report by the Standish Group, around 83.9% of 

software systems are not really completed or fail entirely. As 

per this report, just 16.1 percent of Software projects were 

successfully accomplished on schedule and under budget, 

with the majority of required features. Nearly 52.8% of 

software projects experienced budget and schedule overruns 

or were finalized with reduced capability. The rest 31% are 

deemed failed, which means they were either discontinued or 

abandoned. Requirement Changes are the primary causes of 

problematic and unsuccessful initiatives. It has been noted 

from the above data that changes in requirements have a 

considerable effect on software development. The software 

release process, along with the project's timeline, 

performance, cost, goals, quality, and security, are all directly 

impacted by requirements changes[26]. 

 
Figure 9: Impact of change on different project parameter 

 

As stated previously, changing requirements has a significant 

impact on the software development life cycle. Changes to 

specifications have a significant effect on software release 

schedules, defect rates, budget, and project performance. The 

degree to which software project schedules, defect counts, 

costs, and performance are all negatively correlated with the 

number of requirements change [27]. The software 

development life cycle consists of a number of processes, 

such as the design, development, and testing of the software. 

Before committing to the development of software, the 

customer will typically want to know the amount the project 

will cost, how long it will take, and what all of the internal 

activities and milestones will be. 

The changing of the requirements can have an effect on a 

variety of different factors [28,29]. 

 
Figure 10: Requirement Change Impact Analysis 

 
                Figure 11: Requirement Change Request Form 

 

C. Algorithm for Change Impact Analysis 

// Define change parameters 

changeType = ... // type of change (e.g. Add, delete, modify) 

changeFrequency = ... // frequency of change (e.g. 1,2,3) 

maximum 3 

changePriority = ... // priority of change (e.g. high, medium, 

low) 

// Identify stakeholders 

stakeholders = identifyStakeholders(changeType) 

// Perform impact analysis 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 

 
    4132 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

impactAnalysis = performImpactAnalysis(changeType, 

stakeholders) 

// Estimate time, human_resource, and cost 

human_resourceRequired = 

estimateHuman_resourceRequired(changeType, priority, 

change frequency) 

timeRequired = estimateTimeRequired(changeType,  

priority, change frequency) 

costOfChange = estimateCostOfChange(changeType 

,priority, change frequency) 

totalCost = costOfChange + otherProjectCosts 

// Create implementation plan 

implementationPlan = createPlan(human_resourceRequired, 

timeRequired, totalCost) 

// Execute implementation plan 

executePlan(implementationPlan) 

// Estimate the human_resource required to implement the 

change 

human_resourceRequired = ... 

return human_resourceRequired 

function estimateTimeRequired(changeType, priority, 

change frequency) 

// Estimate the time required to implement the change 

timeRequired = ... 

return timeRequired 

function estimateCostOfChange(changeType, priority, 

change frequency): 

// Estimate the cost of implementing the change 

costOfChange = ... 

return costOfChange 

function createPlan(human_resource, time, cost,): 

// Create a plan for implementing the change 

plan = ... 

) 

return plan 

function executePlan(implementationPlan): 

// Execute the implementation plan 

execute(implementationPlan) 

 

D. Work Flow of the Framework 

The proposed Framework's work flow is shown in the next 

work flow diagram. It is very helpful for figuring out how the 

framework works. It is divided into four main blocks that 

represent the four main steps of the proposed framework. 

Each block is in charge of doing the task that was given to it. 

All four parts have something to do with each other. 

  

 Figure 12: Work Flow of Requirement Change Management 

Framework 

 

V. IMPLEMENTATION OF PROPOSED 

FRAMEWORK 

In order to determine the likelihood of occurrence for various 

requirement change variables, software industry 

professionals were consulted. Intricately designed on Google 

Form, the survey probed not only the demographic variables 

including Company Name, Team Size, Total Work 

Experience and Designation of Experts, as well as the Type 

of Developed Projects, but also requirement-related 

parameters, such as the various requirement change factors. 

Data was acquired from software experts with expertise 

handling software projects ranging from 2 to 10 years 

through the posting of an online survey with a carefully 

prepared questionnaire. 

 

A. Survey Design 

The questionnaire was compiled by careful examination of 

the data. On checking the sample  

data it was found that the following groups were effectively 

represented in the survey: 

• Team Size of the project 

• Project Duration 

• Project Type 

• Job profile of the experts in the software industry. 

• Work Experience of the expert. 

 

In addition to these questions, the experts were requested to 

express expert view to the requirement-related practices. On 

the basis of the following questions, the sample data below 

was formed: 

•  Responses for problems faced due to requirements. 

• Responses for Necessity of early identification of 

change requirements. 

 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 

 
    4133 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

Table 5: Summary of Survey Result 

  
 

VI. CASE STUDY 

"University Management Information System," an academic 

MIS project, has been used as a case study to examine the 

proposed model. The project is briefly stated in Table 7. 

 

Table 6: Summary of UMIS project 

 
The project was developed by a team consisting of 5 

members. The requirements were gathered from different 

institutes which were validated by the  

concerned head of the institute. 

 

VII.  COMPARATIVE ANALYSIS BETWEEN FOUR 

EXISTING MODELS AND PROPOSED MODEL 

 

Table 7: Four existing models VS Proposed Model 

  

Dean 

Leffingwell 

and   

Widrig 

model 

Niazi 

et al. 

model 

Hussain 

& 

Clear 

model 

CRCM 

model 

Proposed 

Model 

Activities 2000 2008 2012 2017 2023 

1.        Plan for 

change 
√   √ √ √ 

2.        Baseline 

requirements 
√   √ √ √ 

3.        Use a change 

control system to 

capture   changes 

√ √ √ √ √ 

4.        Change 

impact on cost 
√     √ √ 

5.        Change 

Frequency  
        √ 

6.        Change 

Priority  
        √ 

7.        Documenting 

the actions and 

observations 

       √ √ 

8.        Determine 

the type of change 
  √     √ 

9.        Change 

impact on Human 

Resources 

        √ 

10.      Change 

impact on time 
        √ 

 

VIII. VALIDATION AND VERIFICATION OF THE 

PROPOSED FRAMEWORK  

A. Introduction to Finite State Machine 

A computational model for the static and dynamic behaviour 

of a software system is presented by the finite state machine 

(FSM). It is a conceptual machine that builds a finite number 

of states, and it generates one state at a time by reading input 

symbols. The number of states that can be built by this 

machine is limited. The FSM begins its operation at the 

initial state and continues its work until it reaches the final 

state [33]. It is capable enough to take any input string that 

has a limited number of alphabets in it. An input string may 

be accepted by the finite state automaton or it may be 

rejected [34]. 

B. Fundamental of FSM 

The mathematical model known as the finite state machine 

is typically utilised during the process of developing 

computer programmes. In addition to this, it is recognised as 

a deterministic finite automaton. One way to define a finite 

state machine  

 

is as follows: 

M = (S, Ʃ, δ, s0, F) where 

• S means a finite set of state, Ʃ means a finite set of 

input symbols. 

• A transition function denoted by δ takes an input 

symbol and a state as arguments and returns a state. 

In the graphical representation, δ is represented by 

an arc linking two states. If s be a state and x be an 

input symbol, then δ (s, x) defines state l that has an 

arc labeled x from s to l. 

• s0 means an initial state that a state of S. 

• F means final state. 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 

 
    4134 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

From this description of automata, a finite state machine is 

created in which states match up to the variable S and all the 

transitions and input symbols corresponds to the variable δ 

and Ʃ, respectively [30,31].  

Requirement Change is a frequent phenomenon in industrial 

software development. It is deemed to be a main cause of risk 

to the management of large and complex software projects. 

Effective Requirement management techniques can be 

helpful in controlling the changing software requirements 

and lower the costs due to these changing requirements [32]. 

In this thesis an effective framework for managing 

requirement change during SDLC is proposed that deals with 

these precarious changing requirements. Finally, the 

validation has been performed through finite state machine. 

For the purpose, the method to validate the framework using 

FSM is illustrated with the conception of transition table. 

FSM is used as to develop the technique to substantiate the 

correctness of the proposed framework. This method 

generates test cases through FSM that is very effective and 

consistent method which doesn’t sustain invalid test cases 

[32]. 

 

1). Design State transition diagram of the proposed 

framework 

Software Requirement is assumed to be the initial as well as 

the final state of the framework; this state is equivalent to 

“s0”. 

 

Figure 13: State Transition diagram for proposed 

framework. 

 

2) Design the Finite State Machine (FSM) 

 
Figure 14: State Transition Diagram 

 

3) Transition Table for FSM 

From the above FSM, {a, b, b′, b″, c, ……j} events describe 

the transformation of states from one state to another. These 

events are deliberated as terminals for this finite state 

machine and the set of states {s0, s1, s2, s3, s4, s5} are 

implied as nonterminal. The state q0 is the initial and the 

final state. Following diverse productions have been induced 

for the finite state machine and the consequent transition 

table is shown below in table. 

Table 8: State Transition Table 

Current State  Event Next State 

s0  a s1 

s0  b s2 

s2  c s3 

s3 d s4 

s3 e s5 

s3 j s0 

s4 d’ s3 

s5 f s6 

s5 i s0 

s6 g s7 

s6 h s0 

s7 g’ s6 

 

4)Production Rules 

Several production rules are generated for the above finite 

state machine as mentioned below: 

• s0 → a s1 | b s2 | i s0 | h s0 

• s1 → a' s2 

• s2 → c s3 

• s3 → d s4 | e s5 | j s0 

• s4 → d' s3 

• s5→ f s6 | i s0 

• s6 → g s7 | h s0 

• s7 → g' s6 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 

 
    4135 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

These productions rules can be defined as followings:  

• s0 → a s1: The FSM will go from state s0 to state s1 

if it gets the input symbol 'a' while it is in the state 

s0. 

• s1 → a' s2: If the FSM is in state s1 and it gets the 

input symbol 'a', then it transitions to state s2; 

otherwise, it stays in state s1. 

•  s0 → b s2: The FSM will go from state s0 to state 

s2 if it gets the input symbol 'b' while it is in the 

state s0. 

•  s2 → c s3The FSM moves from state s2 to state s3 

when it gets the input symbol 'c' if it is already in 

the state s2. 

•  s3 → d s4: The FSM will go from state s3 to state 

s4 if it gets the input symbol 'd' while it is in the 

state s3. 

•  s3 → e s5: The FSM will go from state s3 to state s5 

if it gets the input symbol 'e' when it is in the state 

s3. 

•  s3 → j s0: If the FSM is in state s3 and receives input 

symbol 'j', it transitions to state s0. 

• s4 → d' s3The FSM will go from state s4 to state s3 

if it gets the input symbol 'd' while it is in state s4; 

otherwise, it will remain in state s4. 

• s5 → f s6: If the FSM is now in state s5 and it gets 

the input symbol 'f,' then it will go on to state s6. 

• s5 → i s0: The FSM will go from state s5 to state s0 

when it gets the input symbol I if it is currently in 

state s5. 

• s6 → g s7: When the FSM is in state s6 and it gets 

the input symbol 'g,' it will go to state s7 if the 

situation is met. 

• s6 → h s0: The FSM will go from state s6 to state 

s0 when it gets the input symbol 'h' if it is already in 

state s6. 

• s7 → g' s6: The FSM will go from state s7 to state 

s6 if it gets the input symbol 'g' while it is in the 

state s7. 

where s0, s1, s2, s3, s4, s5, s6, and s7 are the state symbols and 

'a', 'a'', 'b', 'c', 'd', 'd'', 'e', 'f', 'g', 'g'', 'h', and 'i' are the input 

symbols. 

10. Conclusion and future work 

The purpose of this study was to offer a thorough knowledge 

of requirement change (RC) and its influence on software 

development initiatives. The introduction emphasised the 

importance of requirements in the development process and 

the need of managing requirement changes effectively. The 

causes of RC were investigated in order to offer insight on 

both internal and external variables that lead to changes in 

project needs. Furthermore, change effect analysis was 

addressed as an important technique for assessing the 

repercussions of requirement modifications. 

The study's findings highlight the necessity of proactive 

requirement management in minimising the harmful 

consequences of RC. Understanding the causes of RC allows 

project managers and stakeholders to take preventative 

efforts to reduce the risks associated with changes. 

Furthermore, using change effect analysis methodologies 

allows project teams to examine the possible consequences 

of requirement modifications, allowing them to make 

educated judgments about whether to accept or reject a 

suggested change. 

This study emphasizes on small project which can be 

enhanced with large project in future.  

 

ACKNOWLEDGMENT 

This work is acknowledged under Integral University 

manuscript No IU/R&D/2023 - MCN0001968. 

REFERENCES  

[1] Abd, M., & Latif, E. L. (2016). Identify and Manage the 

Software Requirements Volatility. 7(5), 64–71. 

[2] Dev, H., & Awasthi, R. (2012). A Systematic Study of 

Requirement Volatility during Software Development 

Process. International Journal of Computer Science 

Issues, 9(2), 527–533. 

[3] Passenheim, O. (2010). Change Management Change 

Management. Introduction to Information Security, 

1(3), 1–50. bookon.com 

[4] Errida, A., & Lotfi, B. (2021). The determinants of 

organizational change management success: Literature 

review and case study. International Journal of 

Engineering Business Management, 13, 1–15. 

https://doi.org/10.1177/18479790211016273 

[5] Rodrigues da Silva, A., & Olsina, L. (2022). Special Issue 

on Requirements Engineering, Practice and Research. 

Applied Sciences (Switzerland), 12(23). 

https://doi.org/10.3390/app122312197 

[6] Ahmad, S. (n.d.). A Systematic Literature Review on 

Requirement Change Management Challenges Faced 

By Developers. 

[7] Sadia, H. (2014). Requirement Risk Identification : A 

Practitioner ’ s Approach. 102(15), 13–15. 

 

[8] Afaq, S. A. (2020). Influences of Requirement Change on 

Software Failure. 4178, 4178–4184. 

 

[9] Bano, M., Imtiaz, S., Ikram, N., Niazi, M., & Usman, M. 

(2012). Causes of requirement change - a systematic 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 

 
    4136 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

literature review. 16th International Conference on 

Evaluation & Assessment in Software Engineering 

(EASE 2012), 22–31. 

https://doi.org/10.1049/ic.2012.0003 

[10] Melo, A., Fagundes, R., Lenarduzzi, V., & Santos, W. B. 

(2022). Identification and measurement of 

Requirements Technical Debt in software 

development: A systematic literature review. Journal of 

Systems and Software, 111483. 

[11] Ahmad, J., Ghazal, T. M., Khan, A. W., Khan, M. A., 

Inairat, M., Sahawneh, N., & Khan, F. (2022). Quality 

requirement change management’s challenges: An 

exploratory study using slr. IEEE Access, 10, 127575–

127588. 

[12] Dasanayake, S., Aaramaa, S., Markkula, J., & Oivo, M. 

(2019). Impact of requirements volatility on software 

architecture: How do software teams keep up with ever-

changing requirements? Journal of Software: Evolution 

and Process, 31(6), 1–21. 

https://doi.org/10.1002/smr.2160 

[13] Madampe, K., Hoda, R., & Grundy, J. (2023). A 

Framework for Emotion-oriented Requirements 

Change Handling in Agile Software Engineering. IEEE 

Transactions on Software Engineering. 

[14] Park, S., Maurer, F., Eberlein, A., & Fung, T.-S. (2010). 

Requirements attributes to predict requirements related 

defects. Proceedings of the 2010 Conference of the 

Center for Advanced Studies on Collaborative 

Research, 42–56. 

[15]  Afaq, S. A., & Faisal, M. (2021). An Efficient Approach 

For Software Requirement Change Identification. 

18(3), 1919–1926. 

[16] Dahiya, O., & Solanki, K. (2021). An efficient 

requirement-based test case prioritization technique 

using optimized TFC-SVM approach. International 

Journal of Engineering Trends and Technology, 69(1), 

5–16. https://doi.org/10.14445/22315381/IJETT-

V69I1P202 

[17] Lachmann, R. (2020). 12.4 - Machine Learning-Driven 

Test Case Prioritization Approaches for Black-Box 

Software Testing. 300–309. 

https://doi.org/10.5162/ettc2018/12.4 

[18] Ruby, & Balkishan. (2015). Fuzzy Logic based 

Requirement Prioritization ( FLRP ) - An Approach. 

International Journal of Computer Science and 

Technology, 6(3), 61–65. 

[19] Sharma, P., & Singh, J. (2018). Systematic literature 

review on software effort estimation using machine 

learning approaches. Proceedings - 2017 International 

Conference on Next Generation Computing and 

Information Systems, ICNGCIS 2017, 54–57. 

https://doi.org/10.1109/ICNGCIS.2017.33 

[20] Wang, J., Li, J., Wang, Q., Zhang, H., & Wang, H. 

(2012). A simulation approach for impact analysis of 

requirement volatility considering dependency change. 

Lecture Notes in Computer Science (Including 

Subseries Lecture Notes in Artificial Intelligence and 

Lecture Notes in Bioinformatics), 7195 LNCS, 59–76. 

https://doi.org/10.1007/978-3-642-28714-5_6 

[21] Nurmuliani, N., Zowghi, D., & Williams, S. P. (2006). 

Requirements Volatility and Its Impact on Change 

Effort: Evidence Based Research in Software 

Development Projects." Proc. Australian Workshop on 

Requirements Engineering (AWRE 2006), Adelaide, 

Australi. Australian Workshop on Requirements 

Engineering. 

http://www.researchgate.net/publication/228946043_

Requirements_volatility_and_its_impact_on_change_

effort_Evidence-

based_research_in_software_development_projects/fil

e/9c960520ecb3089ce7.pdf 

[22] Tung, K. T., Hung, N. D., Thi, L., & Hanh, M. (2015). A 

Comparison of Algorithms used to measure the 

Similarity between two documents. April. 

[23] Kama, N., & Azli, F. (2012). A change impact analysis 

approach for the software development phase. 

Proceedings - Asia-Pacific Software Engineering 

Conference, APSEC, 1, 583–592. 

https://doi.org/10.1109/APSEC.2012.89 

[24] Haleem, M., & Beg, M. R. (2015). Impact analysis of 

requirement metrics in software development 

environment. 2015 IEEE International Conference on 

Electrical, Computer and Communication 

Technologies (ICECCT), 1–6. 

[25] Sharif, B., Khan, S. a, & Bhatti, M. W. (2012). 

Measuring the Impact of Changing Requirements on 

Software Project Cost : An Empirical Investigation. 

International Journal of Computer Science, 9(3), 170–

174. 

[26] Haleem, M., & Farooqui, F. (2021b). International 

Journal of Cognitive Computing in Engineering 

Tackling Requirements Uncertainty in Software 

Projects : A Cognitive Approach. International Journal 

of Cognitive Computing in Engineering, 2(October), 

180–190. https://doi.org/10.1016/j.ijcce.2021.10.003 

[27] Goknil, A., Kurtev, I., & Berg, K. van den. (2016). A 

Rule-Based Change Impact Analysis Approach in 

Software Architecture for Requirements Changes. 

http://arxiv.org/abs/1608.02757 

[28]  Ahmad, Z., Hussain, M., Rehman, A., Qamar, U., & 

Afzal, M. (2015). Impact Minimization of 

Requirements Change in Software Project through 

http://www.ijritcc.org/
https://doi.org/10.1049/ic.2012.0003
https://doi.org/10.1002/smr.2160
https://doi.org/10.14445/22315381/IJETT-V69I1P202
https://doi.org/10.14445/22315381/IJETT-V69I1P202


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 

 
    4137 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

Requirements Classification. 4–8. 

[29] Haleem, M., & Farooqui, F. (2021a). International 

Journal of Cognitive Computing in Engineering 

Cognitive impact validation of requirement uncertainty 

in software project development. International Journal 

of Cognitive Computing in Engineering, 2(October 

2020), 1–11. 

https://doi.org/10.1016/j.ijcce.2020.12.002 

[30] Vayadande, K. B., Sheth, P., Shelke, A., Patil, V., 

Shevate, S., & Sawakare, C. (2022). Simulation and 

Testing of Deterministic Finite Automata Machine. 

International Journal of Computer Sciences and 

Engineering, 10(1), 13–17. 

[31] Yankovskaya, A., & Yevtushenko, N. (1997). Finite 

state machine (fsm)–based knowledge representation in 

a computer tutoring system. New Media and Telematic 

Technologies for Education in Eastern European 

Countries, 67–74. 

[32] Muqeem, M., & Beg, M. R. (2014). Validation of 

requirement elicitation framework using finite state 

machine. 2014 International Conference on Control, 

Instrumentation, Communication and Computational 

Technologies (ICCICCT), 1210–1216. 

[33] Lee, D., & Yannakakis, M. (1996). Principles and 

methods of testing finite state machines-a survey. 

Proceedings of the IEEE, 84(8), 1090–1123. 

[34] Grieskamp, W., Gurevich, Y., Schulte, W., & Veanes, 

M. (2002). Generating finite state machines from 

abstract state machines. Proceedings of the 2002 ACM 

SIGSOFT International Symposium on Software 

Testing and Analysis, 112–122. 

 

 

http://www.ijritcc.org/
https://doi.org/10.1016/j.ijcce.2020.12.002

