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Abstract: In this research, we investigate the solution of first-order differential equations (DEs) using Runge- Kutta fourth-

order method (RKM) and Adams-Bashforth methods (ABMs). In this work we consider fourth-order RKM and ABMs for 

solving first order DEs. The method proof to be simple, easy, accurate and efficient technique for solving first order DEs. 

Moreover, there are unlimited application of fourth-order RK4 and ABMs for solving first-order DE in science, engineering, 

economics, social science, biology and business. These play an important role in science and engineering. Some examples are 

giving and solved to support the efficiency of our methods which are demonstrated by figures. 
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1. INTRODUCTION 

Almost all systems undergoing change can be 

described by DEs. They are present everywhere in 

the fields of engineering, science, economics, social 

science, business, biology, health care, etc. The 

nature of these equations has been investigated by 

several mathematicians for hundreds of years, there 

are many effective solution methods. A purely 

analytical solution to the equations is frequently 

impractical due to the complexity or size of the 

systems that differential equations represent. 

Computer simulations and numerical methods are 

useful in these complex systems. Before 

programmable computers existed, methods of 

solving DEs based on numerical estimations were 

devised. It was typical to see rooms filled with 

personnel (mostly women) using mechanical 

calculators to solve DE systems numerically for 

military calculations during the second world 

conflict. Before the advent of programmable 

computers, analog computers used analogs of an 

electrical system to investigate mechanical, thermal, 

or chemical processes. With the development of 

programmable computers, systems of DEs of 

increasing complexity can be solved using 

straightforward programs created to run on a 

standard computer. (Storey, 2004). The ordinary 

differential equations (ODE) is an important 

mathematical equation in natural physical processes. 

Analytical approaches have many difficulties for 

approximating the majority of ODEs. As a result, 

being able to find a numerically precise solution is 

critical (Ray, 2018).   One of the important areas of 

mathematics, particularly when it comes to dealing 

with scientific (engineering) problems, is 

differential equation. Differential equations may be 

used to build mathematical models for a variety of 

issues that people have faced, particularly in the 

scientific (technical) area. With a variety of 

solutions available, techniques are being developed 

to solve differential equations, taking into account 

their extensive application. Analytical and 

numerical techniques they can be used to solve 

common DEs. The analytical technique produces 

answers that are typically precise values, whereas 

the numerical method produces solutions that are 

approximations of the true value. Since 

approximation does not need to apply calculus 

theorems, differential equations solved numerically 

only generate approximations. The use of one 

requires precision since numerical resolution 

incorporates numerous factors. Numerical 

differential equations started to be resolved as 

science and technology advanced, particularly in the 
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area of computers (Polla, 2013). There are several 

numerical integration techniques available to an 

engineer who wants to integrate a set of ordinary 

differential equations. Both single-step fourth-order 

RKM and multi-step ABMs integrators of any order 

are covered. Additionally, both fixed-step and 

variable-step variants of these integrators are 

offered. Notwithstanding this, the fixed-step, RK4 

approach is nevertheless employed occasionally 

even when the issue at hand does not call for fixed-

step integration. Engineers sometimes rely on what 

has worked in the past and may not always have time 

to experiment with numerical approaches, which 

may be the cause of this. The fourth-order RKM 

technique already has step-size control. To estimate 

the truncation error of the fourth-order procedure, 

one technique called doubling takes two standard 

steps and a double step at the same time (D. G. Hull, 

1977). The use of Runge-Kutta methods for starting 

and modifying intervals as well as issues such as 

stability and reduction are discussed the majority of 

round off errors aren't serious (T. Hull, Enright, 

Fellen, & Sedgwick, 1972). The explicit ABMs, 

which belong to the Adams Family, are the most 

popular linear multistep techniques for no stiff 

situations. The Stone Weierstrass Theorem serves as 

the foundation for the ABMs (Dattani, 2008).  

Runge-Kutta technique is a one-step numerical 

method since it only needs one prior point to 

compute a new value. The Runge-Kutta technique of 

order four is often utilized. Runge-Kutta procedures 

come in a variety of forms, and they all depend on 

the value of n that is utilized (Pagalay, 2016). In the 

fields of science and engineering, numerical 

methods are widely used to solve a variety of linear 

and nonlinear ODEs. Euler approach, Picard 

method, Taylor sequential method, fourth-order 

RKM method are only a few of the well-known 

techniques created to solve ODEs. The advantage of 

RKM approaches over the methods previously 

outlined is that they are intended to deliver more 

precision with the benefit of just requiring the 

function values at certain specific locations on the 

sub-interval, which eliminates the need for 

computations for higher order derivatives (Arora, 

Joshi, & Garki, 2020). 

One of the biggest challenges facing scientists has 

been solving complex differential equations. In 

order to address these challenges, researchers have 

suggested a numerical method for solving partial 

differential equations (PDEs), fractional differential 

equations (FDEs), and ordinary differential 

equations (ODEs) in works by (Ibrahim, 2020; 

Ibrahim, & Isah, 2021; Isah, & Ibrahim, 2021; 

Ibrahim, & Isah, 2022; Salisu, 2022b). This means 

that commutativity is important from a practical 

point of view. 

(Ibrahim, & Koksal, 2021a)  examined 

commutativity and its effect on sensitivity when 

there are non-zero starting conditions (ICs). 

Meanwhile, using cascaded pairs of second-order 

commutative systems, (Salisu,  2022a; Salisu,  

2022c)  explored the realization and decomposition 

of fourth-order Linear Time-Varying Systems 

(LTVSs) with non-zero ICs. (Ibrahim, & Koksal, 

2021b; Salisu, & Rababah, 2022) conducted an 

analogous study. Additionally, a numerical 

approximation procedure for degree reduction of 

curves and surfaces was developed by (Ibrahim, 

2020; Ibrahim, & Isah, 2021; Isah, & Ibrahim, 2021; 

Ibrahim, & Isah, 2022; Salisu, 2022b). These 

methods provide viable ways to deal with intricate 

PDEs, FDEs, and ODEs. 

The above study investigates fourth-order 

RKM approach and ABMs to solve a first-order DE. 

This study's goal is to apply recommended 

approaches to find numerical solutions for first-

order DEs. 

 

2. PRELIMINARIES 

The Euler technique for solving differential 

equations of the first and second orders is discussed 

in this section. We also discuss how to solve partial 

differential equations (PDEs), fractional differential 

equations (FDEs), and ordinary differential 

equations (ODEs) using the Taylor polynomial 

formula, the Newton method, and the Cubic Spline 

Interpolation method. Although these techniques 

have proven effective in solving ODEs numerically, 

the main purpose of this work is to solve first-order 

ODEs using the fourth-order RKM technique and 

ABM approaches, as will be explained in the 

following section. 

2.1 Euler method 

Within the realm of mathematics and Computational 

Science, Euler's method, also known as forward 
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Euler's method, serves as a numerical technique of 

first-order for solution ODEs when provided with a 

specific initial value. This approach represents the 

fundamental explicit technique for numerically 

integrating ODEs and stands as the most 

straightforward RKM. Euler's method is attributed 

to Leonhard Euler, who introduced it in his book 

"Integration of Institutional Accounts" (published 

1768-1870). 

The goal of Euler's method is to obtain 

approximations of a well-placed initial value 

problem.  

𝒚′(𝑥) = 𝑓(𝑥, 𝑦),                                                                       

(1) 

𝑦(𝑥o) = 𝑦0.                                                                       

(2) 

Beginning with the initial conditions (ICs) 𝑦0: 

𝑥𝑛+1 = 𝑥𝑛 + ℎ,                                                                       

(3) 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛 , 𝑦𝑛),                                                          

(4) 

where ℎ is the step function, 𝑥𝑛+1 is the independent 

value and 𝑦𝑛+1 is the numerical solution. 

2.2  Taylor Series 

A Taylor polynomial of degree 𝑛 for a function 𝑓 at 

a point 𝑥0 ∈  [𝑎, 𝑏] is a polynomial expression that 

approximates the function near the point 𝑥0. The 

polynomial is defined using the coefficients of the 

function's derivatives evaluated at 𝑥0. 

 𝑄𝑛(𝑥) = ∑
𝑓(𝑘)(𝑥0)

𝑘!

𝑛
𝑘=0  (𝑥 − 𝑥0). 

      

             (5) 

The Taylor polynomial (5) has the characteristic that 

it shares identical derivatives up to order n with the 

function 𝑓 when evaluated at 𝑥 = 𝑥0, i.e. 

𝑄𝑛
(𝑘)(𝑥0) = 𝑓(𝑘)(𝑥0),        𝑘 = 0,1, … , 𝑛, 

To verify that the derivatives of the Taylor 

polynomial 𝑄𝑛(𝑥) match those of the function 𝑓, 

one can perform differentiation. The Taylor 

polynomial provides a reliable approximation of the 

function 𝑓(𝑥) in the vicinity of 𝑥0. The discrepancy 

between f and its Taylor polynomial is quantified by 

the remainder term in Taylor's formula. 

𝑓(𝑥) − 𝑄𝑛(𝑥) =
𝑓(𝑛+1)(𝜉)

(𝑛+1)!
(𝑥 − 𝑥𝑜)𝑛+1                                           

(6) 

The expression provided for the remainder involves 

Lagrange's form, which is useful for calculating 

error bounds. The interval [𝑎, 𝑏] contains the 

point 𝑥, and there exists another point 𝜉 between 𝑥 

and 𝑥0 (when 𝑥 is not equal to 𝑥0). It is assumed that 

the derivative 𝑓(𝑛+1) is continuous on [𝑎, 𝑏], and 

therefore it is bounded within this interval. 

 𝑀𝑛+1 = max
[𝑎,𝑏]

|𝑓(𝑛+1) (𝑥)| < +∞.                                                

(7) 

On the basis of (6), we have 

|𝑓(𝑥) − 𝑄𝑛(𝑥)| ≤
𝑀𝑛+1

(𝑛+1)!
|𝑥 − 𝑥𝑜|𝑛+1,  

 max
[𝑎,𝑏]

|𝑓(𝑥) − 𝑄𝑛(𝑥)| ≤
𝑀𝑛+1

(𝑛+1)!
𝑙𝑛+1,                                                  

(8) 

where 𝑙 = max[𝑥0 − 𝑎, 𝑏 − 𝑥0]. 

The equation (7) indicates that the error resulting 

from the approximation of function 𝑓(𝑥) by Taylor 

polynomial (5) can be expressed as 𝑂(|𝑥 − 𝑥𝑜|𝑛+1), 

while equation (8) is used to provide an estimation 

of the maximum error across the entire interval 

[𝑎, 𝑏]. 

2.3 Newton’s Method  

Newton's method which is also known as Newton 

Raphson's method, is an algorithm that is used to 

find roots. It involves using the initial the Taylor 

series terms of the function 𝑓(𝑥) are close to a 

potential root. That it essential to note that although 

this method is occasionally referred to as Newton's 

iteration, in this context the last statement is reserved 

for its application in calculating square roots. 

Taylor series of f(x) around this point  𝑥 = 𝑥0 +

𝜀 given before 

𝑓(𝑥0 + 𝜖) = 𝑓(𝑥0) + 𝑓′(𝑥0)𝜖 +
1

2
𝑓′′(𝑥0)𝜀2 + ⋯                 

(9) 

Retaining first-class conditions only,                            

𝑓(𝑥0 + 𝜖) ≈ 𝑓(𝑥0) + 𝑓′(𝑥0)𝜖.                                         

(10)                                                     

Equation (9) is the equation of the tangent line to the 

curve at (𝑥0, 𝑓(𝑥𝑜)), so (𝑥1, 0) is the place where 

this tangent line intersects 𝑥_𝑎𝑥𝑖𝑠. 

Setting 𝑓(𝑥0 + 𝜀) = 0 and solving (10) for 𝜖 ≡

𝜖0 gives 

 𝜖0 =  − 
𝑓(𝑥0)

𝑓′(𝑥0)
, 

It is the first modification of the root position. 

Empowered 𝑥1 = 𝑥0 + 𝜖0, by calculating a new 𝜖1, 

using 

𝜖𝑛 = −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
. 
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Unfortunately, this procedure can be unstable near a 

horizontal asymptote or local extremes. However, 

with a good initial selection of the root position, the 

algorithm can be applied iteratively to obtain it                                          

𝑥𝑛+1 =  𝑥𝑛 −  
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
                                                     

(11) 

for 𝑛 =  1,2,3, . .. the initial point 𝑥0 which provides 

a safe approximation to Newton's method is called 

the approximate zero (Weisstein., E , 2002). 

2.4 Cubic Spline Interpolation Polynomial 

Cubic spline interpolation is a form of spline 

interpolation frequently utilized to mitigate the issue 

of Runge's phenomenon. It represents a specific 

instance of spline interpolation. The approach yields 

an interpolator polynomial that is smoother and 

possesses lower error than alternative interpolating 

polynomials, such as Lagrange and Newton 

polynomials (Ibrahim, 2022c). 

 Given a set of 𝑛 + 1 data points (𝑥𝑖 , 𝑦𝑖) where no 

two 𝑥𝑖 are the same and𝑎 =  𝑥0  <  𝑥1  <. . . <

𝑥𝑛  = 𝑏, the spline 𝑆(𝑥) is a function satisfying 

1. 𝑠(𝑥) 𝜖 𝐶2[𝑎, 𝑏];                                                                       

2. On each subinterval [𝑥𝑖−1, 𝑥𝑖], 𝑆(𝑥) is a polynomial 

of degree 3, where 

𝑖 = 1, … , 𝑁  

𝑆(𝑥) = 𝑦𝑖 ,  for all 𝑖 = 0,1, … , 𝑛. 

 

3. THE FOURTH-ORDER RUNGE-KUTTA 

APPROACH AND ADAMS BASHFORTH 

METHODS 

In this section. We are going to consider the fourth-

order RKM and ABMs.   

3.1 Adam Bashforth method 

The Adams Bashforth techniques are considered to 

be explicit methods, where the selection of 

coefficients 𝑎𝑠−1 = −1and 𝑎𝑠−2 = ⋯ = 𝑎0 =0, 

while the 𝑏𝑗  are determined by the desired order s of 

the method. This characteristic feature ensures the 

uniqueness of the methods. Specifically, the Adams 

Bashforth methods with orders s = 1, 2, 3, 4, and 5 

are examples of such explicit methods. 

𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑓(𝑡𝑖 , 𝑦𝑖)  (This is the Euler method)                                                                  

                       𝑦𝑖+2 = 𝑦𝑛+1 + ℎ (
3

2
𝑓(𝑡𝑛+1, 𝑦𝑛+1) −

1

2
𝑓(𝑡𝑛, 𝑦𝑛)),                    (12) 

         𝑦𝑛+3 = 𝑦𝑛+2 + ℎ (
3

2
𝑓(𝑡𝑛+2, 𝑦𝑛+2) −

16

12
𝑓(𝑡𝑛+1, 𝑦𝑛+1) +

5

12
𝑓(𝑡𝑛, 𝑦𝑛)),  (13)   

𝑦𝑛+4 = 𝑦𝑛+3 + ℎ (
55

24
𝑓(𝑡𝑛+3, 𝑦𝑛+3) −

59

24
𝑓(𝑡𝑛+2, 𝑦𝑛+2) +

37

24
𝑓(𝑡𝑛+1, 𝑦𝑛+1) −

9

24
𝑓(𝑡𝑛, 𝑦𝑛)) , (14)   

 𝑦𝑛+5 = 𝑦𝑛+4 + ℎ(
1901

720
𝑓 (𝑡𝑛+4, 𝑦𝑛+4 −

2774

720
𝑓(𝑡𝑛+3, 𝑦𝑛+3)) + 

2616

720
𝑓(𝑡𝑛+2, 𝑦𝑛+2) −

1274

720
𝑓(𝑡𝑛+1, 𝑦𝑛+1) +

251

720
𝑓(𝑡𝑛, 𝑦𝑛).                         

(15) 

To obtain the coefficients 𝑏𝑗 one can follow these 

steps: employ polynomial interpolation to determine 

the polynomial 𝑝 of degree 𝑠 − 1, and subsequently 

extract the coefficients from it. 

𝑝(𝑡𝑛+𝑖) = 𝑓(𝑡𝑛+𝑖,𝑦𝑛+𝑖),  for 𝑖 =  0,1, … . . 𝑠 − 1. 

When presented with an ODE in the form of  
𝑑𝑦

𝑑𝑥
=

 𝑓(𝑥, 𝑦), along with an IC of 𝑦(𝑥0)  =  𝑦0, the goal 

is to figure out how to solve y in terms of x. This is 

frequently achieved by an integration procedure that 

entails splitting the variables out of the equation, 

integrating each side with regard to its own variable, 

and then utilizing the initial condition to solve for y. 

The final solution can then be presented in a way that 

makes sense and can be used in particular situations. 

To locate (𝑥𝑛). We can use a variety of numerical 

techniques, including the Taylor series, the 

Modified Euler method, the Euler method, Picard's 

approach, and the Runge Kutta method, to determine 

the values of 𝑦(𝑥1), 𝑦(𝑥2), 𝑎𝑛𝑑 𝑦(𝑥3)  for a given 

function. 

Then calculate, 𝑓0 = 𝑓(𝑥0, 𝑦0) 

  𝑓1 = 𝑓(𝑥1, 𝑦1) 

𝑓2 = 𝑓(𝑥2, 𝑦2) 

 𝑓3 = (𝑥3, 𝑦3 ). 

By Adams - Bashforth predictor formula: 

  𝑦4 = 𝑦3 +
ℎ

24
(−9𝑓0 + 37𝑓1 − 59𝑓2 + 55𝑓3).                    

(16)                                  

Then find 𝑓4 = 𝑓(𝑥4, 𝑦4) since, 𝑥4 = (𝑥3 + ℎ). 

And by Adams - Bashforth corrector formula 

 𝑦4 =  𝑦3 +
ℎ

24
 (𝑓1 − 5𝑓2 + 19𝑓3 + 9𝑓4).                            

(17) 

Recalculating and inserting the result into the AB 

corrector formula will yield a more precise answer 
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for 𝑓4. Iteratively repeating this process is possible 

until y_4 reaches a stable value and no more changes 

are noticed (Kavitha, P., & Prathiba, K.). 

Runge-Kutta and Adam-mellitus are categorized as 

multi-step linear methods. This means that the linear 

set of the previous values  𝑦𝑖  and the accompanying 

function evaluations 𝑓(𝑥𝑖 , 𝑦𝑖) across the previous 𝑠 

steps determine the subsequent value of  𝑦𝑛+1. 

The two-step Runge-kutta method approach was 

selected due to the simplicity of its equations and 

ease of implementation. However, it is possible to 

expand the code to incorporate more intricate 

Runge-kutta method techniques. Additionally, an 

algorithm was created to address differential 

equations using the Runge-kutta method equations 

and adjusting the size of the steps based on the 

variance between prediction and correction 

(Pletinckx, et al, 2017). 

3.2 Runge-Kutta Method Fourth-Order 

The Runge-Kutta methods are techniques do not 

need computing or evaluating the derivatives of 𝑓, 

but they do it has a local high level truncation error 

for Taylor method (𝑡, 𝑦). We must first take into 

account Taylor's Theorem in Two Variables before 

explaining the concepts behind their derivation. The 

Taylor techniques described in the previous section, 

you have the useful quality of higher-order local 

truncation error, but have the unfavorable 

requirement of computing and evaluating the 

derivatives of 𝑓(𝑡, 𝑦). The Taylor techniques are 

rarely employed in practice since it is a difficult and 

time-consuming process for the majority of issues 

(Burden, Faires, & Burden, 2015). 

Let the initial value problem be defined as follows: 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑡, 𝑦),     𝑦(𝑡𝑜 ) =  𝑦𝑜.                                                 

(18) 

Now we choose step size ℎ >  0 and define: 

  𝑦𝑛+1 = 𝑦𝑛  +
1

6
 (𝑘1 + 𝑘2 +  𝑘3 +  𝑘4)ℎ,                                     

(19) 

𝑡 𝑛+1  = 𝑡 𝑛 + ℎ                                                         

(20) 

      For 𝑛 =  0, 1, 2, 3, . . ., using      

𝑘1 = ℎ𝑓(𝑥𝑛, 𝑦𝑛), 

𝑘2 = ℎ𝑓 (𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘1

2
), 

𝑘3 = ℎ𝑓 (𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘2

2
),                                                    

(21) 

𝑘4 = ℎ𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + 𝑘3). 

• 𝑘1 is the slope at the beginning of the period using 𝑦 

(Euler's method); 

• 𝑘2 is the slope at the midpoint of the period with 𝑦 

and 𝑘1; 

• 𝑘3 is again the slope at the midpoint, but now uses 𝑦 

and 𝑘2; 

• 𝑘4 is the slope at the end of the period using 𝑦 and 

𝑘3. 

 

4. APPLICATION 

In this section, we make use of the formula and 

conditions obtained from the previous section and 

illustrate the numerical solution of first-order 

differential equations using fourth-order RKM and 

ABMs. 

Example 1:  In this example, we want to apply the 

ABMs by considering the following first-order DEs 

𝑦′ =
𝑡𝑦

1 + 𝑡2
  ,

𝑦(0) = 1,                                                               (22) 

on the interval 0 ≤ 𝑡 ≤ 1.   

The exact solution is given by 

𝑦𝑒𝑥𝑎𝑐𝑡 = √1 + 𝑡2. (23) 

 

By considering the fourth-order RKM in Eq. (21) 

with 𝑡0 = 0 , 𝑦0 = 1;  ℎ = 0.1, we obtain 

𝑘1 = 𝑓(𝑡0, 𝑦0) = 𝑓(0, 1) =
(0×1)

1+02 = 0  

𝑘2  = 𝑓 (𝑡0 +
ℎ

2
 , 𝑦0 + ℎ

𝑘1

2
) = 𝑓 (0 +

0.1

2
, 1 +

(0.1)
0

2
) = 𝑓(0.05, 1) =

(0.05×1)

1+(0.05)2 = 0.049  

𝑘3 = 𝑓 (𝑡0 +  
ℎ

2
, 𝑦0 + ℎ

𝑘2

2
) = 𝑓 (0 + 

0.1

2
, 1 +

(0.1)
0.049

2
) = 𝑓(0.05, 1.00245) =

(0.05×1.00245)

1+(0.05)2 =

0.0499  

𝑘4  = 𝑓(𝑡0 + ℎ, 𝑦0 + ℎ𝑘3) = 𝑓(0 + 0.1,1 +

(0.1)(0.0499) = 𝑓(0.1, 1.00499) =
(0.1×1.00499)

1+(0.1)2 = 0.099.  

Then we proceed to find  𝑦1 , 𝑦2, 𝑦3 and 𝑦4 with                                                                                             

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) for 𝑛 =

0,1,2,3,4, … 

IF 𝑛 = 0 → 𝑦1 = 1 +
0.1

6
(0 + 2(0.049) +

2(0.0499) + 0.099) = 1.0049 

If 𝑛 = 1 → 𝑦1+1 = 𝑦1 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 
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𝑦2 = 1.0049 +
0.1

6
(0 + 2(0.049) + 2(0.0499)

+ 0.099) = 1.0096 

If 𝑛 = 2 → 𝑦2+1 = 𝑦2 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

𝑦3 = 1.0096 +
0.1

6
(0 + 2(0.049) + 2(0.0499)

+ 0.099) = 1.0143 

If 𝑛 = 3 → 𝑦3+1 = 𝑦3 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

𝑦4 = 1.0143 +
0.1

6
(0 + 2(0.049) + 2(0.0499)

+ 0.099) = 1.019 

Now we have 𝑡0 = 0, 𝑡1 = 0.1, 𝑡2 = 0.2,  𝑡3 =

0.3,  𝑡4 = 0.4 

And 𝑦0 = 1, 𝑦1 = 1.0049, 𝑦2 = 1.0096,  𝑦3 =

1.0143, 𝑦4 = 1.019 

 𝑦′ =
𝑡𝑦

1+𝑡2 → 𝑦′0 = 𝑓(𝑥0, 𝑦0) = 𝑓(0, 1) =
(0×1)

1+02 =

0 

𝑦′1 = 𝑓(𝑡1, 𝑦1) = 𝑓(0.1, 1.0049)

=
(0.1 × 1.0049)

1 + (0.1)2
= 0.099 

𝑦′2 = 𝑓(𝑡2, 𝑦2) = 𝑓(0.2, 1.0096)

=
(0.2 × 1.0096)

1 + (0.2)2
= 0.194 

𝑦′3 = 𝑓(𝑡3, 𝑦3) = 𝑓(0.3, 1.0143)

=
(0.3 × 1.0143)

1 + (0.3)2
= 0.279 

𝑦′4 = 𝑓(𝑡4, 𝑦4) = 𝑓(0.4, 1.019) =
(0.4 × 1.019)

1 + (0.4)2

= 0.351. 

Observed that the ABMs have two formula: 

1. The Adam Bashforth Predictor method 

𝑦𝑛+1,𝑝 = 𝑦𝑛 +
ℎ

24
(−9𝑦′

𝑛−3
+ 37𝑦′

𝑛−2
−

59𝑦′
𝑛−1

+ 55𝑦′
𝑛

).   

If we putting  𝑛 = 3 , we get      

𝑦4,𝑝 = 𝑦3 +
ℎ

24
(−9𝑦′

0
+ 37𝑦′

1
− 59𝑦′

2

+ 55𝑦′
3

). 

𝑦4,𝑝

= 1.0143 +
0.1

24
(−9(0) + 37(0.099)

− 59(0.194) + 55(0.279)

= 1.0453                                                            

  

Hence, we found approximate solution using Adam 

Bashforth Predictor method 

𝑦4,𝑝 = 1.0453.                                                     

(24) 

2. The Adam Bashforth Corrector method 

𝑦4,𝑐 = 𝑦3 +
ℎ

24
(𝑦′

1
− 5𝑦′

2
+ 19𝑦′

3
+ 9𝑦′

4
). 

𝑦4,𝑐 = 1.0143 +
0.1

24
(0.099 − 5(0.194)

+ 19(0.279) + 9(0.351)

= 1.0458. 

Hence, we found approximate solution using Adam 

Bashforth Corrector method 

𝑦4,𝑐 = 1.0458.                                                         

(25) 

 

Example 2 

In this example, we want to apply the ABMs which 

consist of predictor and corrected methods. 

 By considering the following first-order DEs 

 𝑦′ = 𝑡2 + 𝑡𝑦,

𝑦(0) = 1,                                                               (26) 

on the interval 0 ≤ 𝑥 ≤ 1.   

The exact solution is given by 

𝑦𝑒𝑥𝑎𝑐𝑡 = √
𝜋

2
 𝑒

𝑡2

2⁄ erf [
𝑥

√2
] + 𝑒

𝑡2

2⁄ − 𝑡. (27) 

 

By considering the fourth-order RKM in Eq. (21) 

with 𝑡0 = 0 , 𝑦0 = 1;  ℎ = 0.1, we obtain 

𝑘1 = 𝑓(𝑡0, 𝑦0) = 𝑓(0,1) = (02 + (0 × 1) = 0  

𝑘2  = 𝑓 (𝑡0 +
ℎ

2
 , 𝑦0 + ℎ

𝑘1

2
) = 𝑓 (0 +

0.1

2
 , 1 +

(0.1)
0

2
) = 𝑓(0.05,1) = (0.05)2 + (0.05 × 1) =

0.0525  

𝑘3 = 𝑓 (𝑡0 + 
ℎ

2
, 𝑦0 + ℎ

𝑘2

2
)

= 𝑓 (0 + 
0.1

2
, 1

+ (0.1)
0.0525

2
)

= 𝑓(0.05,1.0026)

= (0.05)2 + (0.05 × 1.0026)

= 0.07513 

𝑘4  = 𝑓(𝑡0 + ℎ, 𝑦0 + ℎ𝑘3)

= 𝑓(0 + 0.1,1 + (0.1)(0.07513)

= 𝑓(0.1,1.007513)

= (0.1)2 + (0.1 × 1.007513)

= 0.1107 

Then we find 𝑦1 , 𝑦2, 𝑦3 and 𝑦4                                                                                                
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𝑦𝑛+1 = 𝑦𝑛 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) for 𝑛 =

0,1,2,3,4, … 

If 𝑛 = 0 → 𝑦1 = 1 +
0.1

6
(0 + 2(0.0525) +

2(0.07513) + 0.1107) = 1.0060 

If 𝑛 = 1 → 𝑦1+1 = 𝑦1 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

𝑦2 = 1.0060 +
0.1

6
(0 + 2(0.0525) + 2(0.07513)

+ 0.1107) = 1.0120 

If 𝑛 = 2 → 𝑦2+1 = 𝑦2 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

𝑦3 = 1.0120 +
0.1

6
(0 + 2(0.0525) + 2(0.07513)

+ 0.1107) = 1.018 

If 𝑛 = 3 → 𝑦3+1 = 𝑦3 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

𝑦4 = 1.018 +
0.1

6
(0 + 2(0.0525) + 2(0.07513)

+ 0.1107) = 1.023 

Now we have 𝑡0 = 0, 𝑡1 = 0.1, 𝑡2 = 0.2,  𝑡3 =

0.3, 𝑡40.4 

And 𝑦0 = 1,  𝑦1 = 1.0060,  𝑦2 = 1.0120,  𝑦3 =

1.018,  𝑦4 = 1.023 

 𝑦′ = 𝑥2 + 𝑥𝑦 → 𝑦′0 = 𝑓(𝑥0, 𝑦0) = 𝑓(0,1)

= (02 + (0 × 1) = 0 

𝑦′1 = 𝑓(𝑥1, 𝑦1) = 𝑓(0.1, 1.0060)

= (0.1)2 + (0.1 × 1.0060)

= 0.1106 

𝑦′2 = 𝑓(𝑥2, 𝑦2) = 𝑓(0.2, 1.0120)

= (0.2)2 + (0.2 × 1.0120)

= 0.2424 

𝑦′3 = 𝑓(𝑥3, 𝑦3) = 𝑓(0.3, 1.018)

= (0.3)2 + (0.3 × 1.018)

= 0.3954 

𝑦′4 = 𝑓(𝑥4, 𝑦4) = 𝑓(0.4, 1.023)

= (0.4)2 + (0.4 × 1.023)

= 0.5692 

Observed that the ABMs have two formula: 

1. The Adams- Bashforth Predictor method 

𝑦𝑛+1,𝑝 = 𝑦𝑛 +
ℎ

24
(−9𝑦′𝑛−3 + 37𝑦′𝑛−2 − 59𝑦′𝑛−1

+ 55𝑦′𝑛) 

If we putting  𝑛 = 3 , we get      

𝑦4,𝑝 = 𝑦3 +
ℎ

24
(−9𝑦′0 + 37𝑦′1 − 59𝑦′2 + 55𝑦′3) 

𝑦4,𝑝 = 1.018 +
0.1

24
(−9(0) + 37(0.1106)

− 59(0.2424) + 55(0.3954)

= 1.0453 

𝑦4,𝑝 = 1.0662.                                                                

(28) 

2. The Adams- Bashforth Corrector method 

𝑦4,𝑐 = 𝑦3 +
ℎ

24
(𝑦′

1
− 5𝑦′

2
+ 19𝑦′

3
+ 9𝑦′4) 

𝑦4,𝑐 = 1.018 +
0.1

24
(0.1106 − 5(0.2424)

+ 19(0.3954) + 9(0.5692)

= 1.0458 

𝑦4,𝑐 = 1.0652.                                                                 

(29) 

 

5. CONCLUSION 

In conclusion, this study explored the numerical 

solution of first-order DEs using two popular 

methods, namely, fourth-order RKM and ABMs. 

fourth-order RKM is a well-established technique 

that approaches a solution by iterative evaluation of 

intermediate values. On the other hand, ABMs is a 

forecast-corrected scheme that uses past estimates to 

estimate future values.  

[1] It is clear from a thorough investigation and 

comparison of these two techniques that 

each has advantages and disadvantages of 

its own. larger precision and stability are 

achieved with fourth-order RKM, 

particularly for tight differential equations, 

but it comes with a larger computational 

cost. Conversely, the ABMs are better 

appropriate for non-extreme problems and 

are computationally efficient, but they may 

have stability problems. Overall, this work 

highlights the advantages and 

disadvantages of the fourth-order RKM 

and ABMs and offers insightful 

information about the numerical solution of 

first-order differential equations.  

Additional studies can be conducted to 

investigate other numerical techniques or 

examine how these techniques can be 

applied to multidimensional problems, 

higher-order differential equations, or 

particular real-world situations. 
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