
International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 

 
    2894 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

Thermal Image-Based Hotspot Detection System in 

Solar Panels by Lilnet-5 and  

Relu6-F-Rcnn  
P.Pradeep Kumar1 , Dr.M.Rama Prasad Reddy2 

                                                                                                            1Research Scholar 

G.Pullaiah College of Engineering and Technology 

Kurnool,Andhra Pradesh, India. 

Mail Id: poluripradeep238@gmail.com 

2Professor,EEE Dept., 

G.Pullaiah College of Engineering & Technology 

Kurnool, Andhra Pradesh, India 

Mail Id : mrpreddy77@gmail.com 

Abstract: The effects of high temperatures are the hotspots that occur in solar panels. In previous works, the particular hotspot-affected panel 

detection on a large scale and the damage-percentage analysis are not concentrated. Hence, this article proposes an efficient detection system for 
solar panel hotspot identification from thermal images. To convert Photovoltaic (PV) power from one voltage to another voltage level, solar PV 

panels are employed and connected with the DC-DC converter. The Student T Distributed-Osprey Optimization Algorithm (ST-OOA) is utilized 

for controlling the converter duty cycle. The output obtained from the converter is in a signal waveform that is converted into a snowflake image 
by a Symmetrized Dot Pattern (SDP) and given to the LeCun Initialized LeNet-5 (LILNet-5) classifier for fault-panels detection. Afterward, the 

fault panels’ thermal images are preprocessed along with faults and cracks segmentation by utilizing Rectified Linear Unit 6 Activated Faster 

Region-based Convolutional Neural Network (ReLu6-F-RCNN). Lastly, to identify the damage percentage of solar panels, power loss is 

calculated. Moreover, the performance analysis exhibited the framework’s robustness in effective solar panel hotspot detection. 

Keywords: Rectified Linear Unit 6 Activated Faster Region-based Convolutional Neural Network (ReLu6-F-RCNN), LeCun Initialized LeNet-

5 Classifier (LILNet-5), Student T Distributed- Osprey Optimization Algorithm (ST-OOA), Symmetrized Dot Pattern (SDP), Maximum Power 

Point Tracker (MPPT). 

1. INTRODUCTION 

The sunlight energy will be converted into electrical energy by 

the PV module; also, they are implemented on a large scale 

nowadays, thus the maintenance will be complex (Afifah et al., 

2021) (Pathak et al., 2022). Owing to the atmospheric 

conditions, hotspots are generated in the solar panels 

(Phoolwani et al., 2020). Such hotspots are identified by 

imaging techniques and analyzing temperature distribution 

patterns (Kandeal et al., 2021). 

To detect hotspots in the PV module, temperature 

distribution and Thermographic Image (TI) based fault 

identification in PV modules are effective approaches 

(Rahaman et al., 2020) (Afifah et al., 2020). TI represents the 

image grounded on the PV module surface temperature 

distribution (Vergura, 2021)(Chen et al., 2020). The process 

involves the automatic detection of hotspots utilizing image 

processing approaches, incorporating neural networks and 

machine learning techniques (Venkatesh et al., 2022). 

Masking the affected areas in the PV module is the next step 

after detecting the hotspots. Lastly, for effective fault location 

identification and rectification, fault segmentation is achieved 

(Pramana & Dalimi, 2020). Nevertheless, the previous work 

only considered the micro-cracks and did not concentrate on 

other types of cracks. To address this issue, a novel ReLu6-F-

RCNN framework for the solar panel hotspot detection system 

is proposed. 

1.1 Problem Statement 

The drawbacks of the prevailing works are described further: 

• In previous works, damage level analysis and fault 

detection on a large scale are challenging. 

• In existing work, only the micro crack-affected PV 

module was detected, but other cracks are less 

focused. 

• Hotspots along with internal circuitry discoloration 

are the causes of energy loss in PV modules. 

The proposed system’s major objectives are, 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 

 
    2895 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

• To efficiently classify the hotspot by utilizing the 

LILNet-5 classifier and its damage percentage 

estimation. 

• To accurately segment the multiple cracks on the PV 

system, the ReLu6-F-RCNN approach is employed. 

• The Maximum Power Point Tracker (MPPT) control 

system is connected to avoid the internal circuitry 

discoloration issue. 

The structure of this paper is given as: Section 2 delves into 

the associated works; the proposed system is delineated in 

Section 3; Section 4 showcases the results; lastly, the paper is 

wrapped up in Section 5. 

2. LITERATURE SURVEY 

(Su et al., 2021) deployed a Residual Channel-wise Attention 

Gate Network (RCAG-Net) for the PV farms’ hotspot 

detection system. To reduce the feature dimension, the model 

utilized global average pooling and multilayer perception 

operation. Hence, the RCAG-Net had a high potential in 

detecting the hotspot defects. This model could not ensure the 

exact pinpointing of all defects within PV modules owing to 

the inevitability of positioning errors. 

(Zefri et al., 2022) established the three-layer deep learning 

system to classify defects in PV modules. VGG-16 

architecture was employed by this model to classify the 

temperature pattern. Afterward, infrared thermal images were 

chosen from various PV sites and subjected to preprocessing 

utilizing the Structure from Motion – MultiView Stereo 

photogrammetric process. Even though the model attained a 

high F1-Score, it failed to detect the temperature variability in 

the PV module, thus affecting the overall performance of the 

system. 

(Wang et al., 2022) explored a PV panel condition monitoring 

grounded on infrared detection. For image segmentation and 

effective fault classification, this approach employed the U-

Net architecture and decision tree algorithm. Therefore, the 

model attained high fault detection accuracy. However, the 

model complexity was increased by utilizing the decision tree 

algorithm. 

(Espinosa et al., 2020) elucidated an automatic physical fault 

classification of PV panels by utilizing a Convolutional Neural 

Network (CNN). The presented approach extracted, 

segmented, and classified the panel object from the RGB PV 

panel images utilizing CNN. Hence, the faulty PV panels were 

effectively classified by the suggested model. Yet, the model 

attained low accuracy since the collected dataset was very 

small.  

(Hong et al., 2022) proffered PV plant defect detection system 

centered on visible and infrared images. For image 

segmentation purposes, the model employed the You Only 

Look Once version 5 (YOLOv5). The performance of this 

model attained high detection efficiency. Nevertheless, the 

intense reflectivity of the PV module caused a 

misclassification problem. 

3. PROPOSED METHODOLOGY FOR DETECTING 

SOLAR PANEL HOTSPOTS 

In this framework, an efficient solar panel hotspot detection 

system by LILNet-5 and ReLu6-F-RCNN is established. The 

proposed structure is displayed in Figure 1. 

Figure 1: 

Proposed system structure 

3.1. DC-DC converter 

Large solar panels, which convert solar energy into electricity 

by PV cells, are established by the proposed system. After 

that, the DC-DC converter is connected for constant output 

voltage regulation. Then, the MPPT controller controls the 

converter’s duty cycle. MPPT controller collects solar panel 

voltage and loads the converter with its optimum power 

requirements that are estimated by ST-OOA for their better 

exploration and exploitation. However, random position 

updation of the Osprey Optimization Algorithm (OOA) results 

in non-continuous semi-optimal solutions. Therefore, the 

Student T Distribution function is employed for its ability to 

estimate the population within a smaller sample size.  

Initialization  

The population of the osprey ( )O is the power (product of 

voltage and current), and the osprey’s position is the optimal 

power in the search space, which is expressed as, 
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Here,
ijO signifies the 

thi osprey in m number of osprey in 

the 
thj search place of n dimensional search place; LandU

are the search place’s upper and lower bounds. Maximum 

power ( )  is the fitness ( ) of osprey, which is represented as, 

 max=     (3) 

Location identification (exploration) 

The set of fishes ( )F  that are the prey to be hunted by the 
ijO

is described as, 

( )  ( )  mkOFOFFO bestikki ,.....,2,1, =  

 (4) 

Here, 
kO symbolizes the random new

thk osprey; 
iFO is 

the fish for the
thi osprey; 

kF and
iF  are the fish for

thk and

thi osprey; 
bestO is the best osprey. From ( )F , the osprey 

selected a fish and hunted it. During the hunting process, the 

position is updated as, 

( )ijijsijij

ex

ij OrandFOO −+= ,

1
 (5) 





 

=




elseO

FifO
O

i

i

ex

i

i
,

,1

  (6) 

Here, 
1ex

ijO is the position of the 
thi osprey in the

thj search 

place based on the exploration phase; ijsF , implies the selected 

fish; rand is the random numbers from the set 2,1 ;


iO

signifies the new position of the
thi osprey. 

Relocate the fish (exploitation) 

After hunting the prey, the osprey carried it to another location 

to eat it, which is estimated through the Student T Distribution 

function as, 
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Here, 
2ex

ijO is the osprey’s position in exploitation; 1 is a 

random number;  epitomizes sample standard deviation; z is 

the sample size; q is the sample mean, and  is the population 

mean. The repetition of the above phases continues until the 

optimal power is obtained. After obtaining the optimal power, 

it is given to the DC-DC converter. Afterward, the converter 

generates regulated output voltage characteristics as a signal 

waveform. 

3.2. SDP 

The SDP transforms the generated waveform into a snowflake 

image ( ) . The signal ( )Q  withW sample-point created from 

DC-DC is represented as, 

 wW QQQQ ,......,, 21=   (8) 

Where, w exemplifies the total number of sample points; 

W in Q is mapped to polar-coordinates point ( ) , which is 

expressed as, 

( ) ( ) ( ) WWWpr  ,,→   (9) 

Here, ( )Wpr is the polar radius of ; 

( ) ( )WandW  are the two rotation angles of 

conventional polar space. The sample-point mapping is 

combined with the plotting gain ( ) , and the  condition is 

given as, 
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Here, maxmin QandQ are the minimum and maximum of

Q ,  epitomizes time-lag coefficient, and  signifies the
th

rotational angle of the Z number of mirror symmetric planes, 

and it is exemplified as, 

Z

360
=     (14) 

From the above analysis,  is derived fromQ in Z mirror 

planes of according to  . 
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3.3. Classifier 

Thereafter, for classifying the normal and fault panels,  is 

given as input to the LILNet-5 classifier. The LeNet-5 was 

utilized for its lightweight design with a less complex 

structure. However, LeNet-5 has an unbalanced weight 

initialization issue that caused a vanishing gradient problem. 

Thus, LeCun weight initialization is employed, which prevents 

the gradient problems by setting constant variance. 

 

Figure 2: LILNet-5 architecture 

3.3.1. Convolutional layer 

The convolutional layers ( ) perform the feature extraction 

process; also, each layer comprises several convolutional 

kernels ( ) . The input gets connected with  of this layer, 

which is represented as, 

 BbAaba ,...,2,1;,...,2,1,, ===    

 (15) 

Here, BA, are the numbers of features in ba, from , 

correspondingly;  can be signified with the total size ( )E as 

given below: 
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Here, NM , symbolize the layer’s height and width; the 
operation is given as, 

( )  ++ +=
NM NBMANM, 1,,     

 (17) 

Wherein, 1 symbolizes the offset, and epitomizes the 

ReLu activation function used for its non-linearity properties, 

which is denoted as, 

( ) ( ) ,0max=    (18) 

 

3.3.2. Sub-sampling layer 

The sub-sampling layer ( ) selects the features by down-

sampling ( )down  the dimensions of outputs that retain the 

maximum ( )max values in the pooled area ( )G  as, 

( ) qpdown g ,max=    (19) 

Here, g symbolizes elements of G with the parameters

Gqp , . 

3.3.3. Fully connected layer 

The fully connected layer ( ) can integrate the local 

information for discriminating the output classes. The  with

 elements and 2 offset is expressed as, 

2 +=     (20) 

Where,   epitomizes LeCun weight initialization with 

weights ( ) . It is defined as, 




1
=     (21) 

3.3.4. Output layer 

The output layer ( ) mapped  to the probability within ( )1,0  

is elucidated as, 

( )3 +=    (22) 

Here, symbolizes elements, 3 implies offset term, and

 specifies a softmax function for different classification 

classes as, 

 LfKef

e ,....,2,1,,...,2,1| ===   

  (23) 
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Where, 
f

e notates the probability of 
thf sample for the 

e number of classification classes, and LK, signifies the total 

number of samples and classes. The error ( )f  analysis is 

defined as, 
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Here,
f

e is the expected classification output, and the 

global error ( )  of L samples is, 
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Therefore, the output of the classifier ( ) is obtained with the 

normal and fault panels. 

Pseudo code for LILNet-5 

Input: Snowflake image ( )
 

Output: Normal or fault classes 

Begin 

 Initialize convolutional-kernel ( ) , 321 ,,  , global 

error ( )  

 For each data  

  Compute convolutional operation 

( )  ++ +=
NM NBMANM, 1,, 

 

  Activate ReLu function 

  Perform sub-sampling

( ) qpdown g ,max=  

  Formulate 2 +=  

  Evaluate output and error  

( )3 +=
 

 End For 

 Return  

End 

3.4. Segmentation of Hotspot 

The panel’s thermal images are collected and preprocessed 

after getting . Features like Radiomic, SIFT-based color 

descriptors, color moments, cumulative distribution function, 

Independent component analysis, and moment invariant 

features are extracted from the preprocessed image ( )  and 

given to the segmentation process. The F-RCNN is used for its 

effective object detection mechanism; however, the ReLu will 

increase the computational complexity. Therefore, the ReLu6 

activation function is utilized. It has the upper limit of 6; thus, 

it allows more floated positions and achieves more precise 

output. The faster-R-CNN ( )faster enclosed region proposal 

network ( ) and fast-RCNN ( )fast , and it is expressed as, 

fastfaster +=     (26) 

The number of features extracted ( )out  from input features

( )in with padding ( )  and stride ( )  along with kernel ( )

and ReLu6 activation ( )  is utilized as, 

1
2

+










−+
=


 in

out   (27) 

( )( )6,0,maxmin  =    (28) 

Thereafter, out is propagated to  for region proposal ( )
generation, which is expressed as, 

( )outout  =    (29) 

Here, out is output from that is given to Region of 

Interest (ROI) pooling ( ) along with high dimensional 

features ( )

out to transform the features into uniform size as, 

+= outout     (30) 

Lastly, the output is passed to a fully connected layer ( )

and attains the detected damage ( )  in a bounding box ( )  as, 

( ) =out     (31) 

Afterward, the segmented output ( )out undergoes an 

evaluation for calculating the amount of power loss ( ) for 

predicting the damage percentage of the fault panels, and it is 

computed as, 

outin  −=     (32) 

Here, outin  , are the input and output power. The damage 

percentage ( )  of panels is estimated with high, moderate, 

and low as, 
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Thus,  of the fault panel was effectively estimated. In the 

below phase, the proposed technique’s performance analysis is 

discussed. 

4. RESULT AND DISCUSSION 

Here, the methodology’s performance assessment is conducted 

using a publicly available dataset. The proposed system has 

been implemented on the MATLAB platform. 

4.1 Dataset Description 

This work utilizes a PV system thermography dataset to train 

the classifier with 837 images as well as 5 fault classes. The 5 

fault classes are categorized as Multi-Cell Hotspot, PID defect, 

Single Cell Hotspot image, Diode Fault, and Dust and Shadow 

Hotspot. This work utilizes 80% of images for training and 

20% for testing. 

Table 1: Image Analysis 

Hotspot/Proces

s 
Input Image Preprocessing Segmentation 

Diagonal Crack 

   

Two Spot 

   

One Spot 

   

Parallel Crack 

   

Perpendicular 

Crack 

   

The preprocessing and segmentation of PV panel hotspot 

images of diagonal, one-spot, two-spot, parallel, and 

perpendicular hotspots are presented in Table 1. 

4.2 Performance Analysis 

Here, the performance and comparative analysis of proposed 

models are done with existing algorithms along with related 

works. 

Figure 3: Performance Analysis  

The proposed ReLu6-F-RCNN’s performance assessment with 

prevailing F-RCNN, U-Net, RCNN, and YOLO is displayed in 

Figure 3. The ReLu6-F-RCNN approach effectively detected 

and segmented the hotspots with high accuracy, precision, 

recall, F-score, Specificity, and Sensitivity of 98%,97.5%, 

97.4%, 97.75%, 97.8%, and 97.6%, correspondingly, by its 

quick learning ability. Nevertheless, the existing works 

attained comparatively low accuracy, precision, recall, F-

score, Specificity, and Sensitivity. Hence, the proposed model 

outperformed all existing works. 
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(a)  

 

(b) 

Figure 4 (a) & (b): Comparative analysis 

Figures 4 (a) and (b) compare proposed ReLu6-F-RCNN with 

existing algorithms grounded on True Negative Rate (TNR), 

False Negative Rate (FNR), True Positive Rate (TPR), False 

Positive Rate (FPR). The ReLu6-F-RCNN model ignored the 

unwanted information from thermal images, so it attained 98% 

of TPR and TNR and has a very low FPR of 0.23 and FNR of 

0.33. In contrast, the existing work has an average TPR and 

TNR of 94.45% but had higher average FPR of 0.65 and FNR 

of 0.44. These results demonstrated that the proposed ReLu6-

F-RCNN model is highly efficient. 

Table 2: IOU evaluation 

Techniques IOU (%) 

ReLu6-F-RCNN 91.4 

F-RCNN 91 

U-Net 89.62 

RCNN 86.07 

YOLO 84.88 

The Intersection Over Union (IOU) evaluation of the ReLu6-

F-RCNN model with the existing algorithms is displayed in 

Table 2. The ReLu6 activation achieved an impressive IOU 

score of 91.4% for precise segmentation. In contrast, the 

existing algorithms attained average IOU scores of 87.89%. 

Therefore, the proposed model outperforms all prevailing 

mechanisms with its segmentation accuracy. 

 

Figure 5: Performance assessment  

Figure 5 displays the performance assessment of the proposed 

LILNet-5 and existing Deep Neural Network (DNN), LeNet5, 

CNN, and Artificial Neural Network (ANN). The LILNet-5 is 

a low-complex structure, so it effectively classified the normal 

and fault PV panel. Therefore, it achieved better accuracy 

(97%), precision (96.5%), recall (96.5%), F-score (96.5%), 

specificity (89%), and sensitivity (88%). Existing techniques 

attained comparatively low accuracy, precision, recall, F-

score, specificity, and sensitivity. This result exhibited that the 

fault PV panels are effectively classified by the proposed 

model.  

 

Figure 6: MSE evaluation  
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Table 3: Comparative Analysis of LILNet-5 

Techniques RMSE 

LILNet-5 0.33541 

Le Net-5 0.68491 

CNN 0.7526 

DNN 0.82716 

ANN 0.90277 

Figure 6 and Table 3 exemplify the proposed LILNet-5 and 

existing models’ Mean Square Error (MSE) as well as Root-

MSE (RMSE) evaluation. Better model performance is 

indicated by a lower error. The proposed LILNet-5 achieved 

an impressively low MSE value of 0.1125 and RMSE of 

0.33541, and the existing algorithms attained the highest MSE 

and RMSE values. These results demonstrated that the 

proposed model is less error-prone with superior performance 

in hotspot detection. 

 

Table 4: Comparison Analysis with related work 

Study 
Met

hod 
Dataset 

Accur

acy 

% 

Precis

ion 

% 

Recal

l 

% 

F-score 

% 

Propose

d 

ReLu

6-F-

CNN 

Photovoltaic 

system 

thermography 

98 97.5 97.4 97.75 

Fonseca 

Alves et 

al., 

2021 

CNN 
Infrared Solar 

module 
78.85 92 93 92 

Winsto

n et al., 

2021 

SVM - 92 - - - 

Ali et 

al., 

2020 

SVM - 96 96.1 - 97.75 

Hwang 

et al., 

2021 

CNN 

&XG

BOO

ST 

Thermography 

Inspection 
95 - - - 

Manno 

et al., 

2021 

CNN - 97 - - - 

Concerning precision, F-score, accuracy, and recall, the 

comparison analysis is shown in Table 4. For hotspot detection 

and classification, existing work utilizes the CNN and SVM 

networks. Owing to misclassification issues by detecting only 

fault panels, it attains only an average of 91% accuracy in 

hotspot detection. But, the proposed work has an efficient 

segmentation and classification model for PV hotspot 

detection and achieved higher accuracy (98%), precision 

(97.5%), recall (97.4%), and F-score (97.75) in hotspot 

detection. This significant performance improvement is the 

result of the modified ReLu6-F-RCNN segmentation model 

and LILNet-5 classification model, which accurately 

segmented the PV hotspots. 

5. CONCLUSION 

By utilizing the LILNet-5 and ReLu6-F-RCNN models, this 

paper introduced a thermal image-centric hotspot detection 

system for solar panels. In this system, PV panels, which are 

controlled by an MPPT controller, are equipped with DC/DC 

converters for output-voltage regulation. The PV panel’s 

hotspots are effectively classified by LILNet-5, whereas 

ReLU6-F-RCNN segments the hotspots along with the 

damage percentage. The final outcomes depicted a 

segmentation accuracy of 98% along with a high IOU of 

91.4%. The proposed model outperformed prevailing 

approaches and reinforced its efficiency and effectiveness in 

PV-panel hotspot detection. 

Future Recommendations 

Various types of hotspots in PV modules are successfully 

identified by this research. Detecting the hot-spotted panel’s 

location may be addressed using alternative methodologies in 

the future. 
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