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Abstract— The modernization of electricity networks and the integration of renewable energy resources in Internet of Things (IoT) based 

smart grids have led to increased variability in market prices, necessitating effective demand response (DR) strategies. To address this 

challenge, this paper proposes a novel Balanced Q-Learning based Demand Response System (BQL-DRS) that combines both optimistic and 

pessimistic targets in the Q-learning algorithm to achieve a balanced decision-making process in IoT based smart grids. It optimizes DR 

actions by efficiently managing consumer demand in real-time, considering IoT data from grid conditions, energy prices, and consumer 

preferences. The significance of the BQL-DRS lies in its ability to handle dynamic and uncertain IoT based grid environments, enabling it to 

make informed and cautious decisions while pursuing energy efficiency and cost-effectiveness. By effectively addressing both pessimistic 

and optimistic scenarios, the BQL-DRS ensures grid stability, load balancing, and substantial cost savings compared to representative models. 
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1. INTRODUCTION 

In recent years, the demand for electricity in home and 

commercial settings has increased dramatically as a direct result 

of the growing use of electric cars and household equipment [1]. 

The expansion of power producing facilities, the development 

of energy storage technologies, and the use of smart grid 

technology for effective electricity management are all 

strategies that may be used to satisfy this need [2]. The transition 

of traditional electricity grids into more intelligent and 

resourceful smart grids is made possible in large part by the 

Internet of Things (IoT) technologies. IoT-enabled smart grids 

minimize energy use, improve grid resilience, and make it easier 

to integrate renewable energy resources in a seamless manner 

by harnessing real-time data and sophisticated analytics. 

Smart grids are grids that combine sophisticated 

technologies and serve as a vital solution to improve grid 

performance, communicate with customers, and support 

Demand Response (DR) programs [3]. DR programs are 

designed to motivate consumers to modify their power use 

during peak load hours, which contributes to system stability. 

Smart grids are a crucial answer to these problems. This strategy 

may be used in homes, companies, and even whole industries. 

In today's sophisticated smart grids, DR systems are an absolute 

need for effectively controlling the variable output of renewable 

energy sources and maintaining grid stability. They allow for the 

smooth incorporation of renewable energy sources, the effective 

management of peak loads, the reduction of costs and emissions, 

the enhancement of grid flexibility, and the empowerment of 

consumers for energy efficiency and a sustainable future. 

The following is a description of a few different kinds of 

demand response systems. Programs known as "Time-of-Use" 

(ToU) pricing [4] set different prices for energy at different 

times of the day. The prices are often higher during times of 

strong demand and lower when demand is reduced, for as during 

off-peak hours. Consumers are urged to move their energy-

intensive activities, such as operating appliances or charging 

electric cars, to times when rates are lower in order to take 

advantage of these cheaper rates and reduce the burden that is 

placed on the grid during peak hours.   

Critical Peak Pricing (CPP) [5] programs involve higher 

electricity rates during critical peak periods when electricity 
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demand is at its highest. These periods are typically limited to a 

few hours on specific days when the grid is under significant 

stress. Participants in CPP programs receive advanced notice of 

these critical peak events and are incentivized to reduce their 

energy consumption during those times to avoid higher costs. In 

Peak Time Rebate (PTR) [6] programs, consumers receive 

financial incentives or rebates for reducing electricity usage 

during peak demand periods. Participants receive a rebate or 

credit on their electricity bill based on the amount of energy they 

save during peak hours.  

However, DR programs face limitations in consumer 

participation, technology requirements, timing constraints, and 

rebound effects as evident from an investigation of Lu et al [7]. 

Incentives may not be compelling enough, and equity concerns 

can arise. Data privacy and program complexity also pose 

challenges. To optimize DR's effectiveness, policymakers must 

enhance consumer engagement through education and attractive 

incentives. Investing in advanced technologies should be 

balanced with cost considerations. Addressing equity issues is 

vital to ensure broad participation. Robust data privacy 

measures must be implemented to build trust. Timely 

coordination and streamlined program designs can bolster DR's 

impact in managing peak demand, enhancing energy efficiency, 

and promoting grid stability for a sustainable energy future. 

Deep learning based DR systems offer promising solutions 

to resolve the limitations of traditional DR programs [8]. By 

harnessing the power of advanced algorithms and IoT 

technology, these systems can enhance consumer engagement, 

optimize incentive structures, address timing constraints, 

mitigate rebound effects, ensure equity considerations, 

strengthen data privacy, and streamline program designs. 

Implementing deep learning based DR systems can significantly 

improve the effectiveness and efficiency of DR initiatives, 

ultimately leading to better grid stability, enhanced energy 

efficiency, and a more sustainable energy future. 

Of late, Reinforcement Learning (RL) based DR programs 

play a pivotal role in reshaping energy consumption patterns, 

promoting grid stability, and advancing the transition towards a 

more sustainable and reliable energy future [9-10]. Their 

dynamic adaptability, cost-effectiveness, and positive impact on 

the grid and the environment make them a significant 

component of modern energy management strategies. 

Balanced Q-learning (BQL) [11] is a RL algorithm that 

strikes a compromise between optimistic and pessimistic targets 

to achieve a balanced approach. Traditional Q-learning's 

optimistic targets assume the best-case scenario, leading to 

overestimation bias, while pessimistic targets can result in 

overly conservative policies. BQL combines both approaches as 

a convex combination, enabling exploration while considering 

risks and uncertainties. This algorithm improves performance 

and stability in domains like robotics, finance, and energy 

management, offering effective and reliable learning outcomes.  

By leveraging the BQL approach, the DR system can 

achieve enhanced stability, improved risk management, 

efficient resource utilization, flexibility in action spaces, real-

time responsiveness, balanced trade-offs in objectives, and 

increased consumer engagement. The balanced learning process 

can minimize overestimation bias and conservativeness, 

ensuring robust performance in dynamic smart grid 

environments. The DR system can optimally allocate resources, 

adapt to changing conditions, and navigate conflicting 

objectives. Consumers are encouraged to participate due to the 

harmonious balance between energy-saving measures and 

comfort, making BQL a promising algorithm for effective and 

reliable DRSs in smart grids.  

This research proposes the BQL-DRS, the first of its kind to 

optimize demand response actions effectively and reliably, 

contributing to grid stability, energy efficiency, and 

sustainability in the smart grid ecosystem. The contributions of 

this paper are as below. 

1. The BQL optimizes demand response actions while 

considering risks and uncertainties, enhancing DRS stability 

in dynamic grid environments. 

2. The BQL improves risk management by making cautious 

decisions, ensuring grid stability and mitigates potential 

instability or safety issues, even during unforeseen events or 

disturbances. 

The rest of this paper is organized as follows. Section II 

presents a literature review on DR strategies and RL in the 

context of smart grids. Section III outlines the proposed BQL-

DRS architecture with its components. Section IV presents the  

experimental results on evaluation of the  BQL-DRS using 

objective metrics, interpretation of the results and presents the 

research findings. Finally, section VII concludes the paper and 

suggests future research directions. 

 

2 RELATED WORKS 

In [12], a comprehensive overview of employing rl 

algorithms for demand response (dr) applications in the smart 

grid is presented. The authors explore different rl techniques and 

their modeling methodologies, emphasizing their potential 

advantages and associated challenges. A most recent review in 

this context also advocates rl based  dr for resource optimization 

in iot based smart grids [13].  The research on dr includes a 

precise classification of economic signals for managing 

electricity demand. A study by yan et al [14] proposes a price 

based dr utilizing the tou method and appliance scheduling, 

optimizing consumer restrictions and price changes for 

improved device decision-making. Due to their outstanding 

performance, machine learning-based dr techniques have 

recently attracted attention [15]. For load balancing in smart 

grids, game theory-based dr methods are helpful. In [16], a two-

stage dr strategy employs a stochastic one-leader multiple-

follower stackelberg gaming model for decision-making and a 

noisy inverse optimization technique for load prediction. A 
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generative adversarial network (gan), which updates the model 

regularly for decision-making in the face of missing data, is used 

to enhance dynamic electricity price forecasts [17]. In smart 

grids, these methods provide effective load control and dynamic 

power pricing options. In recent years, rl has been widely used 

to address the dr problem, enabling agents to learn and adapt in 

unknown environments. Rl's effectiveness in understanding 

consumer preferences in dynamic settings makes it a state-of-

the-art method for dr programs. Comprehensive analyses were 

conducted on articles focusing on dr programs, including those 

based on prices, incentives, consumer satisfaction, consumer 

classification, and practical case applications. In [18], an rl 

architecture optimizes heating, ventilation, and air conditioning 

(hvac) control in a building for energy savings and thermal 

comfort with demand response. The study achieves up to 22% 

weekly energy reduction compared to traditional control 

methods. In this line, a study in [19] proposes a method using rl 

to manage a multipurpose energy storage (mpes) system  for 

demand response programs. Industrial consumers can gain 

added profits through market participation while optimizing 

electrical load management. The benefits of tou rates are 

explored, showing that consumers can maximize cost savings by 

shifting consumption to lower-priced time slots. In [20], a neural 

network is trained to develop discrete-time control strategies 

using rl. This study focuses on optimizing thermostat 

configurations, considering factors like thermal comfort, energy 

consumption, and environment. A novel objective function 

truncation method is introduced to improve algorithm 

robustness. Furthermore, the proposed rl algorithm is utilized to 

learn the thermostat settings during dr periods based on 

electricity prices and tou approach. In [21], a dr scheduling 

model for residential community which uses an energy 

management system aggregator is proposed. The model 

dynamically controls power demand and distributed energy 

resources to match renewable power generation with 

consumption, while reducing operational costs through 

electricity trading in day-ahead and real-time markets. The 

problem is formulated as a mixed-integer linear programming 

task, and a two-level model predictive control (mpc) integrating 

rl is used to address uncertainties in system operation. The 

results demonstrate that operating houses in aggregate mode 

yields greater benefits for the community. Extensive review of 

several literature shows that rl based dr systems in iot networks 

face limitations in dealing with high dimensionality, lengthy 

training times, data inefficiency, safety concerns, and adapting 

to non-stationary conditions. The bql approach emerges as a 

promising solution, offering faster convergence, enhanced data 

efficiency, safety, stability, and adaptability. Despite these 

advantages, there are currently no existing works on dr based on 

bql, creating a crucial research opportunity to explore its 

untapped potential. By integrating bql with dr strategies, this 

study aims to advance efficient and robust dr implementations 

in iot-based smart grid systems.  

III PROPOSED DQS-BRL 

This section presents the formal definition of the proposed 

DR system for smart grids and the BQL-DRS architecture. 

 

A. Problem Definition 

Let 𝑆𝐺  be a smart grid system with 𝑛  sensors 

(𝑆𝑒𝑛𝑠𝑜𝑟1, 𝑆𝑒𝑛𝑠𝑜𝑟2, . . . , 𝑆𝑒𝑛𝑠𝑜𝑟𝑛)  collecting data related to 

energy consumption, environmental conditions, and renewable 

energy generation. The system also includes 𝑚  actuators 

(𝐴𝑐𝑡𝑢𝑎𝑡𝑜𝑟1, 𝐴𝑐𝑡𝑢𝑎𝑡𝑜𝑟2, . . . , 𝐴𝑐𝑡𝑢𝑎𝑡𝑜𝑟𝑚)  responsible for 

implementing DR actions in the smart grid. The objective of the 

BQL-DR system is to optimize DR actions in 𝑆𝐺 to efficiently 

manage power demand and distributed energy resources while 

ensuring grid stability and sustainability. 

Let 𝑆  be the state space representing the possible 

combinations of sensor readings, 𝐴  be the action space 

representing the set of demand response actions that can be 

taken, and 𝑅: 𝑆 × 𝐴 → ℝ be the reward function that provides a 

scalar reward for each action taken in a particular state. The goal 

is to find an optimal policy 𝜋: 𝑆 → 𝐴 that maps states to actions, 

maximizing the expected cumulative reward over time as in (1), 

where 𝔼 is the expected reward obtained when the system is in 

state 𝑠𝑡  and the BQL agent takes action 𝑎𝑡  according to the 

policy 𝜋 . It is the expected cumulative reward over time, 

considering the probabilistic nature of state transitions and 

action selections. The expectation is taken with respect to the 

probability distributions of states and actions given by the sensor 

readings from 𝑆 and the policy 𝜋, respectively.  

 

𝜋∗ = argmax
𝜋

∑  𝑇
𝑡=0 𝔼𝑠𝑡∼𝒮,𝑎𝑡∼𝜋(𝑠𝑡)[𝑅(𝑠𝑡 , 𝑎𝑡)]             (1) 

 

The BQL-DRS updates the Q-values for state-action pairs 

according to equation (2), where 𝑄(𝑠, 𝑎) is the Q-value for state 

𝑠 and action 𝑎, α is the learning rate, controlling the weight of 

the new information in the Q-value update, and λ is the balance 

parameter, determining the trade-off between optimistic and 

pessimistic targets. Here, 𝑚𝑎𝑥
𝑎 

{𝑄(𝑠  , 𝑎 )})  represents the 

maximum Q-value among all possible actions 𝑎  that can be 

taken in the current state 𝑠 . It indicates the highest expected 

reward the agent can achieve by selecting the best action 𝑎. The 

agent uses this value to update the Q-value for the current state-

action pair (𝑠′, 𝑎′)  in the Q-learning algorithm, helping it to 

learn and make better decisions over time. 

𝑄(𝑠′, 𝑎′) ← (1 − 𝛼) ⋅ 𝑄(𝑠, 𝑎) + 𝛼 ⋅ ((1 − 𝜆) ⋅ 𝑅(𝑠, 𝑎) + 𝜆 ⋅

𝑚𝑎𝑥
𝑎′

{𝑄(𝑠 , 𝑎 )})  (2) 

The state diagram illustrating the above process is shown in 

Figure 1. 
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Fig.1. BQL-DRS State Diagram 

 

B. BQL-DRS Architecture 

The architecture of the BQL-DRS comprises the following 

interconnected components designed to optimize DR actions in 

IoT-based smart grid environments as in Figure 2. 

 
Fig.2. BQL-DRS Architecture 

1. IoT Network: The IoT network represents the IoT sensors 

responsible for collecting data from the smart grid about 

various aspects such as energy consumption, environmental 

conditions, and renewable energy generation. 

2. BQL Agent: The central component of the architecture is 

the BQL agent. It receives input from the IoT sensors and 

employs the BQL algorithm to make optimal decisions 

regarding DR actions. The BQL agent's main goal is to 

dynamically manage power demand and distributed energy 

resources, ensuring a balance between renewable power 

generation and community consumption. 

3. Controller: The controller acts as the decision-making 

entity that coordinates interactions between the BQL agent, 

IoT sensors, and demand response actuators. It receives the 

output from the BQL agent and communicates with other 

components to execute the optimal demand response 

actions based on the agent's decisions. 

4. Demand Response Actuators: These actuators are 

responsible for implementing the DR actions in the smart 

grid. The controller interacts with these actuators to execute 

the optimized strategies determined by the BQL agent. The 

BQL-DR system leverages the BQL agent as the core 

decision-making component, which takes input from IoT 

sensors, optimizes demand response actions, and 

communicates with the controller to execute these actions 

through the demand response actuators. This architecture 

ensures an efficient and balanced approach to demand 

response in IoT-based smart grid systems, promoting 

energy efficiency, grid stability, and sustainability. 

IV EXPERIMENTAL RESULTS AND ANALYSIS 

This section presents the evaluation of the BQL-DRS in the 

smart grid context. It showcases the metrics, empirical findings,  

and comparative analyses, providing insights into the system's 

strengths and limitations for future enhancements in DR 

strategies within IoT-based smart grids. 

 

A. Experimental Setup 

The simulated smart grid environment includes a 

photovoltaic system (100 kW) and a wind turbine (50 kW) as 

virtual power generation sources, along with two energy storage 

units (500 kWh each) and controllable loads (200 kW to 500 

kW). Electric vehicles with charging demands ranging from 50 

kW to 150 kW were also considered. The BQL-DRS  was 

configured with α=0.2, γ=0.9, ϵ=0.1, and λ=0.5 for BQL. 

Comprehensive data collection and monitoring systems were 

used to track Q-values, rewards, state transitions, and action 

selections. The experiments encompassed varying renewable 

energy generation, real-time price fluctuations, and energy 

consumption patterns. The performance of the model was also 

evaluated for different values of α and λ. 

 

B. Performance Evaluation 

The BQL-DRS is evaluated with the metrics Demand 

Variation (DV), Load Factor (ALF), Peak Load Reduction 

(PLR) and the Cost Savings (CS) evaluated as in equations 

(3)-(6). 

DV is used to measure the effectiveness of the proposed 

pricing schemes and DR actions. It calculates the total change in 

electrical energy consumption, representing the relationship 

between the original consumption and the consumption after 

implementing a DR scheme as in (3).  

𝐷𝑉 =
𝐸orig−𝐸new

𝐸orig
  (3) 

The LF metric indicates the ratio of the average load (𝐴𝑉𝐿) 

of consumers to their maximum load 𝑀𝑎𝑥𝐿 , representing high 

peak consumer demand and the effectiveness of the pricing 

scheme in displacing electricity demand as in (4).  

𝐿𝐹 =
𝐴𝑉𝐿

𝑀𝑎𝑥𝐿
   (4) 
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The PLR quantifies the reduction in peak load achieved 

through DR strategies as in (5) where 𝑀𝑎𝑥𝐿  is the original peak 

load and 𝑀𝑎𝑥𝐷𝑅 is the peak load after deploying the DRS in a 

smart grid. 

𝑃𝐿𝑅 =
𝑀𝑎𝑥𝐿- 𝑀𝑎𝑥𝐷𝑅  

𝑀𝑎𝑥𝐿
   (6) 

The CS metric represents the ratio of the cost savings 

achieved through DR actions to the total cost of electricity 

consumption without any DR actions in the smart grid system as 

in (6). 

𝐶𝑆 =
 𝐶𝑜𝑠𝑡𝐷𝑅-  𝐶𝑜𝑠𝑡𝑇-

𝐶𝑜𝑠𝑡𝑇
   (6) 

A low DV value indicates that the demand response actions 

are effectively reducing the total energy consumption and 

enhancing energy efficiency. On the other hand, a high LF value 

signifies that the pricing schemes and demand response 

strategies are successfully improving the load factor, leading to 

a more balanced and consistent utilization of energy resources. 

A low PLR  value indicates that the DR actions are 

effectively reducing the peak load during high-demand periods, 

contributing to better grid stability and more efficient use of 

energy resources. On the other hand, a high CS  value signifies 

that the pricing schemes and DR strategies are yielding 

significant economic benefits by reducing the total operational 

costs of electricity consumption in the smart grid. 

By optimizing DV, LF, PLR, and CS values, the smart grid 

can achieve multiple advantages, such as minimizing energy 

wastage, enhancing grid reliability, reducing peak demand 

charges, and promoting cost-effectiveness. Evaluating and 

monitoring these metrics enable researchers and grid operators 

to assess the success of DR initiatives and pricing strategies, 

facilitating data-driven decisions and continuous improvements 

in the smart grid's performance and sustainability. 

The performance of the model is evaluated under different 

values of α and 𝜆 as in Table 1 and 2 respectively. 

 

Table 1. Performance Metrics under different values of α 

LR (α) DV % ↓ LF %↑ PLR % ↓ CS %↑ 

0.1 17 80 15 24 

0.01 13 87 12 33 

0.001 9 94 10 35 

0.0001 6 96 8 40 

 

It is seen that as the learning rate decreases, the BQL-DRS 

exhibits improved performance in terms of reducing energy 

consumption (DV), enhancing energy efficiency (LF), and 

achieving higher cost savings (CS). However, there is a slight 

decrease in the percentage reduction of peak load during high-

demand periods (PLR) as the learning rate decreases. These 

findings suggest that selecting an optimal learning rate is crucial, 

as a lower learning rate may lead to slower convergence but can 

result in more accurate and optimal demand response actions in 

the long run. The results underscore the significance of tuning 

the learning rate to meet the specific requirements and 

objectives of the smart grid system.  

Table 2. Performance Metrics under different values of λ 

Balancing  

Factor (λ) 
DV % ↓ LF % ↑ PLR % ↓ CS % ↑ 

0.1 14 85 16 32 

0.3 12 87 15 35 

0.5 10 88 14 37 

0.7 9 90 13 39 

0.9 7 92 12 42 

 

Table 2 shows that as the balancing factor λ increases, the 

DV decreases, indicating a more significant reduction in total 

energy consumption through DR actions. The LF metric 

increases, demonstrating improved efficiency in utilizing energy 

resources. The PLR also decreases, suggesting a smaller 

reduction in peak load during high-demand periods. Conversely, 

the CS metric increases, reflecting higher cost savings achieved 

through demand response actions. 

Further, the proposed BQL-DRS is compared with the state-

of-the-art models in Table 3. It is observed that the proposed 

model surpasses the representative models with a good 

performance gain with respect to all the performance metrics. It 

is further noted that BQL-DRS is closely succeeded by the RL 

model proposed in [21], while the other RL based approaches 

exhibit heavy performance degradations.   

This exceptional performance of the BQL-DRS is attributed 

to the ability of the model to handle pessimistic and optimistic 

targets for a balanced decision-making process. This resilience 

in dynamic and uncertain smart grid environments enables the 

system to handle various scenarios, exploring risks while 

making cautious decisions. Handling both pessimistic and 

optimistic scenarios enhances the BQL-DRS's robustness and 

reliability in managing DR actions. This adaptability ensures 

energy efficiency, cost-effectiveness, and better outcomes 

compared to other representative models, leading to improved 

energy savings, load balancing, and cost reductions. 

 

Table 3. Comparative Analysis 

Model 
DV 

% ↓ 

LF 

% ↑ 

PLR 

% ↓ 

CS 

% ↑ 

RL for HVAC [18] Azuatalam et 

al (2020) 
14 78 16 29 

RL for MPES [19] Oh et al 

(2023) 13 81 15 33 

RL for Discrete Time Control 

[20] Li et al (2022) 12 87 14 35 

RL for Residential Community 

[21] Ojand & Dagdougui (2021) 
10 91 13 37 

BQL-DRS (Proposed) 6 96 8 40 
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Further, the convergence of the model is studied for different 

learning rates to understand its impact on the performance of the 

BQL-DRS. The learning rate plays a crucial role in determining 

how fast the BQL agent updates its Q-values based on the 

observed rewards. A higher learning rate may result in faster 

convergence, but it can also lead to overshooting and instability. 

On the other hand, a lower learning rate might require more 

iterations for convergence, but it can offer better stability and 

accuracy in decision-making. 

By analyzing the convergence behavior for various learning 

rates, researchers can identify the optimal learning rate that 

strikes a balance between convergence speed and performance. 

This investigation helps in fine-tuning the BQL-DRS system to 

achieve the best results in different smart grid scenarios. 

Additionally, it provides insights into how the BQL-DRS 

performs under different learning rate settings and helps in 

understanding the trade-offs involved in choosing the most 

suitable learning rate for the specific application. Figure 3 

depicts the convergence behaviour of the model with respect to 

five different values of α. The observed convergence at α = 0.1 

underscores the significance of choosing the right learning rate 

to strike a balance between rapid convergence and system 

stability. This finding has substantial implications for the 

successful implementation of the BQL-DRS in diverse real-

world scenarios within the smart grid domain. By utilizing the 

optimal learning rate, the BQL-DRS can effectively manage 

demand response actions, optimize energy consumption, and 

enhance grid stability in the face of dynamic and unpredictable 

conditions. 

 
Fig.3. BQL-DRS Convergence with Learning rate 

V CONCLUSION 

The novel BQL-DRS proposed in this paper demonstrates 

exceptional performance in optimizing dr actions in smart grids. 

By effectively handling both pessimistic and optimistic 

scenarios, it achieves robust and balanced decision-making. The 

bql-drs outperforms representative models in energy efficiency, 

grid stability, cost savings, and successful dr actions exhibiting 

96% lf. The analysis of convergence behavior with different 

learning rates emphasizes the importance of selecting the 

optimal learning rate for system efficiency. The bql-drs offers a 

promising solution for enhancing demand response strategies 

and contributes to a more sustainable and resilient energy future 

in smart grid applications. 
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