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Abstract—The present work argues estimating number of sources in communication system using an integrated model of Principal 

Component Analysis (PCA) neural network and kernel method to produce Eigenvalue Grads Method (EGM). The essential advantage of this 

new suggested model is that, PCA neural is used to determine the covariance matrix   instead of the traditional computation process which is 

time consuming. Simulation outcomes of this adopted model demonstrate wonderful responses through effectiveness, fast converge speed for 

(PCA) neural network, as well as achieving correct number of sources.                                            
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I.  INTRODUCTION 

Estimation number of sources is a widely attention issue in 

wireless communication system, Eigenvalue Grads Method 

(EGM) represents a universal method for estimating number of 

sources [1,2]. On the other hand, principal component analysis 

(PCA) neural network play a vital role in linear dimensionality 

reduction and feature extraction, and approve its effectiveness 

in many applications including mobile and communications 

system [3]. Noticeably, Researchers cannot approve that linear 

PCA will always able to detect all structures in a given data set. 

Furthermore, using suitable nonlinear features lead to extract 

more information. In this context, Kernel method with PCA is a 

magnificent new technique to extract the interested nonlinear 

structures of data [4,5]. Recently, integrating Kernel method 

with PCA neural network is an active research field to gain 

their full benefits. Consequently, this paper adopts an 

integrated Kernel and PCA neural network method to detect the 

number of sources in communication systems based on EGM. 

More specifically, this system can estimate sources number 

devoid of covariance matrix computing.  

 

II. PCA  NEURAL NETWORKS 

Principal component analysis (PCA) can be considered as 

an appropriate numerically scheme for diminishing the 

dimensions of a measurements set in linear form even though 

holding information [6,7]. Figure 1 shows PCA neural 

networks consist of M input node and single output layer 

containing N neurons.  PCA extraction can perform a linear 

transform from an M-dimension input vector 

  

      𝑋 = [𝑥1,    𝑥2,   𝑥3,   …   𝑥𝑀]𝑇 ,                              (1) 

 

to N -dimension  (N < M) output vector can be obtained via 

  

       𝑌 = [𝑦1,    𝑦2,   𝑦3,   …   𝑦𝑁]𝑇 ,                             (2) 

 

Corresponding to 

 

      𝑌 = 𝑊𝑇  𝑋,                                                   (3) 

 

In which W represents an  MxN  matrix. 

Furthermore, the updating statutes for Wi (i=1,2,3,…..,N)  

can be obtained via [8]: 
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            𝑊𝑖(𝑛 + 1) = 𝑊𝑖(𝑛) + 𝜇𝑦𝑖(𝑛). [𝑋(𝑛) −

𝑦𝑖(𝑛)𝑊𝑖(𝑛) − ∑ 𝑦𝑗(𝑛)𝑊𝑗(𝑛)𝑗<𝑖 ],                                  (4) 

 

In which n represents the re-iteration factor and 𝜇 

represents the factor of learning rate 

 

  𝑦𝑖(𝑛) = 𝑊𝑖
𝑇(𝑛) 𝑋(𝑛),                                             (5) 

 

Up until reaching the convergence state for all neurons, 

subsequently, PCA contains vectors 𝑊𝑖  which reflect the 

leading N eigenvectors of the input covariance matrix           

𝑅𝑥𝑥 = 𝐸[𝑋𝑋𝐻]   and the output vector (y) components are         

un-correlated and contain variance equals to Rxx eigenvaules. 

 

         

  

 

 

 

 

 

 

 

 

 

 

Figure 1. PCA neural networks. 

III. KERNEL METHOD 

In few past decades, kernel method has been anticipated 

and applied to solve signal processing problems and machine 

learning fields efficiently [9,10]. The essential concept of the 

kernel technique is the transformation of data Si from an input 

space into vectors ∅(Si) of high dimension feature space. In 

which, the internal product could be calculated via a positive 

definitely kernel function that satisfy Mercer’s conditions 

[11,12]: 

 

𝑘(Si, Sj) = 〈∅(Si), ∅(Sj) 〉.                                       (6) 

 

This clear process leads to get nonlinear version for any 

other linear algorithm that can be defined through internal 

products even with no deliberating of the precise mapping ∅.  

 Moreover, a predominantly characteristic of the 

obtained feature space is its RKHS. In more particular; the 

distance of function {𝑘(. , S) ∶   S ∈ 𝑆 }  expresses its Hilbert 

space function. The reproducing property of kernel algorithm 

represents the critical property of these steps 

 

𝑓(S) = 〈𝑘(.  , S), 𝑓〉, ∀𝑓 ∈ 𝐹.                               (7) 

More specifically, a non-linear mapping from an input 

space into the RKHS could be expressed as ∅(S) = 𝑘(. , S), in 

which [13,14] 

〈∅(s), ∅(y)〉 = 〈𝑘(. , s), 𝐾(. , y)〉 = 𝐾(s, y),            (8) 

 

 and hence ∅(S) = 𝑘(. , S)   represents the kernel Hilbert 

space, which could be agreed as the non-linear transformation 

from an input into feature space. 

IV.   EIGENVALUE GRADS  METHOD 

The array model considers has q antennas, every antenna 

received L samples from p sources. The paces of this method to 

estimation number of sources can be summarized as              

follows [2]: 

1: Determining auto-correlation matrix for output data y(t) 

through: 

𝑅̂ =
1

𝐿
∑ 𝑌(𝑡)𝑌(𝑡)𝑇𝐿

𝑡=1                                             (9) 

 

2: Determining eigen-decomposition for 𝑅̂ , afterwards, 

organizing eigenvalues through order minimizing, 

 

𝑅̂ = ∑ 𝜆̂𝑖𝑒𝑖𝑒𝑖
𝑇 ,

𝑞
𝑖=1                                                    (10) 

 

𝜆̂1 ≥ 𝜆̂2 ≥ 𝜆̂3 ≥ . . . . ≥ 𝜆̂𝑝 ≥ 𝜆̂𝑝+1 ≥. . . . ≥ 𝜆̂𝑞  where  𝑒𝑖  is 

the corresponding eigen-vector for eigenvalue 𝜆̂𝑖 

 

3: Determining average grads of all eigenvalues via 

 

∆𝜆̅ = (𝜆̂1 − 𝜆̂𝑞)/(𝑞 − 1)                                          (11) 

 and each grads according to  

∆𝜆𝑗 = 𝜆̂1 − 𝜆̂𝑗+1, 𝑗 = 1, . . . . , 𝑞 + 1 ,                         (12) 

 

4: Detecting all j satisfying ∆𝜆𝑗 ≥ ∆𝜆̅  in order to structure 

the set {𝑗𝑘} = {𝑗| ∆𝜆𝑗 ≥ ∆𝜆̅},  

  

5: Taking 𝑗0 which represents the initial former continuous 

block of j in set {𝑗𝑘} to estimate source number 𝑝̂ = 𝑗0-1 

V. PROPOSED MODEL 

More details regarding the working stages of the proposed 

model of estimating the number of signals in light of PCA 

neural network, Kernel and EGM are illustrated in Figure (2) 

and described as follows:  

Stage 1. At this stage, data signal (𝑋(𝑛)) are received by 

antennas. 

Stage 2. The signal (𝑋(𝑛))  is transformed into a high 

dimensional feature space F as  ∅(𝑋(𝑛)). 
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Stage 3. At this stage, the PCA (y) output is calculated 

using the equation:  

𝑦𝑖(𝑛) = 𝑊𝑖
𝑇(𝑛) ∅(𝑋(𝑛)),   𝑖 = 1,2,3, . . . , 𝑞             (13) 

In which 𝑞  represents neurons’ number and W represents 

weight coefficients for PCA network. 

 

Stage 4. In this stage, the updates of the PCA neural 

network weights are computed in the kernel feature space 

according to following equations: 

 

𝑊𝑖(𝑛 + 1) = 𝑊𝑖(𝑛) + ∆𝑊𝑖(𝑛), 𝑖 = 1,2,3, . . . , 𝑞      (14) 

 

∆𝑊𝑖(𝑛) = 𝜇𝑦𝑖(𝑛). [ ∅(𝑋(𝑛)) − 𝑦𝑖(𝑛)𝑊𝑖(𝑛) −

∑ 𝑦𝑗(𝑛)𝑊𝑗(𝑛)𝑗<𝑖 ], 𝑖 = 1,2,3, . . . , 𝑞                                   (15)                          

  

Stage 5. At this stage, the covariance matrix eigenvalues 

are determined thru multiplication to get the PCA neural 

network output corresponding to: 

𝜆̂𝑖 = 𝑦𝑖𝑦𝑖
𝐻 ,   𝑖 = 1,2,3, . . . , 𝑞                                     (16) 

In which 𝜆̂ represents the data covariance matrix 

eigenvalues and 𝑦  represents PCA neural networks output. 

 

Stage 6. The essential process of this stage is executing 

EGM process in order to estimate sources number. 

 

 
Figure 2. Proposed model block diagram 
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VI. SIMULATION AND RESULY EYALUTION 

  Computer simulation has been carried out via MATLAB 

13 in order to examine the effectiveness of adopted model 

(sources estimation by means of an integrated kernel with PCA 

neural networks for EGM Method (kernel-PCA-EGM)) as 

compared to the traditional model (sources estimation by 

means of PCA neural networks for Eigenvalue Grads Method 

with no kernel (PCA-EGM). 

For the suggested system, uniformly linear array of 14 

sensors and 100 snapshots are used. Furthermore, PCA 

parameters’ setting is single layer network with 14 neurons. 

While single layer network with 14 neuron and learning rate 

value = 0.02 are used for the classic model. Two scenarios with 

different sources’ numbers are considered, in the first scenario, 

three sources are utilized, while four sources are considered in 

the second scenario. 

In the first scenario the angles of incidence signals sources 

are set as 40o, 45o, and 50o having SNR=-5 dB. The suggested 

model kernel-PCA-EGM offer correct number of sources 𝑝̂ =

3 in the first examined scenario, as well traditional model 

provides true sources number of 𝑝̂ = 3 .  Nevertheless PCA- 

EGM with kernel-PCA-EGM performance is more speedy 

convergence than CGHA of traditional model as demonstrated 

in Figure (3). 

In the second scenario the angles of incidence signals 

sources are set as 40o, 45o, 50o and 55o having SNR=-5 dB. The 

suggested model kernel-PCA-EGM method provide exact 

sources number of 𝑝̂ = 4 , in contrast to traditional model 

which provide incorrect sources number of 𝑝̂ = 3 .  

Figure (4) displays the detection probability for two modes 

versus SNR in the second examined scenario, in which, the 

performance of suggested model more efficient than traditional 

model 

VII. CONCLUSION   

The present paper introduces an innovated model for 

calculating sources number in communication system via EGM 

forcing into the kernel output and PCA neural network. This 

given model is able to offer true estimation for number of 

sources through an integrated kernel and principal components 

(eigenvalues besides eigenvectors) which are obtained from 

input signals based on PCA neural network as an alternative of 

using covariance matrix, for that reason, covariance matrix 

computing is unneeded. The adopted model is more preferred 

in hardware implementation because of its good expandability, 

in addition to unneeded calculation of input covariance matrix, 

which is time consuming operation. The simulation outcomes 

prove the effectiveness and speedy convergence of this offered 

model. . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Curve for weight error each iteration for PCA-EMG and 

kernel-PCA-EMG  models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The probability of detection versus SNR for PCA-EMG and 

kernel-PCA-EMG. 
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