
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7214

Article Received: 28 April 2023 Revised: 14 June 2023 Accepted: 30 June 2023

 341

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Design and Develop Efficient Arbitration Technique

to Handle the Multiple Refresh Requests in Multi-

Processor SoC

Chintam Shravan1, Kaleem Fatima2, Paidimarry Chandra sekhar3

 1 Department of Electronics and Communication Engineering

University College of Engineering, Osmania University

Hyderabad, India

shravanchintam@gmail.com
2 Department of Electronics and Communication Engineering

Muffakham Jah College of Engineering & Technology

Hyderabad, India

kaleemfatima@mjcollege.ac.in
3 Department of Electronics and Communication Engineering

University College of Engineering, Osmania University

Hyderabad, India

sekharp@osmania.ac.in

Abstract—Emerging memory technologies, such as Gain Cell-embedded Dynamic Random Access Memory (GC-eDRAM), play an essential

part in the process of improving the overall performance of current multi-processor systems. GC-eDRAM, on the other hand, has its own set

of distinct issues, particularly with regard to refresh operations. The number of cores and threads in contemporary processors continues to

expand, which in turn leads to an increase in the number of concurrent refresh requests. This might cause contention, which in turn can lead to

a possible performance decrease. In this article, we present an efficient arbitration method that was developed in order to precisely address the

issues that are associated with numerous requests for a refresh in GC-eDRAM. This method takes use of the inherent parallelism of GC-eDRAM

modules to make it possible to execute simultaneous refresh operations. As a result, contention is effectively reduced, and the overall

performance of the system is improved. We provide a new arbitration method that prioritizes the pending refresh requests according to their

level of urgency and optimizes the allocation of GC-eDRAM resources in order to guarantee that refresh operations are carried out in an

effective manner. Our method modifies the arbitration priority in a dynamic manner according to the characteristics of the active workload.

These characteristics include the request arrival rate, memory access patterns, and data location, among other considerations.

Keywords- GC-eDRAM, Efficient Arbitration, Multi-Processor SoC, Memory controller, Refresh requests, AWT, Burst length, Fixed-Priority

Scheduling.

I. INTRODUCTION

Because of their capacity to give high-performance

computing capabilities across a broad variety of applications in

today's fast developing technological environment, multi-

processor Systems-on-Chip (SoCs) have become more

widespread [1]. This is due to their ability to deliver high-

performance computing capabilities. This popularity is a direct

result of the integration of numerous processors into a single

chip, which, in turn, creates a variety of issues regarding the

effective administration of available resources. The efficient

management of many refresh requests in multi-processor SoCs

is one of the most important challenges that needs careful

attention [2].

In order to avoid data loss caused by charge leakage and

maintain the system's data integrity and dependability, the

dynamic random-access memory, or DRAM, in a computer has

to have frequent refresh operations performed on it [3]. Multiple

requests for a refresh may be made all at once in systems on a

chip (SoC) that have more than one processor and where each

CPU may have its own set of DRAM modules. It is very

necessary to effectively manage these requests in order to

maximize the efficiency of the system and minimize any

possible bottlenecks [4].

When it comes to processing numerous refresh requests in

multi-processor SoCs, having an effective arbitration system is

one of the most important components that can be implemented.

Arbitration mechanisms decide the priority and order in which

http://www.ijritcc.org/
mailto:shravanchintam@gmail.com

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7214

Article Received: 28 April 2023 Revised: 14 June 2023 Accepted: 30 June 2023

 342

IJRITCC | July 2023, Available @ http://www.ijritcc.org

refresh requests are served. This helps to ensure that resources

are allocated fairly and keeps wait times to a minimum. In order

to develop a method of effective arbitration, it is necessary to

take into consideration a number of criteria, including the

minimization of refresh latency, the reduction of overhead, and

the optimization of overall system performance [5]. Efficient

memory management strategies are crucial due to the increasing

complexity of multi-processor SoC designs and their

demanding requirements. Dealing with repeated refresh

requests sent to the memory controller of Gain Cell-embedded

Dynamic Random Access Memory (GC-eDRAM) poses a

significant challenge [6]. To ensure optimal performance and

resource utilization, effective arbitration in these systems is

necessary. GC-eDRAM is a specialized memory technology

commonly utilized in high-performance computing

environments and graphics-intensive applications. Its purpose

is to enable fast data retrieval and manipulation by providing

quick access to memory resources, thereby reducing wait times.

However, as the number of processors in an SoC continues to

rise, the memory controller faces an escalating number of

simultaneous refresh requests from multiple processors. This

can lead to contention and a decrease in performance.

The arbitration method must address various challenges,

including request prioritization, efficient utilization of shared

resources, low latency processing, fairness among processors,

scalability with increasing processor counts, and power

efficiency. Solving these problems is crucial to improving

overall system performance and maintaining the stability of

multi-processor SoC designs. By inventing an effective

arbitration approach, our goal is to enhance the performance of

GC-eDRAM in multi-processor SoCs. This will facilitate the

smooth and uninterrupted execution of graphics-intensive tasks,

real-time applications, and high-performance computing

workloads. Effective implementation of this technology will

improve memory management and contribute to the overall

advancement of multi-processor SoC designs.

There are some other challenges in efficient arbitration in

multi-processor Systems-on-Chip. The first major obstacle is

the occurrence of multiple refresh requests from different

processors within the SoC. Each processor may have different

priority levels or degrees of urgency in accessing shared

resources. Therefore, it is crucial to devise an arbitration

method capable of effectively managing and prioritizing these

requests. Utilizing available system resources effectively is

another challenge. Refresh requests often involve accessing and

modifying data stored in shared memory or cache lines.

Coordinating and managing these operations across multiple

processors while minimizing conflicts and maximizing resource

utilization is essential [7]. Furthermore, minimizing latency in

the arbitration process is a crucial consideration. The time taken

to process refresh requests should be minimized to avoid

unnecessary delays in the overall system operation, particularly

in real-time systems where timely responses are critical.

Ensuring fairness in arbitration presents another difficulty. It

is important to establish a mechanism that distributes resources

equitably among processors, preventing any single processor

from monopolizing the system's resources. Maintaining fairness

is vital to prevent system instability and performance

degradation. Scalability is also a significant factor to address.

As the number of processors in the SoC increases, the

arbitration method should handle the growing complexity and

workload efficiently. The system should exhibit good

scalability, accommodating an expanding number of processors

without sacrificing performance or introducing bottlenecks.

Lastly, power efficiency remains an ongoing concern in SoC

design. The arbitration method should strive to minimize power

consumption during refresh operations. Incorporating power-

aware design principles and techniques is necessary to optimize

energy usage while meeting performance requirements.

The objective of this research is to design and develop an

efficient arbitration approach tailored to managing the

numerous refresh requests in the memory controller of GC-

eDRAM within a multi-processor SoC. The research work

specifically aims to create an effective technique for handling

multiple refresh requests, ensuring equitable access to memory

resources while minimizing delays and maximizing resource

utilization. The organization of the paper as follows: Literature

is discussed in section-II and the proposed method is explained

in section-III. The simulation results are discussed in section-

IV.

II. LITERATURE

In research work [8], authors construct a FIFO using GC-

eDRAM by making use of the specific access patterns revealed

by the FIFO system. The results of this work show that the

functionality of this GC-eDRAM based FIFO is equal to that of

an SRAM-based FIFO. The proposed FIFO eliminates all of

these problems, in contrast to conventional FIFOs, which have

access blockage time as a result of refresh operations and issues

that are connected to data integrity. As a consequence of this, it

is capable of replacing FIFOs in both present systems and future

designs with no compatibility issues whatsoever. In addition, as

comparison to SRAM, the proposed FIFO provides

considerable benefits in terms of space and power efficiency,

with possible savings of up to two times.

In the research article [9], author offer an original

implementation of a single-well mixed 3T GC that uses the 28

nm FD-SOI technology. The proposed GC is equipped with

body-bias control to increase the DRT by reducing leakage via

the write port and to prolong the maximum operating frequency

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7214

Article Received: 28 April 2023 Revised: 14 June 2023 Accepted: 30 June 2023

 343

IJRITCC | July 2023, Available @ http://www.ijritcc.org

by forward body-biasing the read port. Both of these

improvements are made possible thanks to the GC's

incorporation of body-bias control. The proposed 3T GC was

implemented in a 24 kbit GC-eDRAM macro that was

fabricated in 28 nm FD-SOI technology. The end result was the

highest density logic-compatible embedded memory fabricated

in any 28 nm process, with over 2 times the density of a 6T

SRAM cell, over 4 times the DRT of a conventional 3T GC, and

38-47 times lower static power compared to conventional

single-ported and two-ported SRAMs.

Marco Widmer et.al [10] proposed a platform that utilizes

FPGAs and incorporates defective eDRAM emulation. The

emulation process involves advanced retention time models and

silicon measurements. The primary objective of this platform is

to assess the statistical error resistance of applications within a

comprehensive embedded system. In their study, the authors

analyze the statistical quality of service for numerous

benchmarks by employing different sub-critical refresh rates

and retention time distributions.

The research work [11] suggests a 5T GC-eDRAM bit cell

based on Fin FET that tackles the SRAM leakage power

problem without requiring bandwidth-intensive refreshes.

Furthermore, the gain-cell design is based on the Fin FET,

which solves the short-channel issues, to demonstrate the

viability of scaling down transistors. To assure the static

preservation of both "1" and "0" data, the proposed 5T bit cell

offers more internal feedback than the 4T all-nMOS completely

depleted-silicon on insulator gain cell. A 7-nm Fin FET

predictive technology model was used to simulate the 2-kB

array using HSPICE. The simulation findings demonstrate that,

in comparison to the 4T all-nMOS GC-eDRAM cell with a 28-

nm FD-SOI technology, the proposed 5T bit-cell provides

around 13 smaller data retention power and 10 area reduction.

In the research work [12], Changmin Lee et.al propose a Non-

Volatile Dual In-line Memory Module architecture that

incorporates several system-wide techniques to enable non-

deterministic timing, specifically asynchronous timing, on

synchronous DDR4 memory interfaces. To validate our

proposal, we develop a functional prototype of the memory

architecture on an x86-64 server system. The prototype is

thoroughly tested using a combination of simulated workloads

and actual workloads to assess its performance and

functionality.

Jinhua Cui et.al [13] proposed a unique partial-refresh data

refresh technique for 3D NAND flash memory in the context of

cyber-physical systems. partial-refresh uses Low-Density

Parity-Check codes' detectability to pinpoint cells that are more

prone to mistakes. The SSD's lifetime is increased and refresh

costs are decreased as a consequence of PR's selective

relocation of these sensitive bits to new pages as opposed to

duplicating a complete page. Our test findings show that a PR-

enhanced flash memory system beats cutting-edge options by

boosting refresh speed by 28.2% and extending SSD lifetime by

4.6% while retaining excellent data dependability.

Lukas Steiner et.al [14] presented DRAMSys4.0, an open-

source DRAM simulator that is believed to be the fastest and

most feature-rich in its class. The groundbreaking architecture

of DRAMSys4.0 incorporates a Domain Specific Language,

enabling seamless adaptation to new DRAM standards. Authors

described optimization techniques employed to enhance

simulation performance while ensuring accurate temporal

representation. Additionally, authors conducted a

comprehensive analysis and comparison of various widely used

open-source DRAM simulators, assessing their features,

analysis capabilities, and simulation speed.

III. PROPOSED MODEL

This section describes the proposed efficient arbitration

technique to handle the multiple refresh requests in multi-

processor SoC. We implemented this technique while taking the

arbiter architecture into account in order to accelerate the

conventional research work. In this effort, our main goal is to

give low data transactions priority over other requests made to

the core processor. As a result, these low data transactions

which need fewer cycles to complete than big data transactions

are given first access to off-chip memory.

In order to handle multiple refresh requests, Advanced

eXtensible Interface (AXI) Interconnect is used. The proposed

architecture for the AXI Interconnect, which includes an arbiter,

is shown in Figure 1. Through the AXI Interconnect, the design

links four core processors (AXI masters) and off-chip

embedded memory (slave). All four core processors may start

write and read operations utilizing the AXI4 interface protocol,

employing a 32-bit data size and different burst lengths. The

four cores may all produce read/write operations and refresh

request to/from the off-chip embedded memory simultaneously.

A static fixed priority technique is used by the AXI

Interconnect to handle these numerous burst duration requests.

We used a static fixed priority approach to allocate priorities to

the core processors (masters). For off-chip memory access, the

core processor with the fewest data transactions is given

priority, whereas the core processor with the most data

transactions is given the lowest priority. The main goal of these

priorities is to decrease the core processors' total average

waiting time.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7214

Article Received: 28 April 2023 Revised: 14 June 2023 Accepted: 30 June 2023

 344

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Figure 1: Proposed Model

3.1 Static Fixed Priority Technique

This section explores and presents the static fixed priority

algorithm -based finite state machine (FSM) of the AXI Arbiter.

When there are no requests from any master to access the

common interface and start a transaction with the AXI arbiter,

the initial state, also known as the idle state, takes place. Any

core processor (master) may request access to the shared

interface and start the transaction when the clock begins and the

reset signal rises. The state returns to the idle state after the final

core processor's transactions are complete, as depicted in Figure

2 below.

Figure 2: Static fixed priority algorithm -based FSM of the AXI Arbiter.

The arbiter gives the core processor with the greatest

scheduling priority if many core processors concurrently

transmit requests to use the shared interface and begin their

transactions. This decision is made based on the static fixed

Idle

Clock

reset

Proposed Arbitration

Low priority data

granted to shared bus

Master Transactions

If all transactions

completed

Yes No

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7214

Article Received: 28 April 2023 Revised: 14 June 2023 Accepted: 30 June 2023

 345

IJRITCC | July 2023, Available @ http://www.ijritcc.org

priority method. The amount of data transactions the core

processor must complete determines the priority; the core

processor with fewer data transactions is given greater priority.

The chosen core processor may start its transaction as soon as it

gets the shared interface. The second core processor, which has

less data to send, is then given access to the shared interface by

the arbiter once the first core processor has finished its

transaction. Using the static fixed priority mechanism, the

arbiter keeps supplying the shared interface to the other core

processors until each one has finished processing its

transactions.

The simulation results from the proposed model are

thoroughly explained in this section. The proposed model's

Figure 1 shows how the AXI connection is used to create a

connection between the off-chip memory (shown as the AXI

Slave) and the four core processors (shown as the four AXI

Masters). This research primarily focuses on the Arbiter, which

is the primary element of the AXI interconnect. The arbiter gets

requests from the multi-core processors and chooses how much

off-chip memory to access depending on how long each data

transaction takes.

 The AXI4 interface protocol, which enables different burst

lengths and a data size of 32 bits, is used to begin the

transactions by the four core processors. The Vivado tool and

the FPGA ZYNQ-7 ZC702 Evaluation Board were both used to

simulate and synthesize the proposed design. The SoC

performance of the recommended arbiter architecture in this

research is improved, and the average waiting time in the

ongoing project is reduced, by using the AXI4 interface

protocol and a static fixed-priority scheduling method.

Figure 3: Without the arbitration, characterize the 1st and 2nd core processors' write ansaction channel signals.

Figure 4: Without the arbitration, characterize the 3rd and 4th core processors' write transaction channel signals

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7214

Article Received: 28 April 2023 Revised: 14 June 2023 Accepted: 30 June 2023

 346

IJRITCC | July 2023, Available @ http://www.ijritcc.org

The conventional method [8] included a suggestion for a multi-

core memory controller that might be used in a computer system

that had four core processors. However, it did not take into

account the arbiter architecture and instead used the AXI4-Lite

interface protocol. Because of the way that architecture worked,

the memory was always accessible by the first core CPU. This

strategy was successful due to the fact that each core processor

had a single burst length and needed the same amount of clock

cycles to finish processing the transaction. However, an issue

occurs when implementing the AXI4 full map and enabling each

core processor to finish transactions with various burst lengths

without taking into consideration the arbiter architecture. This

creates a bottleneck in the processing of transactions. This

problem is shown by the simulation results, which are shown in

figures 3 and 4 respectively.

When utilizing the AXI4 full map interface protocol, you

have access to a total of five standard channels that may be used

for either reading or writing data. The implementation of the

write transaction channels, including all of the required

handshaking signals, for the core processors accessing external

memory was the primary emphasis of this part of the simulation

results. The signals that are sent via the write transaction channel

for the first and second core processors are seen in Figure 3.

According to the findings of the simulation that were shown

previously in this paragraph, the data size is 32 bits, and the burst

lengths are 16, with a respective 8, each time. The signals for the

write transaction channel are shown in Figure 4 for the third and

fourth core processors. The data size of these signals is 32 bits,

and their burst lengths are variable, coming in at either 4 or 2,

respectively.

According to the data shown in figure 3, the first core processor

started the transmission of write signals 20 nanoseconds after the

high level of the clock signal and simultaneously with the high

state of the reset signal. After a total of 410 nanoseconds had

passed, the m0_BVALID and m0_BREADY signals had both

reached their maximum levels. This indicates that the activity of

the first core processor with 16 burst lengths has been completed,

and it provides the second core processor the permission to

access the shared interface in order to get data from off-chip

memory.

In addition, it suggests that the second core processor won't

start its transaction for another 410 nanoseconds after the first

one has finished. Figure 4 depicts a situation very similar to the

one shown for the second and first processors. In this case, the

third and fourth processors wait until 630 and 770 nanoseconds,

respectively, before beginning their transactions. This waiting

time is imposed on each and every core processor, which results

in a delay of 457.5 nanoseconds on average.

The research presented a model that made use of an arbitrator

architecture and used an approach that was characterized by

static fixed-priority scheduling. This model resulted in an

improvement in the average waiting time while the core

processors carried out transactions using the AXI4 interface

protocol with a variety of burst lengths. During the

programming phase, the technique for prioritization is shown in

figures 5, 6, and 7 respectively. To be more specific, we gave a

higher priority to the core processor that had a smaller number

of data transactions (a shorter burst length), while we gave a

lower priority to the core processor that had a larger number of

data transactions (a longer burst length). The goal of this

prioritization was to cut down on the total amount of time spent

waiting across all core processors, which led to an overall

reduction in the average amount of time spent waiting.

 The data shown in figure 5 indicates that the arbitrator gives

authorization to the fourth core processor to use the common

interface and access the off-chip memory before any of the other

cores. After a delay of 20 nanoseconds, the fourth core processor

started the transmission of write transaction signals when the

clock signal and the reset signal were both high at the same time.

At the time interval of 150 ns, the m3_BVALID and

m3_BREADY signals are both high, indicating that the operation

of the fourth core processor with two burst lengths has been

completed. As a direct consequence of this, the third core

processor may now make use of the shared interface and get

access to the memory that is located off-chip. This is because the

burst length of the processor with the third core is much shorter

than that of the processors with the first and second cores. It also

suggests that the transaction on the third core processor will not

commence for another 150 nanoseconds after that point in time,

which is the implication of the previous statement. Before

beginning their respective transactions in the identical

circumstance, as shown in figures 6 and 7, the second core and

the first processor will wait until 410 ns and 710 ns, respectively.

This can be seen in both of these figures. The amount of time

spent waiting equals to 322.5 nanoseconds across all core

processors taken into account.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7214

Article Received: 28 April 2023 Revised: 14 June 2023 Accepted: 30 June 2023

 347

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Figure 5: With arbitration, characterize the 1st and 2nd core processors' write transaction channel signals.

Figure 6: With arbitration, characterize the 2nd and 3rd core processors' write transaction channel signals.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7214

Article Received: 28 April 2023 Revised: 14 June 2023 Accepted: 30 June 2023

 348

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Figure 7: With arbitration, characterize the 3rd and 4th core processors' write transaction channel signals.

Incorporating the proposed model, which takes into account

the arbiter architecture and uses the static fixed-priority

scheduling strategy, resulted to a considerable improvement of

34.6% in the overall waiting time for all core processors, as

evidenced by the results of the simulations. Additional

simulation results for the four core processors, including a

variety of burst lengths, have been immediately included into

Table 1 and Table 2.

Additional simulation findings are shown in Table 1 and

demonstrate the interaction that takes place between four core

processors, which are represented as Masters, and off-chip

memory, which is represented as Slaves. These findings provide

a comparison between situations using and not involving the

arbiter architecture. According to Table 1, the four core

processors access the off-chip memory in bursts of varied

lengths. The first, second, third, and fourth core processors

access the memory for 32, 16, 8, and 2 clock cycles,

respectively. There is a row labelled "waiting time" in the table,

and underneath it is two sub-rows for analyzing the data.

Without taking into account the arbiter architecture, the first

sub-row displays the amount of time that is required for each

core processor to start a transaction. Waiting takes up an average

of 777.5 nanoseconds across all cores of the CPU. When taking

the arbiter architecture into consideration, the waiting time for

each core processor is represented by the second sub-row.

Before beginning the transaction, each core processor pauses for

an average of 362.5 nanoseconds to

gather its resources. According to the findings shown in Table

1, the model that was used in this investigation was successful

in achieving a 72.8 percentage point increase in overall quality.

In addition, the simulation results for waiting time for

different burst length are shown in Table 2. These results

indicate the interaction that occurs between the four core

processors, which are referred to as Masters, and the off-chip

memory, which is represented as Slaves, both when the arbiter

architecture is taken into consideration and when it is not. The

table shows that each of the four core processors accesses the

off-chip memory using a distinct burst length to begin

transactions. The burst lengths are as follows: 64, 32, 16, and 4

for the first, second, third, and fourth core processors,

respectively. In the row labelled "waiting time," there are two

sub-rows that might be used. When the arbiter architecture is not

taken into consideration, the first sub-row displays the amount

of time that must be spent waiting for each core processor before

beginning the transaction. Waiting time for each of the four core

processors is 1277.5 nanoseconds on average. The waiting time

is shown in the second sub-row when the arbiter architecture is

taken into consideration. Before beginning the transaction, the

average amount of time that each core processor must wait is

397.5 nanoseconds. According to the findings that are shown in

Table 2, the overall proposed model for this investigation

displays a considerable increase of 105% in comparison to

models that were used in earlier studies.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7214

Article Received: 28 April 2023 Revised: 14 June 2023 Accepted: 30 June 2023

 349

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Table 1: Burst length vs Waiting Time-Test case-1

 Master-3 Master-2 Master-1 Master-0 AWT

(Avg. waiting Time)

Percentage

Waiting Time 1250(ns) 1110(ns) 730(ns) 20(ns) 777(ns) 72.8%

362(ns) 870(ns) 410(ns) 150(ns) 362(ns)

Burst Length 2 8 16 32

Table 2: Burst length vs Waiting Time-Test case-2

 Master-3 Master-2 Master-1 Master-0 AWT

(Avg. waiting Time)

Percentage

Waiting Time 1970(ns) 1750(ns) 1370(ns) 20(ns) 1277(ns) 105%

890(ns) 490(ns) 190(ns) 20(ns) 397(ns)

Burst Length 4 16 32 64

IV. CONCLUSIONS

In conclusion, the arbitration method that we have

provided offers a workable and efficient answer to the problem

of repeated requests for a refresh in GC-eDRAM. Our method

increases the overall performance of the system by using

parallelism and optimizing the allocation of resources. This

helps to guarantee that upcoming memory technologies are

operated in an effective manner. These discoveries provide a

contribution to the progression of memory management

strategies and have the potential to be of use to a broad variety

of computing systems that depend on GC-eDRAM as an

essential memory component. The proposed model enhances

the existing work by employing the AXI4 interface protocol,

which triggers individual core processors to initiate transactions

using distinct burst mode capabilities. Additionally, it

incorporates an arbiter based on a static fixed priority

mechanism. Simulation results, depicted in figures and tables,

demonstrate that the proposed model achieves an average

waiting time reduction of 34.6%, 72.8%, and 105%

respectively. These improvements highlight the efficacy of the

proposed model compared to the existing approach, as observed

through the simulation results.

REFERENCES

[1]. Hoffmann, Henry, Axel Jantsch, and Nikil D. Dutt. "Embodied

self-aware computing systems." Proceedings of the IEEE 108,

no. 7 (2020): 1027-1046.

[2]. Uma, V., and Ramalatha Marimuthu. "D-wash–A dynamic

workload aware adaptive cache coherance protocol for multi-

core processor system." Microelectronics Journal 132 (2023):

105675.

[3]. Goel, Tanmay, Divyansh Maura, Kaustav Goswami, Shirshendu

Das, and Dip Sankar Banerjee. "Towards row sensitive DRAM

refresh through retention awareness." In 2021 22nd International

Symposium on Quality Electronic Design (ISQED), pp. 450-

456. IEEE, 2021.

[4]. Yang, Jia‐Qin, Ye Zhou, and Su‐Ting Han. "Functional

applications of future data storage devices." Advanced

Electronic Materials 7, no. 5 (2021): 2001181.

[5]. Brand, Marcel, Michael Witterauf, Éricles Sousa, Alexandru

Tanase, Frank Hannig, and Jürgen Teich. "*‐Predictable MPSoC

execution of real‐time control applications using invasive

computing." Concurrency and Computation: Practice and

Experience 33, no. 14 (2021): e5149.

[6]. Suresh, K. S. ., & Kamalakannan, T. . (2023). Digital Image

Steganography in the Spatial Domain Using Block-Chain

Technology to Provide Double-Layered Protection to

Confidential Data Without Transferring the Stego-Object.

International Journal of Intelligent Systems and Applications in

Engineering, 11(2s), 61–68. Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/2508

[7]. Garzón, Esteban, Yosi Greenblatt, Odem Harel, Marco Lanuzza,

and Adam Teman. "Gain-cell embedded DRAM under cryogenic

operation—A first study." IEEE Transactions on Very Large-

Scale Integration (VLSI) Systems 29, no. 7 (2021): 1319-1324.

[8]. Shrivastava, Anurag, and Sudhir Kumar Sharma. "Various

arbitration algorithm for on-chip (AMBA) shared bus multi-

processor SoC." In 2016 IEEE Students' Conference on

Electrical, Electronics and Computer Science (SCEECS), pp. 1-

7. IEEE, 2016.

[9]. Noy, Tzachi, and Adam Teman. "Design of a refresh-controller

for GC-eDRAM based FIFOs." IEEE Transactions on Circuits

and Systems I: Regular Papers 67, no. 12 (2020): 4804-4817.

[10]. Narinx, Jonathan, Robert Giterman, Andrea Bonetti, Nicolas

Frigerio, Cosimo Aprile, Andreas Burg, and Yusuf Leblebici. "A

24 kb single-well mixed 3T gain-cell eDRAM with body-bias in

28 nm FD-SOI for refresh-free DSP applications." In 2019 IEEE

Asian Solid-State Circuits Conference (A-SSCC), pp. 219-222.

IEEE, 2019.

[11]. Widmer, Marco, Andrea Bonetti, and Andreas Burg. "FPGA-

based emulation of embedded DRAMs for statistical error

resilience evaluation of approximate computing systems."

In Proceedings of the 56th Annual Design Automation

Conference 2019, pp. 1-6. 2019.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7214

Article Received: 28 April 2023 Revised: 14 June 2023 Accepted: 30 June 2023

 350

IJRITCC | July 2023, Available @ http://www.ijritcc.org

[12]. Seyedzadeh Sany, Bahareh, and Behzad Ebrahimi. "A 1‐GHz

GC‐eDRAM in 7‐nm FinFET with static retention time at 700

mV for ultra‐low power on‐chip memory

applications." International Journal of Circuit Theory and

Applications 50, no. 2 (2022): 417-426.

[13]. Lee, Changmin, Wonjae Shin, Dae Jeong Kim, Yongjun Yu,

Sung-Joon Kim, Taekyeong Ko, Deokho Seo et al. "Nvdimm-c:

A byte-addressable non-volatile memory module for

compatibility with standard ddr memory interfaces." In 2020

IEEE International Symposium on High Performance Computer

Architecture (HPCA), pp. 502-514. IEEE, 2020.

[14]. Cui, Jinhua, Youtao Zhang, Liang Shi, Chun Jason Xue, Jun

Yang, Weiguang Liu, and Laurence T. Yang. "Leveraging partial-

refresh for performance and lifetime improvement of 3D NAND

flash memory in cyber-physical systems." Journal of Systems

Architecture 103 (2020): 101685.

[15]. Brian Moore, Peter Thomas, Giovanni Rossi, Anna Kowalska,

Manuel López. Machine Learning for Fraud Detection and

Decision Making in Financial Systems. Kuwait Journal of

Machine Learning, 2(4). Retrieved from

http://kuwaitjournals.com/index.php/kjml/article/view/216

[16]. Steiner, Lukas, Matthias Jung, Felipe S. Prado, Kirill Bykov, and

Norbert Wehn. "DRAMSys4. 0: a fast and cycle-accurate

systemC/TLM-based DRAM simulator." In Embedded

Computer Systems: Architectures, Modeling, and Simulation:

20th International Conference, SAMOS 2020, Samos, Greece,

July 5–9, 2020, Proceedings 20, pp. 110-126. Springer

International Publishing, 2020.

http://www.ijritcc.org/

