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Abstract—Emerging memory technologies, such as Gain Cell-embedded Dynamic Random Access Memory (GC-eDRAM), play an essential 

part in the process of improving the overall performance of current multi-processor systems. GC-eDRAM, on the other hand, has its own set 

of distinct issues, particularly with regard to refresh operations. The number of cores and threads in contemporary processors continues to 

expand, which in turn leads to an increase in the number of concurrent refresh requests. This might cause contention, which in turn can lead to 

a possible performance decrease. In this article, we present an efficient arbitration method that was developed in order to precisely address the 

issues that are associated with numerous requests for a refresh in GC-eDRAM. This method takes use of the inherent parallelism of GC-eDRAM 

modules to make it possible to execute simultaneous refresh operations. As a result, contention is effectively reduced, and the overall 

performance of the system is improved. We provide a new arbitration method that prioritizes the pending refresh requests according to their 

level of urgency and optimizes the allocation of GC-eDRAM resources in order to guarantee that refresh operations are carried out in an 

effective manner. Our method modifies the arbitration priority in a dynamic manner according to the characteristics of the active workload. 

These characteristics include the request arrival rate, memory access patterns, and data location, among other considerations. 

Keywords- GC-eDRAM, Efficient Arbitration, Multi-Processor SoC, Memory controller, Refresh requests, AWT, Burst length, Fixed-Priority 

Scheduling. 

I. INTRODUCTION 

Because of their capacity to give high-performance 

computing capabilities across a broad variety of applications in 

today's fast developing technological environment, multi-

processor Systems-on-Chip (SoCs) have become more 

widespread [1]. This is due to their ability to deliver high-

performance computing capabilities. This popularity is a direct 

result of the integration of numerous processors into a single 

chip, which, in turn, creates a variety of issues regarding the 

effective administration of available resources. The efficient 

management of many refresh requests in multi-processor SoCs 

is one of the most important challenges that needs careful 

attention [2]. 

In order to avoid data loss caused by charge leakage and 

maintain the system's data integrity and dependability, the 

dynamic random-access memory, or DRAM, in a computer has 

to have frequent refresh operations performed on it [3]. Multiple 

requests for a refresh may be made all at once in systems on a 

chip (SoC) that have more than one processor and where each 

CPU may have its own set of DRAM modules. It is very 

necessary to effectively manage these requests in order to 

maximize the efficiency of the system and minimize any 

possible bottlenecks [4]. 

When it comes to processing numerous refresh requests in 

multi-processor SoCs, having an effective arbitration system is 

one of the most important components that can be implemented. 

Arbitration mechanisms decide the priority and order in which 
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refresh requests are served. This helps to ensure that resources 

are allocated fairly and keeps wait times to a minimum. In order 

to develop a method of effective arbitration, it is necessary to 

take into consideration a number of criteria, including the 

minimization of refresh latency, the reduction of overhead, and 

the optimization of overall system performance [5]. Efficient 

memory management strategies are crucial due to the increasing 

complexity of multi-processor SoC designs and their 

demanding requirements. Dealing with repeated refresh 

requests sent to the memory controller of Gain Cell-embedded 

Dynamic Random Access Memory (GC-eDRAM) poses a 

significant challenge [6]. To ensure optimal performance and 

resource utilization, effective arbitration in these systems is 

necessary. GC-eDRAM is a specialized memory technology 

commonly utilized in high-performance computing 

environments and graphics-intensive applications. Its purpose 

is to enable fast data retrieval and manipulation by providing 

quick access to memory resources, thereby reducing wait times. 

However, as the number of processors in an SoC continues to 

rise, the memory controller faces an escalating number of 

simultaneous refresh requests from multiple processors. This 

can lead to contention and a decrease in performance. 

The arbitration method must address various challenges, 

including request prioritization, efficient utilization of shared 

resources, low latency processing, fairness among processors, 

scalability with increasing processor counts, and power 

efficiency. Solving these problems is crucial to improving 

overall system performance and maintaining the stability of 

multi-processor SoC designs. By inventing an effective 

arbitration approach, our goal is to enhance the performance of 

GC-eDRAM in multi-processor SoCs. This will facilitate the 

smooth and uninterrupted execution of graphics-intensive tasks, 

real-time applications, and high-performance computing 

workloads. Effective implementation of this technology will 

improve memory management and contribute to the overall 

advancement of multi-processor SoC designs. 

There are some other challenges in efficient arbitration in 

multi-processor Systems-on-Chip. The first major obstacle is 

the occurrence of multiple refresh requests from different 

processors within the SoC. Each processor may have different 

priority levels or degrees of urgency in accessing shared 

resources. Therefore, it is crucial to devise an arbitration 

method capable of effectively managing and prioritizing these 

requests. Utilizing available system resources effectively is 

another challenge. Refresh requests often involve accessing and 

modifying data stored in shared memory or cache lines. 

Coordinating and managing these operations across multiple 

processors while minimizing conflicts and maximizing resource 

utilization is essential [7]. Furthermore, minimizing latency in 

the arbitration process is a crucial consideration. The time taken 

to process refresh requests should be minimized to avoid 

unnecessary delays in the overall system operation, particularly 

in real-time systems where timely responses are critical. 

Ensuring fairness in arbitration presents another difficulty. It 

is important to establish a mechanism that distributes resources 

equitably among processors, preventing any single processor 

from monopolizing the system's resources. Maintaining fairness 

is vital to prevent system instability and performance 

degradation. Scalability is also a significant factor to address. 

As the number of processors in the SoC increases, the 

arbitration method should handle the growing complexity and 

workload efficiently. The system should exhibit good 

scalability, accommodating an expanding number of processors 

without sacrificing performance or introducing bottlenecks. 

Lastly, power efficiency remains an ongoing concern in SoC 

design. The arbitration method should strive to minimize power 

consumption during refresh operations. Incorporating power-

aware design principles and techniques is necessary to optimize 

energy usage while meeting performance requirements. 

The objective of this research is to design and develop an 

efficient arbitration approach tailored to managing the 

numerous refresh requests in the memory controller of GC-

eDRAM within a multi-processor SoC. The research work 

specifically aims to create an effective technique for handling 

multiple refresh requests, ensuring equitable access to memory 

resources while minimizing delays and maximizing resource 

utilization. The organization of the paper as follows: Literature 

is discussed in section-II and the proposed method is explained 

in section-III. The simulation results are discussed in section-

IV. 

II. LITERATURE 

In research work [8], authors construct a FIFO using GC-

eDRAM by making use of the specific access patterns revealed 

by the FIFO system. The results of this work show that the 

functionality of this GC-eDRAM based FIFO is equal to that of 

an SRAM-based FIFO. The proposed FIFO eliminates all of 

these problems, in contrast to conventional FIFOs, which have 

access blockage time as a result of refresh operations and issues 

that are connected to data integrity. As a consequence of this, it 

is capable of replacing FIFOs in both present systems and future 

designs with no compatibility issues whatsoever. In addition, as 

comparison to SRAM, the proposed FIFO provides 

considerable benefits in terms of space and power efficiency, 

with possible savings of up to two times. 

In the research article [9], author offer an original 

implementation of a single-well mixed 3T GC that uses the 28 

nm FD-SOI technology. The proposed GC is equipped with 

body-bias control to increase the DRT by reducing leakage via 

the write port and to prolong the maximum operating frequency 
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by forward body-biasing the read port. Both of these 

improvements are made possible thanks to the GC's 

incorporation of body-bias control. The proposed 3T GC was 

implemented in a 24 kbit GC-eDRAM macro that was 

fabricated in 28 nm FD-SOI technology. The end result was the 

highest density logic-compatible embedded memory fabricated 

in any 28 nm process, with over 2 times the density of a 6T 

SRAM cell, over 4 times the DRT of a conventional 3T GC, and 

38-47 times lower static power compared to conventional 

single-ported and two-ported SRAMs. 

Marco Widmer et.al [10] proposed a platform that utilizes 

FPGAs and incorporates defective eDRAM emulation. The 

emulation process involves advanced retention time models and 

silicon measurements. The primary objective of this platform is 

to assess the statistical error resistance of applications within a 

comprehensive embedded system. In their study, the authors 

analyze the statistical quality of service for numerous 

benchmarks by employing different sub-critical refresh rates 

and retention time distributions. 

The research work [11] suggests a 5T GC-eDRAM bit cell 

based on Fin FET that tackles the SRAM leakage power 

problem without requiring bandwidth-intensive refreshes. 

Furthermore, the gain-cell design is based on the Fin FET, 

which solves the short-channel issues, to demonstrate the 

viability of scaling down transistors. To assure the static 

preservation of both "1" and "0" data, the proposed 5T bit cell 

offers more internal feedback than the 4T all-nMOS completely 

depleted-silicon on insulator gain cell. A 7-nm Fin FET 

predictive technology model was used to simulate the 2-kB 

array using HSPICE. The simulation findings demonstrate that, 

in comparison to the 4T all-nMOS GC-eDRAM cell with a 28-

nm FD-SOI technology, the proposed 5T bit-cell provides 

around 13 smaller data retention power and 10 area reduction. 

In the research work [12], Changmin Lee et.al propose a Non-

Volatile Dual In-line Memory Module architecture that 

incorporates several system-wide techniques to enable non-

deterministic timing, specifically asynchronous timing, on 

synchronous DDR4 memory interfaces. To validate our 

proposal, we develop a functional prototype of the memory 

architecture on an x86-64 server system. The prototype is 

thoroughly tested using a combination of simulated workloads 

and actual workloads to assess its performance and 

functionality. 

Jinhua Cui et.al [13] proposed a unique partial-refresh data 

refresh technique for 3D NAND flash memory in the context of 

cyber-physical systems. partial-refresh uses Low-Density 

Parity-Check codes' detectability to pinpoint cells that are more 

prone to mistakes. The SSD's lifetime is increased and refresh 

costs are decreased as a consequence of PR's selective 

relocation of these sensitive bits to new pages as opposed to 

duplicating a complete page. Our test findings show that a PR-

enhanced flash memory system beats cutting-edge options by 

boosting refresh speed by 28.2% and extending SSD lifetime by 

4.6% while retaining excellent data dependability. 

Lukas Steiner et.al [14] presented DRAMSys4.0, an open-

source DRAM simulator that is believed to be the fastest and 

most feature-rich in its class. The groundbreaking architecture 

of DRAMSys4.0 incorporates a Domain Specific Language, 

enabling seamless adaptation to new DRAM standards. Authors 

described optimization techniques employed to enhance 

simulation performance while ensuring accurate temporal 

representation. Additionally, authors conducted a 

comprehensive analysis and comparison of various widely used 

open-source DRAM simulators, assessing their features, 

analysis capabilities, and simulation speed. 

III. PROPOSED MODEL 

This section describes the proposed efficient arbitration 

technique to handle the multiple refresh requests in multi-

processor SoC. We implemented this technique while taking the 

arbiter architecture into account in order to accelerate the 

conventional research work. In this effort, our main goal is to 

give low data transactions priority over other requests made to 

the core processor. As a result, these low data transactions 

which need fewer cycles to complete than big data transactions 

are given first access to off-chip memory. 

In order to handle multiple refresh requests, Advanced 

eXtensible Interface (AXI) Interconnect is used. The proposed 

architecture for the AXI Interconnect, which includes an arbiter, 

is shown in Figure 1. Through the AXI Interconnect, the design 

links four core processors (AXI masters) and off-chip 

embedded memory (slave). All four core processors may start 

write and read operations utilizing the AXI4 interface protocol, 

employing a 32-bit data size and different burst lengths. The 

four cores may all produce read/write operations and refresh 

request to/from the off-chip embedded memory simultaneously. 

A static fixed priority technique is used by the AXI 

Interconnect to handle these numerous burst duration requests. 

We used a static fixed priority approach to allocate priorities to 

the core processors (masters). For off-chip memory access, the 

core processor with the fewest data transactions is given 

priority, whereas the core processor with the most data 

transactions is given the lowest priority. The main goal of these 

priorities is to decrease the core processors' total average 

waiting time. 
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Figure 1: Proposed Model 

3.1 Static Fixed Priority Technique 

This section explores and presents the static fixed priority 

algorithm -based finite state machine (FSM) of the AXI Arbiter. 

When there are no requests from any master to access the 

common interface and start a transaction with the AXI arbiter, 

the initial state, also known as the idle state, takes place. Any 

core processor (master) may request access to the shared 

interface and start the transaction when the clock begins and the 

reset signal rises. The state returns to the idle state after the final 

core processor's transactions are complete, as depicted in Figure 

2 below. 

Figure 2: Static fixed priority algorithm -based FSM of the AXI Arbiter. 

The arbiter gives the core processor with the greatest 

scheduling priority if many core processors concurrently 

transmit requests to use the shared interface and begin their 

transactions. This decision is made based on the static fixed 
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priority method. The amount of data transactions the core 

processor must complete determines the priority; the core 

processor with fewer data transactions is given greater priority. 

The chosen core processor may start its transaction as soon as it 

gets the shared interface. The second core processor, which has 

less data to send, is then given access to the shared interface by 

the arbiter once the first core processor has finished its 

transaction. Using the static fixed priority mechanism, the 

arbiter keeps supplying the shared interface to the other core 

processors until each one has finished processing its 

transactions.  

The simulation results from the proposed model are 

thoroughly explained in this section. The proposed model's 

Figure 1 shows how the AXI connection is used to create a 

connection between the off-chip memory (shown as the AXI 

Slave) and the four core processors (shown as the four AXI 

Masters). This research primarily focuses on the Arbiter, which 

is the primary element of the AXI interconnect. The arbiter gets 

requests from the multi-core processors and chooses how much 

off-chip memory to access depending on how long each data 

transaction takes. 

 The AXI4 interface protocol, which enables different burst 

lengths and a data size of 32 bits, is used to begin the 

transactions by the four core processors. The Vivado tool and 

the FPGA ZYNQ-7 ZC702 Evaluation Board were both used to 

simulate and synthesize the proposed design. The SoC 

performance of the recommended arbiter architecture in this 

research is improved, and the average waiting time in the 

ongoing project is reduced, by using the AXI4 interface 

protocol and a static fixed-priority scheduling method. 

 
Figure 3: Without the arbitration, characterize the 1st and 2nd core processors' write ansaction channel signals. 

 
Figure 4: Without the arbitration, characterize the 3rd and 4th core processors' write transaction channel signals
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The conventional method [8] included a suggestion for a multi-

core memory controller that might be used in a computer system 

that had four core processors. However, it did not take into 

account the arbiter architecture and instead used the AXI4-Lite 

interface protocol. Because of the way that architecture worked, 

the memory was always accessible by the first core CPU. This 

strategy was successful due to the fact that each core processor 

had a single burst length and needed the same amount of clock 

cycles to finish processing the transaction. However, an issue 

occurs when implementing the AXI4 full map and enabling each 

core processor to finish transactions with various burst lengths 

without taking into consideration the arbiter architecture. This 

creates a bottleneck in the processing of transactions. This 

problem is shown by the simulation results, which are shown in 

figures 3 and 4 respectively. 

When utilizing the AXI4 full map interface protocol, you 

have access to a total of five standard channels that may be used 

for either reading or writing data. The implementation of the 

write transaction channels, including all of the required 

handshaking signals, for the core processors accessing external 

memory was the primary emphasis of this part of the simulation 

results. The signals that are sent via the write transaction channel 

for the first and second core processors are seen in Figure 3. 

According to the findings of the simulation that were shown 

previously in this paragraph, the data size is 32 bits, and the burst 

lengths are 16, with a respective 8, each time. The signals for the 

write transaction channel are shown in Figure 4 for the third and 

fourth core processors. The data size of these signals is 32 bits, 

and their burst lengths are variable, coming in at either 4 or 2, 

respectively. 

According to the data shown in figure 3, the first core processor 

started the transmission of write signals 20 nanoseconds after the 

high level of the clock signal and simultaneously with the high 

state of the reset signal. After a total of 410 nanoseconds had 

passed, the m0_BVALID and m0_BREADY signals had both 

reached their maximum levels. This indicates that the activity of 

the first core processor with 16 burst lengths has been completed, 

and it provides the second core processor the permission to 

access the shared interface in order to get data from off-chip 

memory.  

In addition, it suggests that the second core processor won't 

start its transaction for another 410 nanoseconds after the first 

one has finished. Figure 4 depicts a situation very similar to the 

one shown for the second and first processors. In this case, the 

third and fourth processors wait until 630 and 770 nanoseconds, 

respectively, before beginning their transactions. This waiting 

time is imposed on each and every core processor, which results 

in a delay of 457.5 nanoseconds on average.  

The research presented a model that made use of an arbitrator 

architecture and used an approach that was characterized by 

static fixed-priority scheduling. This model resulted in an 

improvement in the average waiting time while the core 

processors carried out transactions using the AXI4 interface 

protocol with a variety of burst lengths. During the 

programming phase, the technique for prioritization is shown in 

figures 5, 6, and 7 respectively. To be more specific, we gave a 

higher priority to the core processor that had a smaller number 

of data transactions (a shorter burst length), while we gave a 

lower priority to the core processor that had a larger number of 

data transactions (a longer burst length). The goal of this 

prioritization was to cut down on the total amount of time spent 

waiting across all core processors, which led to an overall 

reduction in the average amount of time spent waiting. 

   The data shown in figure 5 indicates that the arbitrator gives 

authorization to the fourth core processor to use the common 

interface and access the off-chip memory before any of the other 

cores. After a delay of 20 nanoseconds, the fourth core processor 

started the transmission of write transaction signals when the 

clock signal and the reset signal were both high at the same time. 

At the time interval of 150 ns, the m3_BVALID and 

m3_BREADY signals are both high, indicating that the operation 

of the fourth core processor with two burst lengths has been 

completed. As a direct consequence of this, the third core 

processor may now make use of the shared interface and get 

access to the memory that is located off-chip. This is because the 

burst length of the processor with the third core is much shorter 

than that of the processors with the first and second cores. It also 

suggests that the transaction on the third core processor will not 

commence for another 150 nanoseconds after that point in time, 

which is the implication of the previous statement. Before 

beginning their respective transactions in the identical 

circumstance, as shown in figures 6 and 7, the second core and 

the first processor will wait until 410 ns and 710 ns, respectively. 

This can be seen in both of these figures. The amount of time 

spent waiting equals to 322.5 nanoseconds across all core 

processors taken into account.
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Figure 5: With arbitration, characterize the 1st and 2nd core processors' write transaction channel signals. 

 

Figure 6: With arbitration, characterize the 2nd and 3rd core processors' write transaction channel signals. 
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Figure 7: With arbitration, characterize the 3rd and 4th core processors' write transaction channel signals. 

Incorporating the proposed model, which takes into account 

the arbiter architecture and uses the static fixed-priority 

scheduling strategy, resulted to a considerable improvement of 

34.6% in the overall waiting time for all core processors, as 

evidenced by the results of the simulations. Additional 

simulation results for the four core processors, including a 

variety of burst lengths, have been immediately included into 

Table 1 and Table 2. 

Additional simulation findings are shown in Table 1 and 

demonstrate the interaction that takes place between four core 

processors, which are represented as Masters, and off-chip 

memory, which is represented as Slaves. These findings provide 

a comparison between situations using and not involving the 

arbiter architecture. According to Table 1, the four core 

processors access the off-chip memory in bursts of varied 

lengths. The first, second, third, and fourth core processors 

access the memory for 32, 16, 8, and 2 clock cycles, 

respectively. There is a row labelled "waiting time" in the table, 

and underneath it is two sub-rows for analyzing the data. 

Without taking into account the arbiter architecture, the first 

sub-row displays the amount of time that is required for each 

core processor to start a transaction. Waiting takes up an average 

of 777.5 nanoseconds across all cores of the CPU. When taking 

the arbiter architecture into consideration, the waiting time for 

each core processor is represented by the second sub-row. 

Before beginning the transaction, each core processor pauses for 

an average of 362.5 nanoseconds to 

gather its resources. According to the findings shown in Table 

1, the model that was used in this investigation was successful 

in achieving a 72.8 percentage point increase in overall quality. 

In addition, the simulation results for waiting time for 

different burst length are shown in Table 2. These results 

indicate the interaction that occurs between the four core 

processors, which are referred to as Masters, and the off-chip 

memory, which is represented as Slaves, both when the arbiter 

architecture is taken into consideration and when it is not. The 

table shows that each of the four core processors accesses the 

off-chip memory using a distinct burst length to begin 

transactions. The burst lengths are as follows: 64, 32, 16, and 4 

for the first, second, third, and fourth core processors, 

respectively. In the row labelled "waiting time," there are two 

sub-rows that might be used. When the arbiter architecture is not 

taken into consideration, the first sub-row displays the amount 

of time that must be spent waiting for each core processor before 

beginning the transaction. Waiting time for each of the four core 

processors is 1277.5 nanoseconds on average. The waiting time 

is shown in the second sub-row when the arbiter architecture is 

taken into consideration. Before beginning the transaction, the 

average amount of time that each core processor must wait is 

397.5 nanoseconds. According to the findings that are shown in 

Table 2, the overall proposed model for this investigation 

displays a considerable increase of 105% in comparison to 

models that were used in earlier studies. 
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Table 1: Burst length vs Waiting Time-Test case-1 

 Master-3 Master-2 Master-1 Master-0 AWT 

(Avg. waiting Time) 

Percentage 

Waiting Time 1250(ns) 1110(ns) 730(ns) 20(ns) 777(ns) 72.8% 

362(ns) 870(ns) 410(ns) 150(ns) 362(ns) 

Burst Length 2 8 16 32  

 

Table 2: Burst length vs Waiting Time-Test case-2 

 Master-3 Master-2 Master-1 Master-0 AWT 

(Avg. waiting Time) 

Percentage 

Waiting Time 1970(ns) 1750(ns) 1370(ns) 20(ns) 1277(ns) 105% 

890(ns) 490(ns) 190(ns) 20(ns) 397(ns) 

Burst Length 4 16 32 64  

 

IV. CONCLUSIONS 

In conclusion, the arbitration method that we have 

provided offers a workable and efficient answer to the problem 

of repeated requests for a refresh in GC-eDRAM. Our method 

increases the overall performance of the system by using 

parallelism and optimizing the allocation of resources. This 

helps to guarantee that upcoming memory technologies are 

operated in an effective manner. These discoveries provide a 

contribution to the progression of memory management 

strategies and have the potential to be of use to a broad variety 

of computing systems that depend on GC-eDRAM as an 

essential memory component. The proposed model enhances 

the existing work by employing the AXI4 interface protocol, 

which triggers individual core processors to initiate transactions 

using distinct burst mode capabilities. Additionally, it 

incorporates an arbiter based on a static fixed priority 

mechanism. Simulation results, depicted in figures and tables, 

demonstrate that the proposed model achieves an average 

waiting time reduction of 34.6%, 72.8%, and 105% 

respectively. These improvements highlight the efficacy of the 

proposed model compared to the existing approach, as observed 

through the simulation results. 
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