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Abstract—Cloud computing allows rapid provision of resources based on the need. This enables users to execute the independent tasks 

and dependent tasks called workflows on the cloud system. Workflow scheduling is a crucial problem that is NP Hard and is still a challenging 

problem. Particle Swarm Optimization (PSO) is one of the commonly used metaheuristic algorithms for solving task scheduling problems, but 

it has issues with premature convergence and lack of diversity. In recent years, chaotic maps have been employed in PSO to enhance its 

performance. This study proposes a Constriction factor-based inertia weight in PSO for workflow scheduling (CFPSO). The proposed algorithm 

utilizes a constriction factor for updating the inertia weight, which enhances the exploration ability of the algorithm thereby avoid local optima. 

The algorithm considers a fitness function with an aim to minimize makespan, service cost, and maximize load balance. The proposed algorithm 

is evaluated using a set of benchmark workflows, and the obtained results are compared with the standard PSO algorithm, Grey Wolf Optimizer 

(GWO) algorithm and Chaotic PSO algorithm. The extensive experimentation performed show that the proposed algorithm outperforms the 

other algorithms in terms of makespan, service cost, and load balance. The proposed CFPSO shows reduction of 20% of makespan, 2% of the 

service cost and 18% load balance rate compared to the conventional algorithms on Montage workflow with 1000 tasks. The use of constriction 

factor enhances the performance of the algorithm and makes it suitable for solving complex problems with multiple objectives. The proposed 

algorithm can be used in real-world applications to optimize workflow scheduling in cloud computing environments. 

Keywords- Cloud computing; Particle swarm optimization; Grey wolf optimization; Workflow scheduling. 

 

I.  INTRODUCTION 

Cloud computing has revolutionized the way computing 

resources are utilized and managed. Workflow scheduling is a 

significant issue in cloud computing that has an impact on the 

performance and cost of the applications. The goal of workflow 

scheduling is to assign tasks to resources in a way that minimizes 

the makespan (the time to complete all tasks), reduces the service 

cost, and maximizes the utilization of resources. However, due 

to multiple objectives and constraints this is a challenging 

optimization problem.  Workflow scheduling architecture is 

described in Figure 1. 

Particle Swarm Optimization (PSO) proposed by Kennedy 

and Eberhart [1] is a widely used technique for solving 

optimization problems, including workflow scheduling. PSO is 

a swarm-based algorithm that mimics the social behaviour of 

birds or other animals. It has been utilized effectively in many 

real-world optimization problems, including workflow 

scheduling. However, the standard PSO algorithm may suffer 

from premature convergence and lack of diversity, which can 

result in suboptimal solutions. 

In recent years, chaotic maps have been used to enhance the 

performance of optimization algorithms. Chaotic maps can 

generate pseudo-random sequences that have high sensitivity to 

initial conditions and exhibit complex behaviour. This property 

of chaotic maps enhances the exploration ability of optimization 

algorithms and avoid getting stuck in local optima. 

As task scheduling in cloud computing is an NP hard 

problem, to address the problem many optimization algorithms 

are developed [2-3]. The classic metaheuristics-based 

optimisation techniques typically take more time to compute. 

[4]. Additionally, the best solution can only be found by 

examining a bigger search region, thus the workflow in this 

situation needs to be well-managed [5-6]. 

 
Figure 1. Workflow Scheduling architecture 
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In this work, we propose a new constriction factor based PSO 

algorithm to perform workflow scheduling in cloud computing. 

The algorithm employs a constriction factor to update the inertia 

weight of PSO, which enhances the exploration ability of the 

algorithm. The fitness function considers multiple objectives, 

including makespan, service cost, and load balance, to find an 

optimal schedule. The work analysed the effectiveness of the 

algorithm on scientific workflows montage and sipht. The 

developed algorithm outperforms the other algorithms in terms 

of makespan, service cost or cost and load balance. 

II. RELATED WORKS 

The Particle swarm optimization (PSO) is a widely used 

metaheuristic algorithm for solving complex optimization 

problems. However, standard PSO tends to converge to local 

optima, which can limit its performance. To overcome this 

limitation, researchers have proposed various modifications to 

the algorithm, one of which is the incorporation of chaos theory. 

Chaotic inertia weight PSO (CPSO) algorithms employ chaotic 

sequences to introduce randomness into the search process, 

which can help the algorithm avoid local optima and improve its 

performance. In this work we propose to introduce Constriction 

factor-based inertia weight to avoid local optima. 

The study by [7] proposed an adaptive PSO algorithm for 

scheduling workflows in the cloud environment. The technique 

uses a method depending on the type of VM and the amount of 

its consumption. A given VM type's number is increased by 10% 

or dropped by 10% depending on its consumption. The results 

showed that the proposed algorithm outperformed traditional 

PSO in terms of makespan and cost. 

Similarly, [8] proposed a chaotic PSO (CPSO) for workflow 

scheduling to minimize cost and avoid premature convergence. 

The chaotic sequence applied is irregular and unpredictable that 

has helped improve global search. They also inducted a penalty 

factor for deadline is skipped and for the VMs idle time. The 

results showed that the proposed algorithm outperformed 

traditional PSO in terms of cost. However, load balance is 

ignored.  

In [9] proposed a novel adaptive inertia weight based PSO 

that utilizes feedback on the swarm’s success rate to determine 

the particles’ state in the search space. The algorithm is 

evaluated on static test problems and compared against other 

inertia weight techniques involving fuzzy rules, time-varying 

and random. They did not consider tasks or workflow for 

evaluation.  Another study by Prasanna et al. (2020) [10] 

proposed a PSO algorithm with a greedy algorithm and 

clustering technique to optimize the makespan in task 

scheduling. The results are compared with Greedy PSO and 

showed that the cost is minimized. The proposed algorithm did 

not take dependent tasks in to consideration. In optimization 

problems, Wang et al. (2021) [11] proposed a hybrid PSO 

algorithm that uses chaotic map and adaptive strategy to 

optimize melt spinning progress application. The proposed 

algorithm demonstrated better performance compared to other 

algorithms such as ant colony optimization and genetic 

algorithms. The work did not focus on task scheduling.  In [12] 

authors proposed a hierarchical scheduling strategy to minimize 

the cost. They have considered the service contract signed 

between the vendor and the user. They tested the algorithm on 

SwinDeW-C architecture. In [13], authors developed a variable 

neighborhood search technique as part of PSO algorithm that 

minimizes the total cost of a workflow.  

Li et. al. in [14] viewed the structure of the workflow as a 

control structure and applied reduction technique. The results 

showed the reduction of the execution cost in large workflows. 

However, the total execution time and load were not considered. 

In [15] authors proposed the assignment of tasks to VMs 

based on the Poset with emphasis on critical and non-critical 

paths to optimize cost and response time. Load balance is an 

important aspect to be considered.  

Many heuristic algorithms [16] were proposed, such as PSO 

[17,18,19] for workflow scheduling, Ant colony optimization 

[20,21] and Genetic Algorithm [22,23] to solve task scheduling 

problems. In [24], Mirjalili et. al. proposed a  GWO algorithm 

that can be applied to optimization problems including workflow 

scheduling. 

To further improve exploration capability and to minimize 

makespan and cost and maximize load balance on the resources 

the proposed approach utilizes constriction factor-based inertia 

weight. 

III. PROPOSED METHODOLOGY 

In this manuscript, the effectiveness of the proposed CFPSO 

algorithm is investigated on the Montage and Sipht workflows. 

One of the astronomy applications produced by the NASA/IPAC 

Centre is the Montage Workflow. Sipht is a bioinformatics-

based application developed by Harvard 

A. Problem Definition 

A workflow refers to a sequence of tasks that need to be 

executed on a set of machines to achieve a specific goal. 

Workflows typically involve many tasks that are interdependent 

and need to be executed in a definite order to achieve the desired 

outcome. A workflow W= (G,E) represented as DAG as shown 

in Figure 2 with G as a set of nodes and E as edges that show the 

dependencies between the nodes or tasks. 

http://www.ijritcc.org/
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Figure 2. Representation of sample workflow 

The workflow tasks are computationally intensive or data 

intensive in nature. A cloud vendor maintains a data center to 

support the clients in terms of compute, network and storage 

services. Data center, houses several host machines that provide 

Virtual machines (VMs) as resources to the clients. The 

workflow is submitted to the scheduler as input to generate a 

mapping for Tasks to VMs ensuring the optimization of defined 

parameters. In the proposed algorithm the parameters such as 

Makespan (MS) , cost (C) and Load balance (LB) are optimized.  

Makespan is measured from the begin time of the initial task 

in the workflow to the finish time of the final task. It is presented 

in Eq. (1). 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚{𝐹𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒(𝑡1, 𝑡2… 𝑡𝑛)}      (1) 

Service Cost or Cost of executing a workflow on resources 

is given in Eq. (3). It is computed based on the parameters such 

as execution time of the tasks, data-transfer time, price of a VM 

and data-transfer cost. The execution time of a task is presented 

in Eq. (2). 

𝐸𝑡𝑖 =
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑖𝑛 𝑀𝐼𝑃𝑆

𝑉𝑀 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑖𝑛 𝑀𝐼𝑃𝑆
                                             (2) 

𝐶𝑜𝑠𝑡 =   ∑ ((𝐸𝑡𝑖  × 𝐶𝑣𝑚𝑗) + (
𝑑𝑡𝑖

𝐵𝑊
× 𝐶𝐵𝑊))𝑛

𝑖=1                   (3) 

Where  

𝐸𝑡𝑖 refers to the execution time of the task i 

𝐶𝑣𝑚𝑗 refers to the cost of a VM j and j ranges between 1 ≤ 𝑗 ≤

𝑀𝑎𝑥.𝑁𝑜. 𝑜𝑓 𝑉𝑀𝑠 

𝑑𝑡𝑖 refers to the size of the data given as input to task i. 

𝐶𝐵𝑊 refers to the bandwidth cost. 

Load balance refers to utilizing all the resources to equal 

extent ensuring resource overloading. We have applied the Load 

Balance Rate (LBR) mentioned in Eq. (4) as the measure to 

determine the load balance across the available resources. LBR 

value =1 means the resources are well balanced or equally 

balanced, this being the ideal case. The LBR value more than 1 

indicates an imbalance in utilization of the resources. 

  𝐿𝑜𝑎𝑑 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 =  (
𝑀𝑅𝑈

𝐴𝑅𝑈
)            (4) 

MRU = Max. resource usage across all the resources used in 

executing the workflow 

ARU = Average resource usage across all the resources used 

in executing the workflow. 

The Fitness calculation is performed taking in to account three 

parameters cost, makespan and load balance and is represented 

in Eq. (5).  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  𝛼 × (
1

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛
) +  𝛽 × (

1

𝐶𝑜𝑠𝑡
) − 𝛾 ×

(
1

𝐿𝑜𝑎𝑑 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒
)                                                                 (5) 

α, β, γ represent the weightage given to each of the parameters. 

The current work considers α=0.4, β=0.3 and γ=0.3. 

B. Particle Swarm Optimization Algorithm 

Particle Swarm Optimization (PSO) developed by Kennedy 

and Eberhart [1] is a swarm-based algorithm that is inspired by 

flocks of birds, where each individual in the group follows the 

movement of its neighbors to find the optimal path towards a 

goal. Below are the steps of the algorithm.  

PSO Algorithm 

1. Initialization of algorithmic parameters and the population 

of particles with position  

2. Calculate fitness of each particle 

3. Evaluate fitness value 

4. Update particle best and global best positions 

5. Update particle velocity and position 

6. Repeat steps 2 to step 5 until maximum iterations is 

completed 

PSO uses a set of particles or population to search through 

the search space for the best possible solution. The location of 

each particle in the search space corresponds to a potential 

solution here it represents the task to VM mappings, and its 

velocity denotes the speed and direction of movement. Through 

the exchange of knowledge about their current optimum 

placements, the particles in the population communicate with 

one another. This interaction is made possible through a process 

of collective learning in which each particle modifies its 

velocity according to its individual experience called personal 

best and the collective wisdom of the swarm called the global 

best. 

Particles move around the search space while the 

optimization process is underway by varying their velocities in 

accordance with acceleration constants, random variables, and 

http://www.ijritcc.org/
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the distance between their present places and the optimal 

placements discovered. This makes it possible for particles to 

find their way towards promising areas of the search space and 

converge on the best ones. 

Until a termination requirement, like reaching a maximum 

number of iterations, is fulfilled, the algorithm iteratively 

updates the positions and velocities of the particles. The best 

position found by the swarm represents the optimal solution to 

the problem. 

C. Grey Wolf Optimizer Algorithm (GWO) 

Mirjalili et.al. [19] observing the behaviour of grey wolves 

proposed an algorithm named GWO. Wolf pack consists of α-

wolf, β-wolf, δ-wolf and ω-wolves. α-wolf, β-wolf, δ-wolf are 

the top three wolves in order of precedence and all the remaining 

wolves called ω-wolves follow these three wolves. Wolf pack 

follows a series of steps as represented in the below mentioned 

algorithm to attack a prey. 

GWO Algorithm 

1. Initialize a population of grey wolves randomly within the 

search space. 

2. Define the fitness value for each wolf based on the objective 

function. 

3. Identify the three alpha, beta, and delta wolves with the 

highest fitness values in the population. 

4. While maximum number of iterations: 

5. Update the positions of all the wolves using the following 

equations: 

6. For each wolf: 

7. Update the position of the wolf by adjusting it towards the 

alpha, beta, and delta wolves using the hunting equation. 

8. Limit the new position within the bounds of the search 

space. 

9. Update the fitness values for the new positions of the 

wolves. 

10. End For; 

11. Identify the new alpha, beta, and delta wolves based on their 

fitness values. 

12. End While 

13. Return the best wolf (alpha) and its corresponding fitness 

value as the output. 

To update the the positions of the wolves, the following 

hunting equations represented by Eq. (6), (7) and (8) are used 

for each wolf. The new position is computed using the Eq. (9). 

𝐷∝
⃗⃗⃗⃗  ⃗ = |𝐶1

⃗⃗⃗⃗ ∗ 𝑋𝛼
⃗⃗ ⃗⃗  − 𝑋 | 

𝑋1
⃗⃗⃗⃗ =  𝑋∝

⃗⃗ ⃗⃗  − 𝐴1
⃗⃗⃗⃗  . ( 𝐷∝

⃗⃗⃗⃗  ⃗)         (6) 

𝐷𝛽
⃗⃗ ⃗⃗  = |𝐶2

⃗⃗⃗⃗ ∗ 𝑋𝛽
⃗⃗ ⃗⃗  − 𝑋 | 

𝑋2
⃗⃗⃗⃗ =  𝑋𝛽

⃗⃗ ⃗⃗  −  𝐴2
⃗⃗ ⃗⃗  . ( 𝐷𝛽

⃗⃗ ⃗⃗  )            (7) 

𝐷𝛿
⃗⃗ ⃗⃗  = |𝐶3

⃗⃗⃗⃗ ∗ 𝑋𝛿
⃗⃗ ⃗⃗  − 𝑋 | 

𝑋3
⃗⃗⃗⃗ =  𝑋𝛿

⃗⃗ ⃗⃗  −  𝐴3
⃗⃗ ⃗⃗  . ( 𝐷𝛿

⃗⃗ ⃗⃗  )                                         (8) 

𝑋𝑛𝑒𝑤
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  

𝑋1⃗⃗⃗⃗  ⃗+𝑋2⃗⃗⃗⃗  ⃗+𝑋3⃗⃗⃗⃗  ⃗

3
                                 (9) 

where X represents the position of the wolf, X_newis the new 

position after the updation, X_∝,X_β,X_δ are the positions 

of the α , β , γ  wolves, respectively, C_1  and C_2  are 

coefficients that alter the exploration and exploitation ability of 

the algorithm. 

The equations for scaling factor A   and C   are given by Eq. 

(10) and eq. (11). 

𝐴 = (2 × 𝑎 × 𝑟1⃗⃗⃗  ) − 𝑎                                                         (10)  

𝐶 = (2 × 𝑟2⃗⃗  ⃗)                                                                    (11) 

𝑟1⃗⃗⃗   and 𝑟2⃗⃗  ⃗ are random vectors =[0,1]. 

D. Proposed Constriction Factor based Particle Swarm 

Optimization Algorithm (CFPSO) 

The proposed algorithm initializes the population of 

particles, where each particle represents a potential solution 

referring to the allocation of tasks to VMs.  These particles move 

through the search space by updating the position and velocity 

of each particle based on its own experience called as personal 

best and the experience of the swarm called as global best. For 

each ith particle the velocity and position are updated using the 

equations represented by Eq. (12) and Eq. (13) respectively as 

shown below. 

𝑉𝑖
𝑡+1 =  𝜔. 𝑉𝑖

𝑡 + 𝑐1. 𝑟1. (𝑋𝑝𝑏𝑒𝑠𝑡,𝑖
𝑡 − 𝑋𝑖

𝑡) +

               𝑐2. 𝑟2. (𝑋𝑔𝑏𝑒𝑠𝑡,𝑖
𝑡 − 𝑋𝑖

𝑡)                     (12)                                

𝑋𝑖
𝑡+1  =  𝑋𝑖

𝑡 + 𝑉𝑖
𝑡+1                                           (13) 

Where, 

𝑉𝑖
𝑡 = Velocity of the particle i at iteration t  

𝑉𝑖
𝑡+1 = Velocity of particle i at iteration t+1  

ω  = Inertia weight  

𝑐1 & 𝑐2 = Acceleration coefficients  

𝑟1 & 𝑟2 = Random numbers in range [0,1]  

𝑋𝑖
𝑡 =  Current position of particle i at iteration t  

𝑋𝑝𝑏𝑒𝑠𝑡,𝑖
𝑡  =Personal best position of particle i at iteration t  

𝑋𝑔𝑏𝑒𝑠𝑡,𝑖
𝑡  = Global best position of the particle in a population  

𝑋𝑖
𝑡+1 =Position of the particle i at iteration t+1. 

http://www.ijritcc.org/
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Each particle based on its new position is evaluated against 

the fitness function as shown in    Eq. (5) to optimize makespan, 

cost and load balance. 

Proposed Algorithm CFPSO 

Input:  

  - objective function f(x) 

  - population of size M 

  - maximum number of iterations MAXiter 

  - initial swarm position x_i and velocity v_i for  

    i = 1, 2,..,M 

  -maximum and minimum velocity limits v_max  

    and v_min 

  -maximum and minimum position limits x_max  

    and x_min 

  - constriction factor - initial inertia weight ω 

  - parameters c1 and c2 (acceleration constants) 

  - parameters ω_max and ω_min (maximum  

    and minimum inertia weights) 

  Output: 

  - the best position found x_best 

  - the best fitness value found f_best 

1. Initialize the particle positions and velocities for each 

particle in the swarm. 

2. Initialize personal best positions and objective (fitness) 

values for each particle. 

3. Initialize the global best position. 

4. Initialize the current iteration number. 

5. Initialize the inertia weight ω. 

6. Perform iterations until the maximum number of iterations 

is reached. 

7. For each particle in the swarm: 

a) Generate random values r1 and r2. 

b) Update the velocity of the particle using the PSO 

equation using Eq. (12), considering its previous 

velocity, personal best position, and global best position. 

c) Clip the velocity within the maximum and minimum 

velocity limits. 

d) Update the position of the particle using the new velocity 

using Eq. (13). 

e) Clip the position within the maximum and minimum 

position limits. 

f) Evaluate the fitness value of the new position using Eq. 

(5). 

g) If the fitness value is better than the personal best, update 

the personal best position and fitness value. 

h) If the fitness value is better than the global best, update 

the global best position and fitness value. 

8. Update the constriction factor φ using Eq. (14). 

9. Update the inertia weight ω using Eq. (15). 

10. Increment the iteration number. 

11. Output the best position found and the best fitness value 

found 

The proposed algorithm CFPSO employs the constriction 

factor (φ) as indicated in Eq. (14) to update the inertia weight 

(ω), which controls the exploration and exploitation of search 

space in a balanced manner in the algorithm. A Constriction 

factor was introduced by Clerc [25] in 1999 in his study on 

convergence and stability of PSO. It is a scaling parameter that 

restricts the velocity of particles during the PSO optimization 

process. The idea behind the constriction factor is to ensure that 

particles converge to the global optimum in a stable and efficient 

manner, while also preventing them from overshooting the 

optimal solution. 

φ =
2

|2−𝑐1−𝑐2−√𝑐1
2+𝑐2

2+2𝑐1𝑐2−2𝑐1−2𝑐2+4|
                               (14) 

where 𝑐1and 𝑐2 are the acceleration coefficients used in the 

velocity update equation and ensures the values is in the range 

[0,1]. 

The inertia weight computation is done using the below Eq. 

(15). This computation utilizes constriction factor (φ). 

𝜔 =
𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛

𝜑
+ (𝜑 (𝜔𝑛−1 − 𝜔𝑚𝑎𝑥) + 𝜔𝑚𝑎𝑥)           (15) 

Where, 

𝜔𝑚𝑎𝑥  = Maximum Inertia Weight Wight 

𝜔𝑚𝑖𝑛   = Minimum Inertia Weight 

𝜔𝑛−1= Inertia Weight generated in the previous iteration. 

E. Case Study 

Consider a workflow with 6 tasks shown in Figure 3 as 

shown below. 

http://www.ijritcc.org/
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Figure. 3 Workflow for casestudy 

a) Particle Swarm Optimization (PSO): The Gantt chart for the 

workflow execution on PSO algorithm is shown in Figure 4. 

The figure clearly indicates the makespan for PSO is 130.55. 

The load balance rate is 1.20 and cost of the workflow as per 

the Eq. (3) is 357.43. 

 
Figure 4. Gantt chart for workflow execution with PSO 

The Load Balance Rate as per Eq. (4) is given below. 

Load Balance Rate = MRU/ARU=51.7/42.96=1.20 

b) Grey Wolf Optimizer: The Gantt chart for the workflow 

execution on PSO algorithm is shown in Figure 5. The figure 

clearly indicates the makespan for GWO as 125.1. The cost 

and load balance rate are 362.91 and 1.07 respectively. 

 
Figure 5. Gantt chart for workflow execution with GWO 

c) Chaotic PSO(CPSO): The Gantt chart for the workflow 

execution on CPSO algorithm is shown in Figure 6. The 

figure indicates the makespan using CPSO is 119.65. The 

cost of the workflow is 357.43 and load balance rate is 1.05. 

 

 
Figure 6. Gantt chart for workflow execution with CPSO 

d) Constriction Factor based PSO (CFPSO): The Gantt chart 

for the workflow execution on CFPSO algorithm is shown 

in Figure 7. The figure clearly indicates the makespan for 

PSO is 113.01. The cost of the workflow is 347.47 and Load 

balance rate is 1.04. 

 
Figure 7. Gantt chart for workflow execution with CFPSO 

IV. SIMULATION RESULTS 

The proposed algorithm is executed on a system with Core 

i5 processor, 16.00 GB RAM, Windows 8, 64-bit operating 

system. The results are compared against regular PSO algorithm 

and chaotic PSO algorithm for two scientific workflows 

Montage and Sipht. These workflows are available in different 

sizes, for example, Montage workflows contain 25, 50, 100, & 

1000 tasks and Sipht workflows contain 30,60, 100 & 1000 

tasks. The simulation and evaluation of performance of the 

proposed algorithms is carried out on WorkflowSim-1.0, which 

is an extension to CloudSim.  
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The set of values used for the parameters in the algorithms to 

perform an experimentation to optimize makespan, service cost 

and load balance is indicated in Table 1. 

A. Makespan Analysis 

The makespan comparison of CFPSO is done with GWO, 

PSO and CPSO as shown in Figure 8 for Montage workflows 

and Figure 9 for Sipht workflows. The makespan improvement 

over GWO is 82%, over PSO is 42.95% and over CPSO 

algorithm is 14.25% for Montage workflow with 25 tasks. For 

Montage 50, it is 75.08%, 16.80% and 10.51%, for Montage 

100, the improvement is 79.75%, 17.58% and 12.24%. Whereas 

for Montage 1000, the improvement is 54.12%, 3.59% and 

1.09% over GWO, PSO and CPSO respectively.  

TABLE I.  PARAMETERS SET FOR ALGORITHMS 

PARAMETERS  VALUES 

NUMBER OF TASKS 25-1000 

NUMBER OF 

PARTICLES 
100 

NUMBER OF 

ITERATIONS 
500 

R1, R2 RANDOM [0,1] 

C1, C2 0.9 

Ω 

0.1 (PSO), CHAOTIC INERTIA 

(CPSO), CONSTRICTION 

FACTOR INERTIA (CFPSO) 

NUMBER OF VMS 5 (HETEROGENOUS) 

BANDWIDTH 100 

 

For Sipht workflow, the improvement is over 78.38%, 

43.82%, 7.99% for 30 tasks, 78.48%, 48.14%, 46.43% for  60 

tasks, 89.14%, 18.94%, 34.64% for 100 tasks and 91.83%, 

3.75%, 1.27% for 1000 tasks over GWO, PSO and CPSO. 

 
Figure 8. Makespan for Montage Workflows 

 

Figure 9. Makespan for Sipht workflows 

B. Service Cost Analysis 

In case of Montage workflow, the service cost through 

CFPSO against GWO, PSO, CPSO is showing 7.39%, 4.38%, 

6.14% increase for 25 tasks, 0.02%, 3.63%, 1.35% increase for 

50 tasks, 10.21%, 5.25%, 6.66% increase for 100 tasks and 

3.52%, 1.31%, 1.39% increase for 1000 tasks as shown in 

Figure 10. For Sipht workflow, it is 30.15%, 28.63%, 8.53% 

increase for 30 tasks, 20.92%, 32.38%, 30.18% increase for 60 

tasks, 8.04%, 17.03%, 2.81% increase for 100 tasks and 2.77%, 

0.83%, 1.69% increase for 1000 tasks as shown in Figure 11. 

 

Figure 10. Cost for Montage workflows 

Montage
_25

Montage
_50

Montage
_100

Montage
_1000

GWO 249.89 398.3 780.34 8397.84

PSO 196.27 265.71 510.44 5644.41

CPSO 156.86 251.42 487.26 5508.26

CFPSO 137.3 227.5 434.12 5448.76

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

M
ak

es
p

an

Makespan for Montage Workflows

Sipht_30 Sipht_60
Sipht_10

0

Sipht_10

00

GWO 7385.39 10683.45 14758.57 115891.89

PSO 5954.26 8867.68 9281.41 62678.12

CPSO 4471.21 8765.28 10506.39 61184.11

CFPSO 4140.22 5985.94 7803.18 60415.27

0

20000

40000

60000

80000

100000

120000

140000

M
ak

es
p

an

Makespan for Sipht Workflows

Montage_

25

Montage_

50

Montage_

100

Montage_

1000

GWO 954.52 1894.29 4132.41 44859

PSO 927.76 1962.74 3946.66 43898.52

CPSO 943.4 1919.54 3999.45 43935.78

CFPSO 888.82 1893.97 3749.67 43331.64

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

C
o
st

Cost for Montage Workflows

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 8s 

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7181 

Article Received: 22 April 2023 Revised: 12 June 2023 Accepted: 27 June 2023 

___________________________________________________________________________________________________________________ 

 

    129 

IJRITCC | July 2023, Available @ http://www.ijritcc.org 

 

Figure 11. Cost for Sipht workflows 

The minimum load rate value indicates a good balance of 

resources, ideally the load rate should be equal to 1. The average 

load rate by proposed algorithm shows 6%, 2% and 3% increase 

over the existing algorithms for Montage, Epigenomics and 

Sipht workflows. Figure 8 represent the improvement in load 

rate which is an indicator of load balance on resources. 

C. Load Balance Analysis 

The average load balance is improved by 47.42%, 5.48%, 

5.74% over GWO, PSO and CPSO for montage workflows and 

54.63%, 6.94%, 4.17% for Sipht workflows respectively as 

shown in Figure 12, Figure 13 respectively. 

 

Figure 12. Load balance for Montage workflows 

 

Figure 13. Load balance for Sipht workflows 

V. CONCLUSION AND FUTURE WORK 

In conclusion, the use of constriction factor-based inertia 

weight in PSO for optimizing makespan, service cost, and load 

balance in workflow scheduling has shown promising results. 

The use of constriction factor to generate the inertia weight 

enhanced the exploration and exploitation of the search space, 

leading to better convergence and higher-quality solutions. The 

proposed methods have been tested on Montage and Sipht 

benchmark scientific datasets and have been shown to 

outperform traditional optimization methods in terms of the 

quality of the solutions with minimal makespan, service cost, 

and optimal load balance. The makespan on montage workflow 

with 1000 tasks show that the developed CFPSO algorithm is 

superior compared to GWO, PSO and CPSO algorithms by 

54.12%, 3.59% and 1.09%, the cost is minimized by 3.52%, 

1.31% and 1.39% and the load balance is improved by 49.11%, 

1.79% and 4.46% respectively. Similarly, the performance on 

Sipht workflows also shows improvement in terms of 

makespan, cost and load balance. 

Future research can focus on extending the proposed 

methods to address other challenges in workflow scheduling, 

such as energy optimization and reliability.  Additionally, the 

combination of constriction based PSO with other optimization 

algorithms, like grey wolf optimization, genetic algorithms and 

ant colony optimization, can be explored to further improve the 

performance of the optimization method. Overall, the use of 

constriction factor based PSO optimization technique in 

workflow scheduling shows great potential for solving complex 

problems in various domains.  
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