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Abstract 

Decentralized machine learning (FL) is a system that uses federated learning (FL). Without disclosing locally stored sensitive 

information, FL enables multiple clients to work together to solve conventional distributed ML problems coordinated by a central server. In 

order to classify FLs, this research relies heavily on machine learning and deep learning techniques. The next generation of wireless networks is 

anticipated to incorporate unmanned aerial vehicles (UAVs) like drones into both civilian and military applications. The use of artificial 

intelligence (AI), and more specifically machine learning (ML) methods, to enhance the intelligence of UAV networks is desirable and 

necessary for the aforementioned uses. Unfortunately, most existing FL paradigms are still centralized, with a singular entity accountable for 

network-wide ML model aggregation and fusion. This is inappropriate for UAV networks, which frequently feature unreliable nodes and 

connections, and provides a possible single point of failure. There are many challenges by using high mobility of UAVs, of loss of packet 

frequent and difficulties in the UAV between the weak links, which affect the reliability while delivering data. An earlier UAV failure is 

happened by the unbalanced conception of energy and lifetime of the network is decreased; this will accelerate consequently in the overall 

network. In this paper, we focused mainly on the technique of security while maintaining UAV network in surveillance context, all information 

collected from different kinds of sources. The trust policies are based on peer-to-peer information which is confirmed by UAV network. A pre-

shared UAV list or used by asymmetric encryption security in the proposal system. The wrong information can be identified when the UAV the 

network is hijacked physically by using this proposed technique. To provide secure routing path by using Secure Location with Intrusion 

Detection System (SLIDS) and conservation of energy-based prediction of link breakage done by location-based energy efficient routing (LEER) 

for discovering path of degree connectivity.  Thus, the proposed novel architecture is named as Decentralized Federate Learning- Secure 

Location with Intrusion Detection System (DFL-SLIDS), which achieves 98% of routing overhead, 93% of end-to-end delay, 92% of energy 

efficiency, 86.4% of PDR and 97% of throughput. 

Keywords- federated learning, machine learning, intrusion, energy efficiency, Unmanned aerial vehicles (UAVs). 

 

I. Introduction 

Major changes are occurring in the next iteration of 

wireless networks. By 2025, Cisco predicts, there will be 

more than 75 billion Internet of Things (IoT) devices [1], 

including sensors, wearables, smartphones, linked 

automobiles, and UAVs. This shift is fueling an explosion in 

the quantity of wireless data being transmitted between the 

many different kinds of linked devices. UAVs, also known 

as drones, are expanding rapidly in this setting due to their 

many useful uses in wireless networks [2] [3]. They range 

from military and telecommunications to hospital supply 

delivery and surveillance and monitoring. Due to their 

unique qualities, UAVs in particular can serve as providers 

of wireless network infrastructure, improving the capacity, 

coverage, and energy economy of these networks. Remote 

sensing, augmented reality, and package transportation are 

just some of the uses for UAVs, which can also function as 

aerial users of the current wireless infrastructure. In reality, 

the requirements and needs of these new applications are 

shifting [4].  

UAVs-based wireless networks must provide low-

latency and ultra-reliable services to keep up with the ever-

changing needs of their end users [5], in addition to the high 

data rates that have been the primary prerequisite of 

traditional wireless networks over the past decade. For 

instance, in order to allow for real-time, low-latency 

management of autonomous drones, it is necessary to set up 

highly reliable communication links [6]. The amount of time 

that UAVs can stay in the air depends on many factors, 

including the UAVs' energy reserves, speed, altitude, 

trajectory, etc., and is therefore crucial to the successful 

implementation of such uses. However, Machine Learning 
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(ML) methods are becoming increasingly popular in a wide 

variety of academic disciplines, including wireless networks 

[7]. The inefficiency of traditional model-based solutions, 

which cannot handle the dynamic complexity and 

heterogeneity of the next generation of wireless networks 

[8], is a major factor pushing the adoption of ML-based 

methods in wireless networks. This opens the door for the 

incorporation of additional intelligence into the network's 

operations in order to optimize them and to guarantee, in 

real time, the various requirements of emerging wireless 

apps. In other words, wireless devices will be able to 

intelligently control their environment and take proactive, 

more appropriate actions by learning and predicting the 

dynamic evolution of various network features like traffic 

pattern, communication channel dynamics, user context, 

content requests, etc. In addition, Deep Learning (DL) is 

maturing into the most cutting-edge ML component, 

outpacing classic ML techniques [9].  

Deep learning (DL) is the most prominent form of 

machine learning. [10] Many fields and industries, including 

wireless networking, robotics, image, text, and speech 

recognition, language processing, etc., foresee DL as the 

dominant method. However, conventional ML methods are 

cloud-centric, meaning they necessitate data transmission to 

and processing by a centralized location like the cloud or a 

data center. UAV-based wireless networks are not a good fit 

for these ML algorithms because of the following. Due to 

the potentially delicate nature of the information contained 

in the generated data (such as the whereabouts and identities 

of UAVs), it must be protected. Second, in a world where 

bandwidth is limited and battery life is short, it is difficult 

for unmanned aerial vehicles (UAVs) to continuously 

upload raw data to the cloud. This is especially true for data 

kinds like images and videos. Finally, cloud-centric schemes 

entail unacceptable latency, which is a problem for 

applications that require real-time decisions, like those built 

on unmanned aerial vehicles (UAVs) and autonomous 

drones (ADS). To effectively manage the dispersed sub-

datasets produced by UAVs, a shift toward decentralized 

learning methods is essential.  

Recently, Google has introduced the idea of 

decentralized Federated Deep Learning (FDL) [11]. For 

FDL, mobile nodes pool their data and train DL models 

locally before transmitting the trained models (weights) to a 

centralized server. As a result, FDL allows for dispersed 

training of DL models and the retention of sensitive data in 

its original location. Furthermore, FDL greatly reduces 

network latency by not directing data to a centralized 

location. Because of this, FDL requires less information to 

function than centralized ML. Since FDL allows wireless 

devices to learn a shared prediction model in parallel while 

keeping all the training data on device, it is better suitable 

for ultra low latency applications. This indicates that, unlike 

centralized cloud-centric approaches, FDL could be an 

enabling tool for future wireless networks based on UAVs to 

train learning models. Given the power and computing 

constraints of UAVs, as well as the latter's restricted 

bandwidth, the FDL idea is better suited for UAVs-based 

wireless networks than centralized schemes of deep 

learning. FDL not only protects the private of the data 

collected by UAVs, but it also decreases network overhead 

and latency by eliminating the need to relay first-hand 

information to a centralized location. In this article, we 

explain how FDL can be used by wireless networks that also 

support UAVs to overcome these obstacles. In addition, we 

discuss which deep learning method is best suited to tackle 

each problem and why [14]. Safe and accurate 

communications will rely on legal encryption and 

lightweight information sharing in reconnaissance. For 

supporting observation, UAVs have been especially useful. 

UAVs usually collaborate in this particular situation to 

achieve a viable identification and related exercises, as 

established by the proposed game-based approach of 

composed movement for ideal inclusion, sensor awareness, 

and agreeable combination of data. For various 

observational purposes, UAVs have been used, such as 

proficient monitoring of a moving group and nonstop 

underlying inspection. 

To overcome the distinctive previously mentioned 

issues and to be more motivated by the examined 

recommendations, a solid directing methodology must be 

characterized while thinking about the various difficulties of 

UAV. The vital thought behind this steering technique is to 

abuse UAVs in the organization to productively foresee way 

disappointments before their event and select option next 

jumps. In addition, the technique should be able to set up 

directions containing UAVs with higher residual energy 

levels while avoiding low-energy UAVs and also using a 

protection strategy relying on the secure location-based 

intrusion detection system (SLIDS) and the energy-efficient 

routing (LEER) mechanism based on location. 

The remainder of the paper is organized as follows. In 

Section 2, we discuss a number of citations that have been 

made to our research. In the third part, we delve into the 

specifics of our work's technical descriptions. In Section 4, 

we explain the feasibility of our work based on simulation 

results. Section 5 concludes with some observations and 

conclusions based on this study. 
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II. Related works 

In recent years, a promising distributed ML paradigm called 

federated learning (FL) has emerged to address the 

shortcomings of traditional cloud-centric ML. FL was first 

suggested by Google. Fundamentally, FL allows multiple 

devices to train a single ML model in parallel without 

transmitting the raw data to any other nodes, preserving 

device privacy, reducing experienced latency, and easing the 

bandwidth and energy burden. It was shown that FL, as 

opposed to ML, which is hosted in the cloud, is better suited 

to use in wireless peripheral networks. 

In machine learning (ML), computer-generated programs 

automatically gain expertise through exposure to and 

analysis of accumulated data. Most ML can be categorized 

into one of four subcategories: supervised, uncontrolled, 

semi-supervised, or Reinforcement Learning (RL). Since the 

study's setting requires primarily sequential and consecutive 

decision-making, Wasswa Shafik et al., (2022) zeroed in on 

RL and Deep learning [15]. The environment's interactivity 

allows for a contrast to supervised and non-supervised 

learning. Utilizing the stimuli of automated systems and the 

upcoming accumulative compensation, intricate policy 

choices can be made. The research goes even further by 

analyzing and presenting ML viewpoints depicting state-of-

the-art developments with progress, comparatively depicting 

the future trend of RL based on its applicability in 

technology. It's a problem for a hypothetical IoT and an 

example of a potential answer. In this research, we saw a 

synthesis of a number of different points of view on the 

various RL analytic domains. The research looked at how 

many methods were focused on switching policy values 

rather than altering other mechanisms to achieve a specific 

mental state. The study laid a solid groundwork for future 

studies to follow, allowing researchers from a variety of 

disciplines to build more accurate models and architectures. 

The next generation of wireless networks may benefit from 

using unmanned aerial vehicles (UAVs) as airborne base 

stations to handle the astronomical growth in user demand. 

UAV features like portability, adaptability, better line-of-

sight probabilities, and entry to previously inaccessible areas 

make this a reality. Extensive research is being conducted on 

many aspects of such networks, including their deployment, 

performance analysis, resource management, path 

optimization, and channel modeling. With a comprehensive 

review of all relevant study areas, Rolly RM (2022) 

concentrates on the various applications and related 

algorithms for realizing aerial base stations [16]. In 

summary, this article discusses the technology, important 

applications, and challenges involved in designing and 

analyzing UAVs for use as base stations. 

In [17], an effective method, dubbed UAV for sustainable 

FL, is developed using the decomposition technique and a 

successive convex approximation strategy. (UAV-SFL). 

Finally, simulations show how our proposed UAV-SFL 

approach can reduce the UAV's transmit power by 32.95 

percent, 63.18 percent, and 78.81 percent when compared to 

the benchmarks, making it a viable long-term option for FL-

based wireless networks. 

To support asynchronous distributed computing in networks 

that make use of multiple unmanned aerial vehicles (UAVs), 

it is necessary to develop an Asynchronous Federated 

Learning (AFL) framework [18]. For this reason, the AFL 

framework also includes a method for selecting appropriate 

instruments to use during training. 

A swarm of UAVs equipped with sensors for measuring air 

quality is used to execute a distributed federated learning 

(FL) algorithm, as described in [19]. Using swarm 

intelligence, a method is suggested for identifying the 

location with the highest AQI value. A CNN-LSTM model 

is then used to forecast the AQI based on the collected data. 

Each UAV in the swarm sends its locally learned model to 

the server, which then compiles all of the models it has 

received.  

In [20], we suggest using a blockchain-based decentralized 

machine learning framework to improve UAV performance. 

The integrity and storage of data for smart decision making 

among numerous UAVs may be greatly improved by the 

suggested framework. We demonstrate the use of blockchain 

for distributed predictive analytics and provide a foundation 

for the distributed application and exchange of machine 

learning models.  

In [21], the use of unmanned aerial vehicle (UAV) swarms 

is investigated, with each UAV carrying a machine learning 

classification task. A federated learning strategy is applied 

between a UAV leader and the swarm members to enhance 

the local learning model without resorting to extensive air-

to-ground and ground-to-air communications. 

From what we can tell, UAVs in FLs share a lot of data 

about their models' parameters with one another, which 

could be used against them by unscrupulous pilots. 

Blockchain, a distributed ledger for storing and verifying 

transactions, could be used to facilitate the safe trade of 

models in Florida (FL), even in the presence of adversarial 

unmanned aerial vehicles (UAVs). However, the 

blockchain-based approaches may have additional 

substantial overhead, such as additional block propagation, 

and should be thoroughly researched. Hence, to overcome 

the challenges the proposed Decentralized Federate 
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Learning- Secure Location with Intrusion Detection System 

(DFL-SLIDS) helps to improve various parameters. 

III. System model 

In this proposed system, 3D is deployed fairly in UAV  in 

team and it is considered by UAV battery which are energy 

trending of full level battery to the time of diminish as 

shown in figure 1. The crucial messages or exchange unique 

cast between each Other by the record mission achieved by 

the name of UAV as cooperatively. All UAV all is supposed 

to have itselfby geographical position (X,Y,Z) with the help 

of GPS and the routing table is updated periodically And its 

neighbours table also updated periodically. The bidirectional 

actions are considered for two UAV between the links for 5 

GHS or band of wireless. IEEE 802.11a adopted as wireless 

interface in each UAV of Mac layer, the high dynamic 

topologies are considered for efficient support and wireless 

communications or provide coverage widely. To detect 

people using UAV proposed to adjust the surveillance of 

wide area particularly in the distributed management. A 

controlled area is crossing by a person normally assumed by 

this method which is based on architecture of overall system 

as given in below figure. 

 

Figure-1 Overall system model 

The proposed method of DFL-SLIDS of is mainly based on 

the system with intrusion detection. For all official UAV 

authenticated by ID for all network where UAV provides 

track record to follow. The proposed LEER method is used 

to optimise the system energy using its location. The peer to 

peer technique used in the proposed system for 

communication, the less fading is dominant for path loss 

which are expressed as follows:PLPP (x) = 𝛽10log10x + 

𝛼,Where𝛽 is, a = √(ai − a𝑗)2 + (bi − b𝑗)2 + (ci − c𝑗)2 which 

is the loss exponent and the communicating distance of 

UAVs ui and uj, The 𝛼 reflects the failure of the direction at 

the reference point.Following the model of free-space 

propagation, 𝛽 = 2 and 𝛼 = 10log10 (4𝜋w l ) ; Where the 

carrier frequency is w and the light velocity is l = 

3  X 108m/s 

3.1 Federated Learning model 

In this section, we will go over the basics of FL as they 

pertain to multi-UAV capable networks. The AI model 

under discussion here is the local FL model, which is trained 

with data unique to the device in question, while the global 

FL model is the one built by each UAV server with 

parameters from local models. The global model parameters 

for the nth UAV server will be denoted by w_n, the local 

model parameters for the kth device will be denoted by wk, 

and the training datasets used by the kth device will be 

denoted by Dk. By introducing the loss function f(wn,sk,i,zk,i), 

we are able to quantify the FL performance error over the 

input data sample vector sk,i on the learning model w and the 

intended output scalar zk,i for each input sample i at the kth 

device. 

3.2 Energy model using Location based Energy Efficient 

Routing (LEER) 

Wireless networking devices, such as integrated batteries, 

manages the energy resources of UAVs. The UAVs have a 

very low capacity, requirements with continuous wireless 

connectivity, portability, compact dimensions of energy. 

UAV 𝑢𝑖 (𝑅𝑢𝑖) energy is below Ia (𝑅𝑢𝑖 < 𝐼𝑎), in addition to 

specific circumstances where 𝐼𝑎 can be altered by Ia 

according to the need to deliver the data packets. This 

includes adaptations for all kinds of uses. Two fields, 

containing the leftover energy and creation data of each 

UAV, are applied to the Hello packet format to know about 

the residual energy level of all neighbouring UAVs and to 

foresee any distinction between them, individually. The 

model of energy productivity for the proposed system is 

given below. Smart administration of residual UAVs is 

lifespan of the enterprise and the efficient provision of 

information. In view of the accompanying status, each UAV 

from time to time calculates its remaining energy power 

(𝑅𝑒𝑟𝑐) 

𝑅 =  𝑅𝑒𝑟𝑐% =

 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑓𝑢𝑙𝑙𝑒𝑛𝑒𝑟𝑔𝑦 ×  100          

Data packets of except for high-priority (i.e. priority = 0) or 

for cases when the UAV has a previously settled location. 

Another thing, the UAV needs to update the RP field with 

its R value only when it gets an RREQ packet (𝑅𝑃 >

 𝑅).Three energy consumption dispersions are approved for 

each UAV for our work. To begin with, the use of energy is 

overshadowed by UAVs practise in the propulsion energy. 

First, we predict mobility of UAVs of 70%. Second, the 

consumption of wireless contact with 25 % on the grounds 
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that are recognised more often than not, especially during 

packet sending and acceptance. Finally, 5% of evaluated the 

usage during sitting is UAVs continue to do both Hello 

packet trading and listening activities (not having data) 

while drifting the region. We ignore the computation and 

capability of UAV energy for convenience. 

Algorithm of Data packet processing  

Input: Data Data: ui , Current UAV  

Data: rtablei , Routing table of ui 

Data: ui+1 , Next UAV  

1 Temp ← rtablei .search(Data.Communication ID)  

2 if Data.Destination = ui then // ui is uD.  

3 Reception(Success)  

4 else // CEuiui+1 is still valid.  

5 if Temp and (rtablei .CEuiui+1 > 0 and rtablei .Rui+1 ≥ τ) 

then  

6 Forward(Data,Next hop)  

7 else // CEuiui+1 is not valid.  

8 Greedy forwarding(Data,Destination) 

The first order energy model predicts the following power 

usage for a sensing node transmitting K-bit bytes:  

𝐸𝑇𝑥(𝑘, 𝑑) = 𝐸𝑇𝑥−𝑒𝑙𝑒𝑐(𝑘) + 𝐸𝑇𝑥−𝑎𝑚𝑝(𝑘, 𝑑) 

𝐸𝑇𝑥(𝑘, 𝑑) = 𝐸𝑒𝑙𝑒𝑐 ∗ 𝑘 + 𝜀𝑎𝑚𝑝 ∗ 𝑘 ∗ 

The following is the energy usage details for a sensing node 

receiving K-bit bytes: 

𝐸𝑅𝑥(𝑘) = 𝐸𝑅𝑥−𝑒𝑙𝑒𝑐(𝑘 

𝐸𝑅𝑥(𝑘) = 𝐸𝑒𝑙𝑒𝑐 ∗ 𝑘 

𝜀𝑎𝑚𝑝 − 𝑀𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑆𝑖𝑔𝑛𝑎𝑙 𝐴𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑟 

𝐸𝑒𝑙𝑒𝑐

− 𝑇ℎ𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑒𝑛𝑑𝑖𝑛𝑔 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑎𝑛𝑑 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 

𝑑 − 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑆𝑖𝑔𝑛𝑎𝑙 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 

Each round, the network decides which nodes will become 

cluster heads based on the current number of cluster heads 

and the percentage of cluster heads that it has taken in 

earlier rounds. The node picks a random integer between 0 

and 1 based on a threshold value T(n). In this iteration, the 

nodes become cluster leaders if the arbitrary number is less 

than T(n). What the T(n) was: 

𝑇(𝑛) = {

𝑝

1 − 𝑝. (
𝑟𝑚𝑜𝑑1

𝑝
)

         𝑛 ∈ 𝐺

0

 

p - Proportion of all nodes that become cluster leaders. 

r - Round number currently in effect. 

G - The group of servers that have never served as the 

cluster's leader.  

The node will inform the cluster's leader that it has entered. 

The cluster leader receives transmissions from all of the 

nodes. The receiver at the cluster's head node has been kept 

in a constant receiving condition up to this point. The cluster 

head node will establish a schedule to inform all nodes in 

the cluster when to transmit data once it has received all data 

from cluster members. 

Optimal cluster head count determination: 

To simplify, we will refer to S as the assumed plane area 

and X(S) as the assumed number of sensor nodes within S. 

Then, X(S) is a free-standing model of energy, 

𝑝{𝑋(𝑆) = 𝑛) =
[𝜆𝐴(𝑆)𝑛𝑒−𝜆𝐴(𝑆)]

𝑛!
     𝑛 = 0,1,2 … .. 

The area of the province is denoted by A (S). A (S) should 

be 2M if and only if S is a square with sides of length M. If 

there are N sensor sites spread across S square kilometers. 

Each sensing node has a P% chance of becoming the cluster 

leader. Then, there are nodes here that serve as the heads of 

NP clusters. If the sensing node's distance from the base 

station, denoted by DB x y, is uncertain. PS is the uniformly 

distributed cluster head node probability density in set S. 

Theoretical maximum distance a cluster head node could be 

from the base station, assuming the base station is located in 

the center of the coverage region S, is 

𝐸(𝐷𝐵(𝑥, 𝑦)|𝑋(𝑆) = 𝑁)

= ∬ 𝐷𝐵(𝑥, 𝑦). 𝑃𝑆𝑑𝑥𝑑𝑦 = 0.3825𝑀
𝑛

𝑆

 

In this area, you'll find NP clusters, each with their own 

unique set of heads. Cluster C has an unknown amount of 

sensors, so the average distance to the base station will be 

0.3825NPM X(C) the distance from the cluster's leader node 

to the station. DC measures how far apart the cluster's main 

node is from all of the other nodes in the cluster. 

𝐸(𝐷𝐶|𝑋(𝑆) = 𝑁) = ∬ √𝑥2 + 𝑦2𝑘(𝑥, 𝑦)𝑑𝐴(𝐶)
𝐶

=
2𝑀

3√𝑁𝑃𝜋
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C -A circular area whose radius is
𝑀

𝑁𝑃𝜋
 

K (x,y)- The number of sensor arrays follows a normal 

distribution.. EC - How much power does it take for a 

cluster of nodes to send a single piece of data to the cluster's 

master node . The mathematical expectation of EC is: 

𝐸(𝐸𝐶|𝑋(𝑆) = 𝑁) = 𝑁1/2.
2𝑀

2𝑟√𝜋
.

1−𝑝

√𝑝
                                                  

where, r -The wireless communication radius, EB- tthe 

power used by the cluster nodes to transmit fused data to the 

control center, the mathematical expectation of EB is: 

𝐸(𝐸𝐵|𝑋(𝑆) = 𝑁) =
0.3825𝑁𝑃𝑀

𝑟
 

Er- Total network energy usage . Then 𝐸𝑇 = 𝐸𝐵 + 𝐸𝐶                                                       

we can get the mathematical expectation of all energy: 

𝐸[𝐸𝑇] = 𝐸[𝐸(𝐸𝑇|𝑋(𝑆) = 𝑁)]                                      

3.3 Distributed Federate Learning- Secure Location with 

Intrusion Detection System (DFL-SLIDS) 

Before the UAV army starts the observation 

movement, all the UAVs should be officially enrolled. The 

UAVs asymmetric encryptions are therefore able to sign 

their messages with public key. The messages are 

transmitted via the UAV association, and a list of a 

particular individual's testing UAVs will be known to each 

UAV. A UAV authority could truly be caught and sold off. 

This UAV could submit false warnings properly endorsed 

for this circumstance to upset the UAV organization's proper 

functioning. Nevertheless, because of the necessary 

asymmetric encryption for verifying senders, the 

undermined UAV will not alter its character to mimic 

various specialists. From the messages of all UAVs, and 

tests if a few of the testing UAVs are obtained by each 

gatecrasher at any rate. Nevertheless, UAVs will have a 

dispersed confidence managers. This witnessing will 

consider the length of time of only one trust the occasion of 

an interloper, punishing the trust in it. It also takes into 

account the times when captured data is submitted. It would 

weigh the recent incidents as more relevant, but it would 

still consider the full past as well. 

In three modules, the model of this DFL-SLIDS 

was coordinated: the "Setup" techniques (first performed the 

recreation); the techniques (occasionally summoned in 

simulation); and the "Measure" techniques (utilized for 

refreshing the diagrams). With regards to techniques. On the 

left hand, the key strategy emerges. Both UAVs and 

individuals travel initially. A variable non-deterministic 

strategy is used by the former, whereas individuals primarily 

seek to cross a controlled field in a certain direction with 

only minor variations. At that point, UAVs decide if any 

entity is nearby. V2V interchanges are simulated after this. 

The block diagram also decides the V2V correspondences 

that care from the points of view of senders and receivers 

separately. UAVs exchange separate signals as to whether 

they have observed the gatecrasher specifically. Provided 

the energy constraints, they only associate with nearby 

UAVs. In order to update their nearby viewers confidence, 

they unscramble the content. UAVs have a secret key such 

that, with asymmetric encryption, they can prove their 

identity. Architecture for location based secure IDS is given 

in figure 2. 

 

Figure 2- Architecture for DFL-SLIDS 

In the off case that there is a situation where the gatecrasher 

region was not protected by UAV, a possibility was 

relegated to the option of shifting the path, and then this 

choice was simulated by comparing an odd number and this 

probability resulted in the threshold. Furthermore, with 

unique cutoff points, the rotation angle was calculated non-

deterministically, as Equation 2 shows: 

𝛼 =  ( 𝑟𝑓 (𝛽)  − (𝛽/2), 

𝑖𝑓 𝑟 ≤  𝑝𝑟 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑎𝑝 =  𝑎/𝑛  

𝑡 =  𝑎𝑡/𝑎   

𝑑𝑝 =  𝑑/𝑛   

𝑖𝑑𝑠 =  𝑃 𝑥 ∈ 𝐴 |𝑙𝑥| 𝑎  

Where an is the number of UAVs that received an alert from 

another UAV, n is the total number of UAVs, t is the 

number of UAVs that trusted the information they received 

about an intruder, d is the number of UAVs that directly 

noticed and announced an intruder, A is the arrangement of 

all UAVs that received an alert, and lx is the list of direct 

UAV observer IDs stored locally in the UAV x. The seized 

UAVs fly around like other unmanned aerial vehicles. The 

single difference is that false warnings from intruders are 

persistently recorded. They aim to report false warnings to 

the fleet of UAVs, so that the framework lacks relevance 

and it can continue to be overlooked by customers. Along 
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these lines, when UAV warnings are ignored, a real attacker 

may experience the controlled area.  

Assume that the imbalanced training data set is 𝐷 =

 {(𝑥1, 𝑙1), (𝑥2, 𝑙2), . . . , (𝑥𝑛, 𝑙𝑛)} where xi is the ith sample 

and li is the label of the ith sample. We suggest training a 

classifier in RL-MDP where the classifier itself is an 

evolving agent. 

• State S: The sample used for training controls the 

environment's current condition. The first sample, 

x1, is given to the agent as its starting state s1 at the 

start of training. Sample xt represents the 

environment's condition st at that instant in time. 

The training data set's sample order is randomly 

reshuffled by the environment at the start of each 

new show. 

• Action A: Each training data collection has a label 

that corresponds to the agent's behaviour. The 

agent's current move is a label prediction. Where 0 

stands for the underrepresented class and 1 stands 

for the overrepresented class, A = 0 and 1 for a 

binary classification issue. 

• Reward R: A reward rt is the environmental data 

that indicates whether or not an agent's activities 

were successful. Samples from the minority class 

are rewarded at a greater absolute value than those 

from the majority class so as to steer the agent 

toward learning the optimal classification policy in 

skewed data. That is, the agent receives a harsher 

reward or punishment from the environment 

depending on whether or not it accurately identifies 

a minority class sample. 

• Transition probability P: The chance of a transition 

p(st+1|st, at) is fixed. Following the sequence of 

samples in the training data collection, the agent 

transitions from state st to state st+1. 

In an unbalanced data collection, identifying 

minority group samples accurately is a significant challenge. 

In order for the algorithm to accurately recognize minority 

group samples, it needs to be more sensitive to that group. 

When an agent obtains a sub-par sample, it receives a 

disproportionately big reward or punishment. The agent's 

forecast cost equals the reward function's value. Prediction 

cost values for the minority class are larger than those for 

the majority class when the data collection is imbalanced (λ 

<   1). The forecast cost values are the same for all classes if 

and only if the class distribution in the training data set is 

uniform (λ = 1). In reality, λ is a trade-off measure used to 

modify the weight given to the dominant social group. 

DFL-SLIDS's classification strategy π is a function 

that, when given a sample, can calculate the probabilities of 

all possible labels.  

𝜋(𝑎|𝑠)  =  𝑃(𝑎𝑡 =  𝑎|𝑠𝑡 =  𝑠)  

The goal of the classifier agent is to correctly label as many 

instances as possible from the training data collection. By 

optimizing for accumulated rewards, the classifier agent 

achieves its goal. it receives for accurately identifying 

samples. 

 𝑔𝑡 =  ∑ Ω𝑘 (𝑡 = 𝑘)
∞

𝑘=0
 

 The Q function is a reinforcement 

learning concept that measures the strength of a state-action 

pair.  

𝑄 𝜋 (𝑠, 𝑎)  =  𝐸𝜋[𝑔𝑡|𝑠𝑡 =  𝑠, 𝑎𝑡 =  𝑎]  

The Bellman equation provides an expression for the Q 

function, which looks like this:  

𝑄 𝜋 (𝑠, 𝑎)  =  𝐸𝜋[𝑟𝑡 +  𝛾𝑄𝜋 (𝑠𝑡 + 1, 𝑎𝑡 + 1)|𝑠𝑡 =  𝑠, 𝑎𝑡 

=  𝑎]  

In order for the classifier agent to maximize the sum of its 

rewards, it must solve the optimal Q function, and the 

greedy strategy under this function yields the best possible 

classification. The Q network's structure is determined by 

the nature and size of the data used for training. The 

structure of the training sample is reflected in the input of 

the Q network, and the number of outputs is proportional to 

the number of groups in the training set. The Q network is a 

classification built on a neural network, but it lacks the 

conventional softmax output layer. 

IV. Performance analysis 

The experimental result is carried out using and the 

parameters such as Routing Overhead (RO),the end-to-end 

delay (EED), the packet delivery ratio (PDR), energy 

efficiency, and throughput for different rates and densities 

are calculated by a few evaluation measurement . These 

parameters are compared with three state of art methods 

such as UAV for Sustainable FL (UAV-SFL), 

Asynchronous Federated Learning (AFL), with the proposed 

Decentralized Federate Learning- Secure Location with 

Intrusion Detection System (DFL-SLIDS). We settled on a 

network size of 500 UAVs because, according to the 

literature on UAV communication systems, this is the norm 

for such networks. We decided on a break term of 1000 s for 

all V2V exchanges and for transmitting direct impressions, 

as this is the usual time period used in writing about helpful 

UAVs. The modeling setup is depicted in Figure 3. 
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Figure 3 Simulation scenario 

• As shown in Equation 20, the amount of 

routing packets transmitted for route 

maintenance and route finding can be 

thought of as the routing overhead (RO). 

RO =
𝐻

𝑃
    

Where, H is counted once per hop and P is total 

number of routing packets 

Table-1 Comparison for routing overhead 

Number of UAV’s UAV-SFL AFL DFL-SLIDS 

100 45 78 81 

200 59 80 83 

300 61 84 85 

400 72 86 89 

500 85 89 94 

 

Figure-4 analysis of routing overhead 

In Figure 4, the X-axis depicts the total number of UAVs 

used in the study, while the Y-axis displays the percentage 

of routing overhead for each of the current UAV-SFL, AFL, 

and proposed DFL-SLIDS methods. The suggested DFL-

SLIDS method outperforms the state-of-the-art UAV-SFL 

and AFL methods by 3% and 2%, respectively, in terms of 

routing overhead, while the existing QSIA and RNN-OCSA 

methods only manage 90% and 91%, respectively. 

• The "end-to-end delay" of a packet is the total 

amount of time it takes to move from its point of 

origin across a network to its destination. 

Table-2 Comparison for End-to end delay 

Number of UAV’s UAV-SFL AFL DFL-SLIDS 

100 65 68 71 

200 69 70 73 

300 71 74 75 

400 72 76 79 

500 75 79 84 

 

 
Figure-5 analysis of end to end delay 

In Figure 5, the X axis represents the total number of UAVs 

used in the study, while the Y axis displays the percentage 

of end-to-end delay for each of the three methods (UAV-

SFL, AFL, and the proposed DFL-SLIDS). The proposed 

DFL-SLIDS method gets 93% of routing overhead, which is 

3% better than UAV-SFL and 2% better than AFL 

compared to the existing QSIA and RNN-OCSA methods. 

 

• Energy efficiency is determined by dividing the 

amount of energy used to produce a usable amount 

of energy (the energy output) by the amount of 

energy used to start the process (the energy input). 

 

E=
𝑊𝑜𝑢𝑡

𝑊𝑖𝑛
×100 

Table 3. Comparison for energy efficiency 

Number of UAV’s UAV-SFL AFL DFL-SLIDS 

100 86 88 89 

200 88 89 90 

300 89 90 91 

400 90 91 92 

500 91 92.5 93 
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Figure 6. Comparison of energy efficiency 

Figure 6 shows the percentage of UAVs with high energy 

efficiency values plotted against the total number of UAVs 

used in the study (X-axis). This allows for a direct 

comparison of the sensitivity of UAV-SFL, AFL, and the 

proposed DFL-SLIDS method. Energy efficiency is 

improved by 3% when using the proposed DFL-SLIDS 

method compared to the current UAV-SFL method and by 

2% when using the existing AFL method. 

• Packet Delivery Ratio (PDR)- It is the average 

ratio of the total packets received (R)successfully 

to the total packets originally sent (S)as shown: 

PDR= ∑
𝑅

𝑆

𝑁
0     

Table 4. Comparison for PDR 

Number of UAV’s UAV-SFL AFL DFL-SLIDS 

100 84 85 87 

200 85 87 89 

300 85 88 90 

400 86 89 91 

500 87 90 92 

 
Figure 7. Comparison of packet delivery ratio 

In Figure 7, the X axis represents the total number of UAVs 

used in the analysis, while the Y axis displays the 

percentage values found for the packet delivery ratio when 

comparing the existing UAV-SFL, AFL, and proposed DFL-

SLIDS methods. Existing UAV-SFL and AFL methods 

accomplish 87% and 90% of packet delivery ratio, 

respectively, while the proposed method achieves 92% of 

packet delivery ratio, improving on both by 5%. 

• Throughput is the amount of data that can be sent 

or received per second over a given transmission 

channel. The significance of throughput in 

MANET apps is demonstrated by the following.  

Throughput (bits/sec) = ∑
(𝐧)∗(𝐚𝐯𝐠)

𝐓
 

Tab 5. Comparison for throughput 

Number of UAV’s UAV-SFL AFL DFL-SLIDS 

100 78 79 80 

200 80 81 82 

300 82 83 84 

400 84 85 86 

500 86 87 88 

 
Figure 8. Comparison of throughput 

Figure 8 depicts a throughput comparison of existing UAV-

SFL, AFL, and the proposed DFL-SLIDS method, where the 

X axis depicts the number of UAVs used for analysis and 

the Y axis depicts the percentage of throughput achieved.  

Existing UAV-SFL and AFL methods achieve 86% and 

87% throughput, respectively, while the proposed DFL-

SLIDS method gets 88%, improving on both by 2%. 

parameters UAV-SFL AFL 
DFL-

SLIDS 

Routing overhead 94 95 98 

End to end delay 90 91 93 

energy efficiency 87 90 92 

PDR 84 85 86.4 

throughput 86 87 97 
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V. Conclusion 

To manage UAV communications between the network by 

location based routing which are promising solution. There 

are a lot of difficulties happened in such network like, 

UAVs high mobility, energy restriction on the 

disconnections occur frequently. The traditional mechanism 

is the process of route Discovery which are used to identify 

the position of destination and lead with routing for 

appropriately. This process is not to explore fully in several 

times to connected with durable paths and named as 

frequent disconnection and the data transmission is seriously 

affecting by the important overhead this issues by DFL-

SLIDS, by which is useful to predict the failure lings really 

in the discovery phase to their occurrence and energy 

consumption is achieved among all UAVs. There is 

alternative solutions provided when the path failure occurred 

in maintenance process and received your energy with the 

links ok of lifetime process of  UAVs. The given 

simulations are based on DFL-SLIDS clearly. In this paper, 

the supporting surveillance given for the UAV network in 

UAVs was proposed in the protection framework for 

detection based on the trust model. It is based on the premise 

that more than one UAV would typically observe 

individuals at the boundary. Therefore, if a UAV identifies 

persons who are also reported by other UAVs repeatedly, 

this fact would be identified by each UAV. 
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