
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6959

Article Received: 30 March 2023 Revised: 16 May 2023 Accepted: 31 May 2023

509

IJRITCC | June 2023, Available @ http://www.ijritcc.org

Performance Analysis of Microservices Behavior in

Cloud vs Containerized Domain based on CPU

Utilization

Sushant Jhingran1, Nitin Rakesh2
1Department of Computer Science & Engineering

Sharda University

Greater Noida, India

sushantjhingran@gmail.com
2Department of Computer Science & Engineering

Sharda University

Greater Noida, India

Nitin.rakesh@gmail.com

Abstract— Enterprise application development is rapidly moving towards a microservices-based approach. Microservices development makes

application deployment more reliable and responsive based on their architecture and the way of deployment. Still, the performance of

microservices is different in all environments based on resources provided by the respective cloud and services provided in the backend such

as auto-scaling, load balancer, and multiple monitoring parameters. So, it is strenuous to identify Scaling and monitoring of microservice-based

applications are quick as compared to monolithic applications [1]. In this paper, we deployed microservice applications in cloud and

containerized environments to analyze their CPU utilization over multiple network input requests. Monolithic applications are tightly coupled

while microservices applications are loosely coupled which help the API gateway to easily interact with each service module. With reference

to monitoring parameters, CPU utilization is 23 percent in cloud environment. Additionally, we deployed the equivalent microservice in a

containerized environment with extended resources to minimize CPU utilization to 17 percent. Furthermore, we have shown the performance

of the application with “Network IN” and “Network Out” requests.

Keywords- Application Deployment; cloud; Docker; Micro service; virtualized;

I. INTRODUCTION

The process of application deployment consists of several

stages, including developing applications using design patterns

and deploying them on appropriate servers. Microservices can

be deployed in various environments, and application

deployment can be carried out in multiple hosting

environments. Each hosting environment has specific

parameters for assessing application performance and behavior.

Microservices are commonly utilized in service industries due

to their lightweight characteristics. They can be deployed on the

cloud, where their performance can be measured using various

metrics. The cloud provides a distinct serverless computing

environment, which includes services such as EC2, ECR,

Codestar, and other platform-specific services [2]. The

performance of microservices can be evaluated using metrics

available in a serverless cloud environment. Cloud computing

employs a serverless approach for application deployment,

ensuring that applications do not experience temporary

interruptions by utilizing Auto Scaling features offered by

different cloud environments. Serverless computing is also

utilized for deploying applications based on microservices. To

facilitate the deployment of microservice-based applications on

the cloud, environments like Elastic Container Registry and

Docker can be created [3][4]. In the deployment process, an

image is generated, and a container is initiated to run the

application, which results in a lightweight application.

Monitoring an application involves tracking metrics such as

network utilization and CPU utilization, which determine its

performance. Cloud vendors offer various serverless

approaches, including S3 (Simple Storage Services), RDS

(Relational Database Services), and ECS (Elastic Container

Services). In the cloud realm, application monitoring can be

conducted from different availability zones [5]. Cloud vendors

offer availability zones, such as us-east 1a, which enable users

to create multiple accounts and access data while monitoring it.

In contrast, traditional hosting of applications involves utilizing

servers provided by various service providers [6]. To enhance

performance, applications are deployed in the form of packaged

files. These files, such as Jar or War files, are created by

developers and contain a combination of hosted servers with

different capabilities. Applications can be deployed on various

hosting environments, including Linux and cloud-based

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6959

Article Received: 30 March 2023 Revised: 16 May 2023 Accepted: 31 May 2023

510

IJRITCC | June 2023, Available @ http://www.ijritcc.org

hosting. Bundle files are deployed on cloud-based

environments using technologies like Docker and Kubernetes,

which ensure application scalability [7]. The cloud environment

offers elastic computing and Beanstalk services, which

facilitate deployment along with monitoring and service

notifications. Applications can be deployed on different hosting

environments, including Linux and cloud-based hosting.

Bundle files are deployed on cloud-based environments using

technologies like Docker and Kubernetes, enabling application

scalability [7]. The cloud environment offers elastic computing

and Beanstalk services for deployment, along with monitoring

and service notifications.

II. LITERATURE REVIEW

The performance of an application is influenced by its

development structure. In the past, applications were developed

using a modular approach, where smaller modules were created

and interconnected. This modular approach allows for code

reusability, which can be beneficial in future development. Web

applications, being deployed on servers, occupy minimal

memory space. A deployment environment, referred to as a web

server, is used to easily deploy web applications. These

applications can be accessed remotely through a browser on a

different machine. When a user makes specific requests, the

actual application is deployed on the server, and the response is

fetched accordingly. Instead of deploying applications on

multiple machines, developers typically choose to deploy them

on a single server, enabling users to access web portals from

remote machines. Consequently, applications are typically

installed on one server and instantiated by multiple machines

[8]. Applications were traditionally developed using a

monolithic architecture in the past [9]. Controllers handle

incoming requests from the front end in an application. These

requests are then forwarded to the service layer, and if

necessary, the service layer communicates with the Dao layer.

All the layers or modules access a single database, meaning they

are contained within a single container or code base that consists

of multiple modules. These modules are bundled into a single

JAR file, which can be deployed on a server for client access.

Running multiple instances of a single application creates a

monolithic architecture, where the instances cannot

communicate with each other. In a monolithic architecture, the

components of an application are tightly coupled within a single

module. The user interface, business logic, and data storage are

tightly integrated and built as a single unit. Changes to one part

of the system can have an impact on the entire application.

On the other hand, microservices architecture is a different

approach to building and organizing software systems. It

involves breaking down an application into small, independent,

and loosely coupled services. Each service has its own specific

task and can be developed, deployed, and scaled independently

of other services. Services communicate with each other over a

network using lightweight protocols such as HTTP or gRPC.

Microservices architecture offers benefits such as easier

testing, as each service can be tested separately, leading to a

more efficient testing process. It also provides enhanced

security, as security vulnerabilities in one service do not affect

the entire application. Scaling can be more easily managed in a

microservices-based architecture compared to monolithic

applications. Additionally, extending the project in a monolithic

architecture can become challenging.

In summary, microservices architecture provides increased

flexibility and scalability in contrast to the conventional

monolithic approach [10]. Making changes to APIs in

monolithic applications can be challenging. Integrating

different technologies can also pose difficulties in monolithic

applications. A single error in a specific module can have a

cascading effect, potentially causing the entire application to

fail. However, monolithic applications benefit from lower

network latency due to their single communication channel.

In contrast, microservices are independent modules that

operate concurrently. Each microservice can communicate with

others through a service layer using lightweight protocols [11].

The system employs decoupled modules that utilize separate

databases based on their respective services. These services can

communicate with one another using REST or JSON. The

services are loosely coupled due to their independent code

bases. This allows for individual updates to be made to services

without causing scalability problems. For example, if service X

is being updated, the other services can continue running

smoothly, and once the update is complete, service X will

automatically integrate without impacting the entire project.

Furthermore, even if microservices are developed using

different domains, they can easily communicate with each

other.

A. Architecture of Micro services

A microservices architecture typically comprises various

interconnected components that collaborate to deliver the

overall functionality of the system. Several essential

components of such an architecture include:

Services: These are distinct modules within the system that

perform specific tasks. Each service operates as an independent

unit of functionality, capable of being developed, deployed, and

scaled autonomously.

Service Registry: This serves as a centralized repository

responsible for tracking all services within the system and their

respective locations. Services utilize the service registry to

discover other services and register themselves when they

become available.

API Gateway: This component acts as a single point of entry

for all incoming requests to the system. The API gateway

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6959

Article Received: 30 March 2023 Revised: 16 May 2023 Accepted: 31 May 2023

511

IJRITCC | June 2023, Available @ http://www.ijritcc.org

manages request routing to the appropriate services, handles

tasks like authentication, authorization, rate-limiting, caching,

and performs other necessary functions.

Message Bus: This is a messaging system enabling

asynchronous communication among services. Rather than

directly calling one another, services utilize the message bus to

exchange messages.

Load Balancer: The load balancer evenly distributes

incoming requests across multiple instances of a service. It

helps ensure system availability and responsiveness, especially

during periods of high load.

Database: Microservices are designed with loose coupling

in mind. Consequently, each service possesses its own

dedicated database, responsible for managing its own data. This

means that data stored within one service is not directly

accessible by other services.

Monitoring and Logging: Extensive monitoring and logging

are vital in a microservices architecture. These practices enable

the tracking of individual service health, performance, and

facilitate troubleshooting when issues arise.

These components collaborate to create a flexible, scalable,

and resilient architecture suitable for constructing large and

complex systems. However, it's important to note that the

implementation of a microservices architecture can vary based

on project requirements and the technologies employed.

Figure 1. Architecture of microservices

The microservices architecture consists of multiple

microservices that interact with each other through different

ports. An API gateway serves as a central entry point that

facilitates communication between the microservices and the

client. Without the API gateway, the client would need to call

each microservice independently, which would essentially treat

them as separate projects [12]. The client interacts with a single

URL, which represents the API gateway. The API gateway

takes care of routing the requests to the appropriate

microservices that access the backend services. In order to

handle fault tolerance, the system utilizes the Hystrix library,

which can manage situations when a service is unavailable.

This architecture incorporates the Eureka service discovery

pattern, where microservices can register themselves and be

discovered when needed. Communication between

microservices can occur through HTTP or by exchanging data

in the JSON format. To containerize the microservices

application, the process involves creating Docker images and

containers. This allows for the application to be packaged and

run in a containerized environment [13]. To deploy a

microservice application, it can be packaged into a Docker

container using a Dockerfile. IDEs or initializers are often used

to create microservice-based application. During the creation of

the microservice, only a REST API is typically required. Once

the application is set up, the respective paths are configured, and

the Docker console is initiated for deployment. Each

microservice is owned and maintained by a small, cross-

functional team, which is responsible for its development,

deployment, and operation. Microservices are designed with

loose coupling in mind, meaning they can function

independently without strong dependencies on other services.

They should be designed to be automatically deployable and

easily scalable in a continuous delivery environment.

Microservices should emit metrics, traces, and logs to provide

engineers with a comprehensive view of the system's current

state. Organizing a microservices architecture often involves

using a service registry. Services register themselves when they

start up and deregister when they shut down. Clients of the

services can then utilize the service registry to discover the

location of a service at runtime. Additionally, the service

registry can store metadata about the services, such as their

version, status, and health.

III. COMPARATIVE ANALYSIS OF VARIOUS HOSTING

ENVIORNEMNT

Microservice applications are implemented in a variety of

environments, including cPanel, virtual private servers, and

multiple cloud providers. Several parameters can be employed

to monitor the performance of these applications. Monitoring

parameters are utilized to assess and analyze the behavior of the

application within their specific cloud domains. Below some

parameters are shown with different environments.

Figure 2. Process Flow chart

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6959

Article Received: 30 March 2023 Revised: 16 May 2023 Accepted: 31 May 2023

512

IJRITCC | June 2023, Available @ http://www.ijritcc.org

Figure 2 illustrates the implementation flow, showcasing the

utilization of multiple services in the application, including

Product Service, Order Service, Notification Service, and

Inventory Service. These services communicate with each other

through both synchronous and asynchronous communication

methods. Additionally, there are stateless services that do not

interact with any databases. The Product Service leverages the

use of Lombok to minimize the amount of boilerplate code.

Furthermore, a NoSQL-based service has been established to

facilitate communication between different databases.

A. Setup application in Docker Environment.

Docker demonstrates minimal reliance on the underlying

operating system, offering flexibility and improved

performance by dynamically managing network traffic through

containers. Microservice applications in Docker utilize REST

APIs for setup, while the web-dependent features of REST

enhance microservices functionality. The Rest Controller

enables access to the World Wide Web (WWW). Maven

architecture facilitates the creation of JAR files. Docker

containers are highly portable and capable of running on any

system with Docker installed. This portability simplifies the

deployment of microservices across a wide range of platforms.

Leveraging Docker as part of a continuous delivery pipeline

allows for automated packaging and deployment of

microservices, thereby accelerating the release process.

Figure 3. Jar file creation in target location to deploy in docker with

maven

Figure 4. Creation of Docker image for Microservice

Figure 5. Docker setup in CLI

B. Setup application in Cloud Environment

Elastic container service provides us an environment to

deploy microservice. This container orchestration service is

fully managed. Without requiring any additional settings, ECS

allows the running of many Docker containers. The cloud offers

a variety of environments where applications can be deployed

and quickly scaled. The software used to set up this application

is entirely open source and is listed below.

Table 1. Shows Version Configuration of Microservices

Environment Name Version

Java 8+

Linux Kernel 5.10 AMI

Docker 21H2

Spring Boot 2.7.7(SNAPSHOT)

API REST

An Elastic computing cloud was set up with the following

hardware and network to access requests from the server.

Table 2: Shows Instance Configuration on cloud for microservice.

Storage 8 GB

RAM 8 GB

Private IP Yes

Public IP Yes

Protocols TCP(Anywhere)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6959

Article Received: 30 March 2023 Revised: 16 May 2023 Accepted: 31 May 2023

513

IJRITCC | June 2023, Available @ http://www.ijritcc.org

Figure 6. Shows status of instance running on elastic computing

cloud

Figure 7. Status of instance with public IP, private IP, Availability

zone and state of instance

In above Figure 7, Setup of instance had shown. An elastic

computer environment has been launched and running to

monitor the behavior of microservice in cloud environments.

Security protocols' inbound rules are configured to accept

incoming network requests from other networks. The behavior

of the microservice is examined in response to the incoming

request. CPU use demonstrates how application responds to

various network input requests.

Figure 8. Shows logs based on a given private IP in console provided

by elastic computing cloud.

System logs are generated to monitor the performance over

IP. and display the analytics which can be used further if

required as shown in Figure 8. Microservice is being analyzed

in multiple intervals via Cloud Watch monitoring such as 12

hours, 24 hours and 72 hours on scaling parameters. Three

parameters are used in this paper to monitor the performance.

1. CPU Utilization: The proportion of the instance's

assigned EC2 compute units that are currently in use This

measure shows how much processing power is needed to run a

particular application on a chosen instance [14].

Unit: Percent

CLI Command to test utilization:

aws cloudwatch get-metric-statistics --namespace

AWS/EC2 --metric-name CPUUtilization \

--dimensions Name=InstanceId,Value=i-

013e5b33f06dda2d1 --statistics Maximum \

--start-time 2022-11-21T16:00:00 --end-time 2022-11-

23T18:00:00 --period 360

 Above formula have been used to calculate CPU

utilization in aws CLI.

2. Network in: -The total amount of data that the instance

received across all network interfaces. This measure shows how

much network traffic is coming into a single instance[14].

Unit: Bytes

3. Network Out: -The total amount of bytes delivered

across all network interfaces by the instance. This measure

shows how much network traffic leaves a single instance [14].

Unit: Bytes

Figure 9. CPU utilization in 12 hours interval

Figure 10. CPU utilization in 24 hours interval

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6959

Article Received: 30 March 2023 Revised: 16 May 2023 Accepted: 31 May 2023

514

IJRITCC | June 2023, Available @ http://www.ijritcc.org

Figure 11. Result CPU utilization in 72 hours of interval

Figure 12. Result CPU utilization in maximum of interval

Figures 9, 10, 11, and 12 depict the application's monitoring,

which was done with Cloud Watch. varied time zones and

varied numbers of requests were used for the analysis of the

application. Requests from outside sources are inserted in

Network to analyse load, Response is generated simultaneously

in terms of Network-Out.

Table 3: Shows Configuration of Microservices on Docker

Container.

Storage 10 GB

RAM 8 GB

Private IP Yes

Public IP Yes

Protocols SSH and TCP

Docker is a containerization platform that allows packaging

an application and its dependencies in a container, which can

then be run on any machine with a Docker runtime [15]. This

can be especially useful when deploying microservices, as it

enables the independent operation of each service on a single

computer or across a fleet of servers by packaging each service

in its own container. Regardless of where a service is deployed,

Docker helps to ensure that the environment in which it is

running remains consistent. Due to the certainty that the process

will function uniformly regardless of the underlying

infrastructure, this makes applications easier to create, test, and

deploy to production [13]. Additionally, Docker had

horizontally expanded microservices by merely adding more

containers to the system. Both manual and a container

orchestration tool like Kubernetes can be used for this.

Figure 13. Shows deployment of microservices in Docker

environment

 and display CPU utilization.

IV. RESULT AND DISCUSSION

A. Performance of CPU in elastic cloud computing

This section examined the performance of a microservices-

based application in terms of CPU usage. Microservice

applications in an elastic cloud computing environment exhibit

a maximum CPU utilization of 23.33% on 106734510 network

input and 355398 network output. Multiple requests that came

across the network were used to calculate CPU performance,

and the results were displayed in network output. Based on this

request, the performance of the CPU is shown in the table

below.

Table 4: Shows performance of Micro services on AWS EC2

Duration CPU Utilization

(Percent)

Network In

(Bytes)

Network Out

(Bytes)

12 hours 8.7931034482757 193618 88.25

24 hours 8.7931034482757 193618 92871

72 hours 12.2950819672131 2506742 139993

Maximum 23.8333333333333 10673410 355398

Performance of application was analyzed on different time

interval and test CPU utilization. In the second phase of

implementation the same microservices deployed on container

and following result were generated.

Table 5: Shows performance of Microservices on Docker Container

Duration CPU

Utilization

(Percent)

Network In

(KB)

Network Out

(Bytes)

12 hours 3.795467 184.734 113.825

24 hours 4.765785 201.872 174.379

72 hours 8.90236 1953.258 1453.776

Maximum 17.3578 9564.102 7535.472

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6959

Article Received: 30 March 2023 Revised: 16 May 2023 Accepted: 31 May 2023

515

IJRITCC | June 2023, Available @ http://www.ijritcc.org

Tables 4 and 5 show that the CPU utilization of the application

is lower in a containerized environment. Due to Docker's

lightweight design, this container was set up with fixed RAM

and exhibits very low CPU utilization. The graphical

representation of CPU utilization is shown below. Based on the

outcome, flowing results were produced.

Figure 14. Shows CPU utilization duration and sum of network out in bytes.

Figure 15 Shows count of CPU utilization duration based on network count in

bytes.

Figure 16 Shows CPU utilization duration based on network out in bytes.

Figure 17 shows the count of CPU utilization duration based on network count

in kilobytes.

Figure 18 Shows sum of CPU utilization in regular time interval in cloud

environment

Figure 19 Shows sum of CPU utilization in regular time interval in

containerized environment.

In above figures, performance of CPU utilization was

observed in different time interval with different request over

Network-In and Network-Out in cloud and containerized

environment which can easily define that performance of

application is better in containerized environment. In Docker

request came in network is 9564.102(KB) and out is 7535.472

with CPU utilization is 17% while in cloud environment request

came in network is 10673410 and out is 355398 with CPU

utilization is 23%. All IP requests come under network Input

and accordingly network output was generated. In this paper,

we majorly focused on CPU Utilization and network utilization

at different time intervals to continuously monitor the

performance of applications.

V. FUTURE SCOPE

In this paper, the performance analysis microservice was

done with cloud and Docker environments. Elastic computing

environments were used in the cloud, and the same

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6959

Article Received: 30 March 2023 Revised: 16 May 2023 Accepted: 31 May 2023

516

IJRITCC | June 2023, Available @ http://www.ijritcc.org

implementation will be used in Kubernetes and AWS Fargate

services as well. Without the need for manual intervention,

serverless platforms may automatically scale microservices up

or down in response to demand. A high level of security is

provided by serverless platforms to internal safeguards

including network isolation and protected access controls. This

can aid in defending microservices against potential dangers

and weaknesses. To scale up an application in a Kubernetes and

Fargate environment for better results, a pipeline for continuous

integration and deployment can be built.

REFERENCES

[1] Al-Doghman, F., Moustafa, N., Khalil, I., Tari, Z. and Zomaya,

A., 2022. AI-enabled Secure Microservices in Edge

Computing: Opportunities and Challenges. IEEE Transactions

on Services Computing.

[2] S. N. Srirama, M. Adhikari, and S. Paul, “Application

deployment using containers with auto-scaling for

microservices in cloud environment,” J. Netw. Comput. Appl.,

vol. 160, no. February, p. 102629, 2020, doi:

10.1016/j.jnca.2020.102629.

[3] S. Chhabra and A. K. Singh, “A Probabilistic Model for Finding

an Optimal Host Framework and Load Distribution in Cloud

Environment,” Procedia Comput. Sci., vol. 125, pp. 683–690,

2018, doi: 10.1016/j.procs.2017.12.088.

[4] Kithulwatta, W.M.C.J.T., Jayasena, K.P.N., Kumara, B.T. and

Rathnayaka, R.M.K.T., 2022. Integration With Docker

Container Technologies for Distributed and Microservices

Applications: A State-of-the-Art Review. International Journal

of Systems and Service-Oriented Engineering (IJSSOE), 12(1),

pp.1-22.

[5] H. Xu and B. Li, “Dynamic Cloud Pricing for Revenue

Maximization,” IEEE Trans. Cloud Comput., vol. 1, no. 2, pp.

158–171, 2013, doi: 10.1109/TCC.2013.15.

[6] P. Jain, Y. Munjal, J. Gera, and P. Gupta, “Performance

Analysis of Various Server Hosting Techniques,” Procedia

Comput. Sci., vol. 173, no. 2019, pp. 70–77, 2020, doi:

10.1016/j.procs.2020.06.010.

[7] Telang, T., 2023. Containerizing Microservices Using

Kubernetes. In Beginning Cloud Native Development with

MicroProfile, Jakarta EE, and Kubernetes (pp. 213-230).

Apress, Berkeley, CA.1.

[8] Bao, L., Wu, C., Bu, X., Ren, N. and Shen, M., 2019.

Performance modeling and workflow scheduling of

microservice-based applications in clouds. IEEE Transactions

on Parallel and Distributed Systems, 30(9), pp.2114-2129.

[9] Saman, B., 2017. Monitoring and analysis of microservices

performance. Journal of Computer Science and Control

Systems, 10(1), p.19..

[10] Coulson, N.C., Sotiriadis, S. and Bessis, N., 2020. Adaptive

microservice scaling for elastic applications. IEEE Internet of

Things Journal, 7(5), pp.4195-4202..

[11] Cerny, T., Donahoo, M.J. and Trnka, M., 2018. Contextual

understanding of microservice architecture: current and future

directions. ACM SIGAPP Applied Computing Review, 17(4),

pp.29-45.

[12] Adibatti, S. ., Sudhindra, K. R. ., & Manisha S., J. . (2023). 3

Phase Atrous Net with DCO-3DSPMRINET Model for

Scoliosis Prediction. International Journal of Intelligent

Systems and Applications in Engineering, 11(1), 79–91.

Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/2446.

[13] Montesi, F. and Weber, J., 2016. Circuit breakers, discovery,

and API gateways in microservices. arXiv preprint

arXiv:1609.05830.

[14] Wan, X., Guan, X., Wang, T., Bai, G. and Choi, B.Y., 2018.

Application deployment using Microservice and Docker

containers: Framework and optimization. Journal of Network

and Computer Applications, 119, pp.97-109.

[15] https://docs.aws.amazon.com/AWSEC2/latest

UserGuide/viewing_metrics_with_cloudwatch.html

[16] Manu, A.R., Patel, J.K., Akhtar, S., Agrawal, V.K. and

Murthy, K.B.S., 2016, March. A study, analysis and deep dive

on cloud PAAS security in terms of Docker container security.

In 2016 international conference on circuit, power and

computing technologies (ICCPCT) (pp. 1-13). IEEE.

[17] Jaramillo, D., Nguyen, D.V. and Smart, R., 2016, March.

Leveraging microservices architecture by using Docker

technology. In SoutheastCon 2016 (pp. 1-5). IEEE..

[18] Stubbs, J., Moreira, W. and Dooley, R., 2015, June. Distributed

systems of microservices using docker and serfnode. In 2015

7th International Workshop on Science Gateways (pp. 34-39).

IEEE.

[19] Alam, M., Rufino, J., Ferreira, J., Ahmed, S.H., Shah, N. and

Chen, Y., 2018. Orchestration of microservices for iot using

docker and edge computing. IEEE Communications

Magazine, 56(9), pp.118-123.

[20] Singh, S. and Singh, N., 2016, July. Containers & Docker:

Emerging roles & future of Cloud technology. In 2016 2nd

international conference on applied and theoretical computing

and communication technology (iCATccT) (pp. 804-807).

IEEE.

[21] Baresi, L., Quattrocchi, G. and Tamburri, D.A., 2022.

Microservice Architecture Practices and Experience: a Focused

Look on Docker Configuration Files. arXiv preprint

arXiv:2212.03107.

[22] Al-Debagy, O. and Martinek, P., 2018, November. A

comparative review of microservices and monolithic

architectures. In 2018 IEEE 18th International Symposium on

Computational Intelligence and Informatics (CINTI) (pp.

000149-000154). IEEE.

http://www.ijritcc.org/

