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Abstract— The objective of AI-based resume screening is to automate the screening process, and text, keyword, and named entity 

recognition extraction are critical. This paper discusses segmenting resumes in order to extract data and perform text analysis. The raw CV file 

has been imported, and the resume data cleaned to remove extra spaces, punctuation and stop words. To extract names from resumes, regular 

expressions are used. We have also used the spaCy library which is considered the most accurate natural language processing library. It includes 

already-trained models for entity recognition, parsing, and tagging. The experimental method is used with resume data sourced from Kaggle, 

and external Source (MTIS). 
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I.  INTRODUCTION 

Resume/CV is extracted from the given document using 

natural language processing with complex patterns / language 

analysis techniques. It is a method of converting unstructured 

information from unknown resumes provided to a structured 

target. Typically, this process converts pdf, doc and docx type of 

files, as all companies accepts these types of files as resume, into 

structured data format. To understand human language and 

automate processes, AI and NLP technologies have been used. 

Semantic search is used by resume parsers to understand the 

resume data and screening criteria is applied to find the 

shortlisted candidate. The extraction of an indigenous language 

is a complex process because indigenous languages are 

extremely different as well as incomprehensible. Because text 

forms like resumes are written and interpreted by “n” number of 

ways, the analytical tool should be able to capture it using 

complex rule engine and mathematical algorithms. There are 

many instances where the same word would mean different 

things in different contexts, there is ambiguity that needs to be 

handled in the parsing tool. A few digit number in the resume/cv 

can be part of phone, address, email etc. As a result, the idea 

behind training a machine is to analyze the context of documents 

written as if by a person. 

Hiring agencies use analytics system to streamline the 

process and cut down on hiring time for employers. The resume 

launcher automatically categorizes information based on the 

conditions found in CV/resume, which contains personal details 

like candidate name, address, email, phone, experience like 

companies worked, start-end date, designation, education 

details, hobbies and so on [1]. Resumes can be written in a 

variety of ways, making it difficult for online recruitment 

companies to store this information in relational databases. In 

this study, Kariyer.net (Turkey's largest online recruitment 

website) and TUBITAK (Turkey's Scientific and Technological 

Research Council) proposed a system that allows free structured 

resume formats to be transformed into an ontological structure 

model. [2] 

The specific information from free text sources is extracted 

and the process is called as “information extraction”. Sentence 

segmentation or sentence boundary detection is used to divide 

textual information into sentences [3]. The rule-based AI method 

[4] for subdivision employs list of punctuation like '; ', '?', '.' and 

so on, but it doesn’t work when it finds contractions like 'e.g.', 

'etc.', 'n.d.' and so on. The supervised machine learning approach 

was implemented to classify punctuation marks. It uses decision 

tree to build sentence boundaries to categorize punctuation [5]. 
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The supervised AI and ML model builds large amounts of 

training and contraction knowledge [3]. Kiss and Strunk 

proposed a type-based classification approach for unsupervised 

machine learning. This method analyses a word throughout the 

text and annotates it with sentence boundary and abbreviation 

annotation [3]. 

Tokenization is the process by which the application splits a 

line of resume into tokens after segmenting the sentence 

boundaries [21-22]. Several tokenization approaches, including 

rule-based and statistical approaches, have been discussed in the 

paper. A rule-based tokenizer like the “Penn Tree Bank” 

tokenizer (PTB) [6], applies a set of rules to classify tokens. 

Hidden Markow Model (HMM)s [7] are used in the statistical 

approach to classify “word” and “sentence boundaries” [8]. 

Tokenization is accomplished through the use of scan and the 

“HMM Boundary” detector modules. 

To determine the sense from a word, “part of speech” (POS) 

tagging techniques like “Penn Treebank Tagset” (PTT) [6] and 

the “CLAWS 5 (C5)” Tagset [9] to be used. The “Name Entity 

Recognition” (NER) is one of the very important task in 

information extraction because it understands names of entities 

such as candidate names, companies worked at etc. [10].  

The structure of the remaining paper has various sections; 

section 2 discusses the methodology. Section 3 explains results 

and step wise implementation. Finally, section 4 concludes the 

paper. 

II. METHODOLOGY 

Text analysis is an AI and NLP learning technique that 

allows businesses to analyse unstructured text data like 

resume/CV analysis [11]. It is commonly used in the screening 

of resumes. Further, “Text classification” used for mapping pre-

defined tags to random text. It is regarded as important process 

for dealing with natural language because it is versatile and can 

edit, edit, and parse any type of text to bring logical facts and 

issue resolution. NLP i.e., Natural Language Processing is a sub 

system of AI and Machine learning, where system can decipher 

as well as comprehend text in the same way that humans do. The 

sentiment analysis scans and classifies text for polarity (positive, 

negative, or neutral) and beyond using sophisticated machine 

learning algorithms. This method is concerned with the author's 

moods, emotions, context, and sarcasm. Topic analysis is also 

useful in text classification, which organises text by topic or 

subject. Intent classification is used to understand the intent 

rather than looking for literal meaning [10]. 

On the other hand, cluster analysis is a method of organising 

a collection to identify and classify based on the similarity within 

the group. It is a common mathematical data analysis process 

that is used in a variety of industries like pattern identification, 

bio-metric based recognition, text analysis etc. [12]. Text 

collections can interpret and collect large amounts of unrelated 

information. Compilation algorithms are faster to use than 

classification algorithms because we don't have to label models 

for training, despite being less accurate. Unsupervised learning 

machines are intelligent data for algorithms which helps in 

predicting results without training data. 

At the basic, token making is used for dividing a string of 

letters into logical blocks which is analysed while removal of 

useless data. Building tokens is important for text data 

processing. Tokens for all words or tones in a sentence [13]. It 

separates the various objects in a sentence by the word border 

such as tokens. Basically, it is the same as the separation of 

words. Eg: Python is a Programing Language 

“Python”, “is”, “a”, “Programing”, “Language" 

It provides various tokens with varying values.  

Now the question arises in mind that why is Tokenization 

required when dealing with Indigenous Languages? Definitely, 

before we can process natural language, we must first identify 

the words that comprise the strings. This is why creating tokens 

is a fundamental step forward in NLP (text data). This is 

significant because analyzing the text beforehand allows the 

meaning of the text to be easily interpreted. 

Once the tokens have been received, they must be classified. 

There is a half-speech tagging, in which a program category like 

noun or action is mapped to received tokens. Part of the process 

of marking a speech is translating a sentence into list of words 

and a list of rows. The basic foundation of marking that is part 

of speech is automatic tagging. This is accomplished through the 

use of the Default Tagger section. In the Default Tagger section, 

'tag' is treated as a single argument. The singular noun tag NN 

works with most common part of speech tag, Default Tagger 

comes in handy. As a result, a name tag is advised.  

The tokens when separated from the language model, the 

system can now generate complex textual presentations for 

analysis. This is referred to as analysis. Separation refers to the 

process of determining the structure of a text. The mathematical 

algorithm accomplishes this by utilizing the grammar in which 

the text is written.  

Further, dependency parsing means the language that 

establishes a direct relationship between words or sentences is 

known as dependent grammar. The process of using dependency 

grammar to prevent my own sentence formation is known as 

dependency parsing [14-15]. Various tags in Dependency 

Separation indicate the relationship between two words in a 

sentence. These tags are dependent on one another. In the 

sentence 'rain,' for example, the word rainy modifies the 

meaning of the noun weather. As a result, there is dependence 
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on weather conditions -> it rains when the weather acts as the 

head and the rain acts as a dependent or child. The amod tag, 

which represents the adjectival modifier, represents this 

dependency. 

The structure of grammatical structures is a model of usage 

that employs unambiguous nodes with respect to words and 

other incomprehensible categories and their indirect 

relationships. The method of identifying sentence structure using 

a constituency grammar is referred to as regional segregation. 

[16] 

The membrane removal and membrane formation are for 

removing all conjunctions like suffixes, prefixes, etc. used in the 

word in order to preserve lexical structure. It is also regarded as 

root/stem/dictionary or lemma form. The key difference between 

the two processes is that the stem is generally rule based, that 

reduce the beginnings and endings of words , while 

lemmatization uses dictionaries and very complex behavioral 

analysis. [13] 

To provide an accurate automatic text analysis, we must 

eliminate words which are not relevant for semantic information 

and are meaningless. These words are also termed as stop words 

like a, or, and, the, and so on [11]. In every language, there are 

numerous lists of stop words. However, it is critical to 

understand that depending on the text to be analyzed, we may 

need to add or remove words from the list. To determine which 

words should be included in the list of stop words, we may want 

to conduct an open-ended analysis of the content of our texts. 

We know that informal text analysis is unreliable. There are 

methods for textual analysis, but the two most critical ones are 

“text classification” and “text extraction”. Text classification is 

the process of classifying tags as texts based on their content and 

Text-splitting earlier used to be done by hand, which was very 

time-consuming, inefficient, and inaccurate. Now automated 

text-analysis models work in seconds and with great accuracy. 

A. Text Classification 

The text classification functions include attributes for emotional 

analysis like if it conveys positive or negative impression, topic 

discovery to get the details about topic and objective discovery 

i.e determining the main purpose or objective of a text. 

a) Rule based Systems 

The separation of given text data and law is a man-made 

relationship between a language pattern found in text and tags. 

The rules typically refer to lexical, morphological or syntactic 

patterns, Semantics or phonology are the other aspect that can be 

referred. 

 

Example of product differentiation:  

(C ++ | Java | Python | R) → Editing Language 

The benefits of legal-based programs are easy for humans to 

understand them. However, developing complex legal 

applications requires significant knowledge of both languages as 

well as the topics in the literature that the system must analyze. 

Furthermore, legislation-based programs are tough to 

measure and sustain because new rules get introduced or any 

change in existing rules necessitates extensive impact. 

b) Machine Learning-Based Systems  

Machine Learning based systems learn from previous 

observations and data to predict the results. The programs 

require many text examples as well as predictable expectations. 

This is known as training data. The final predictions will be 

much better if our training details are consistent and accurate. 

When using machine learning to train a division, the training 

data must be converted into something that the machine can 

comprehend, like vectors i.e., a list of numbers that contain data. 

The system can excerpt applicable topographies from current 

data and make forecasts for future data by using vectors. There 

are several approaches to this, but one of the most common is 

vectorization. After text conversion into vectors, a machine 

learning algorithm is applied on top of it, which should produce 

a segmentation model capable of determining which features 

represent texts more accurately and performing predictive text 

forecasts. The trained model is applied to unknown data text to 

a vector, performs feature extraction, and predicts data with 

Model Classification [14]. 

c) Machine learning algorithms  

Few of the machine learning methods has been applied for 

text classification. The Naive Bayes algorithms SVM (Support 

Vector Machines) referred in Figure 1. This in-depth learning 

algorithm that is very widely used. [14] 

Naive Bayes algorithm family is built on top of Bayes' Theorem 

and conditional obligations for the appearance of sample text 

names within a set of tagged text. Vectors representing 

documents include information about how text words can appear 

in the tags provided. The writing possibilities of any mark given 

to the model can be calculated using this information. The 

possible outcomes are included in the provided document, the 

marker with the highest probability as the output is returned by 

the segmentation model for the provided inputs [14]. This 

algorithm provides good results even with less training data. 
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Figure 1.  Support Vector Hyperplanes 

Support Vector Hyperplanes (SVM) results are better 

compared to Naive Bayes, however, it requires high resources in 

training shown in Figure 1. 

There is another algorithm that is very popular, that uses 

artificial neural networks to process data in a similar manner that 

the human brain does. The neural network uses a large amount 

of training data and uses extensive resource during training and 

perform excellently in predicting results [18] 

B. Hybrid Systems 

Hybrid Machine Learning typically is combination of 

machine learning and rule-based systems for better prediction 

[15]. Classifier performance is frequently evaluated using 

machine learning industry standard metrics such as correctness, 

meticulousness, memory, and F1-score. Comprehending the 

result will provide a clear picture of the effectiveness of classifier 

[16] for analysing the provided text data. [17] 

The testing is done with limited test data, through cross-

verification is required on the expectation from the result. 

The process of knowing the edited pieces of information 

from an unavailable text is referred to as text extraction. It may 

be useful to automatically find keywords that are more relevant 

for analysing and predicting the text data like resume/CV. 

The rules defined in the classification functions are followed 

by common expressions (regexes). The common denominator in 

this case describes the pattern recognition. 

This approach has pros and cons, while text extractors are 

fast and accurate with the known patterns on the other hand, it 

can be had for maintenance as anytime there is change of rules, 

it needs to be updated otherwise results will be incorrect.  

C. Open-source library/API 

The text analysis solutions are available in the form of open 

source library as well as software as a service APIs. The library 

usage needs good technical understanding, while software as a 

service provides faster text analysis solution. 

a) Python 

Python is one of the best and very widely used computer 

programming language. NumPy and SciPy have ability to call C 

and Fortran libraries whenever required. It has great community 

support and has number of libraries to support data science and 

natural language processing (NLP), which has helped Python to 

become one of the most popular scripting languages. 

b) NLTK 

Natural Language Toolkit library also called as NLTK, is a 

cutting-edge library of analysing text. Using the Rapid 

Automatic Keyword Extraction Rake algorithm and the NLTK 

tool kit, you can create a powerful keyword extraction tool. 

Known as Rake NLTK. 

c) SpaCy 

SpaCy is a statistical NLP library for industry. It enhances 

the standard features by combining in-depth learning with 

multimedia neural network models. Spacy is a free and open 

library that makes use of Natural Language Development (NLP) 

[18]. It is written in Python and Cython and is especially useful 

for applications that require text comprehension. It is used in 

deep reading to process text (Machine Learning section). SpaCy, 

in contrast to NLTK text-based library. 

d) Scikit-learning 

Skikit-learning is an advances Python Data science and ML 

library built on top of SciPy, NumPy and matplotlib, that 

provides very good performance in building text-based analysis 

models. 

D. High Level Design 

The Artificial intelligence-based resume parser provides user 

the ability to upload a file, and based on the type of the file 

uploaded, it applies text extraction by calling the appropriate 

API like reading from PDF or from word format. The text is 

extracted and transformed further by applying various 

techniques like tokenization, cleansing by removing stop words. 

Further, a hybrid approach of rule based and NLP based 

algorithm is applied to extract specific information. As an end 

state, the extracted content is matched against the resume 

description and cosine similarity and cosine distance algorithms 

are used to derive the prediction. Figure 2, explains the high-

level design. 
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Figure 2.  Resume Parser using AI/NLP: System Design 

III. RESULTS AND DISCUSSION  

A. Pilot implementation through Python 

This section will go over the step-by-step pilot 

implementation in Python [19]. 

a) Pre-processing 

The resume is provided as input in this process and is cleaned 

to eliminate any unusual or jumble characters. All unusual 

characters and single-letter words like ‘a’, ‘.’ etc. are removed 

during cleaning. Following these steps, a clean dataset is 

obtained. It is further tokenized using NLTK tokenizers [20]. 

Stop-word removal along with stemming, and lemmatization are 

some of the pre-processing steps used on tokenized datasets. The 

raw CV file is imported, and the resume/CV content data is 

cleansed. The System design of Resume parser is shown in 

Figure 2. 

b) Reading the Resume 

The critical issue with CV/Resumes is that they are not in 

structured form and there is no standard file format, like 

.pdf,.doc, or.docx. So, our first step is to convert the CV into 

plain text irrespective of the format. We have used mainly two 

Python modules for this: PyMuPDF and doc2text. These 

modules help in the extraction of text from.pdf,.doc, and.docx 

file formats.  

c) Python code to extract text from PDF 

import sys, fitz 

""" 

pip install PyMuPDF 

This PyMuPDF library works better than PyPDF2, tested with all types of PDF 

extract_text_from_doc function extracts the text of the given resume Library is 

developed as part of research project in Usha Martin University 

Usage:read_text_from_pdf API needs filename as input parameter 

Output: Text content retrieved from the resume file passed 

""" 

def read_text_from_pdf(filename): 

    document = fitz.open(filename) 

    temp_resume_text = "" 

    for resume_pg in document: 

        temp_resume_text=temp_resume_text + 

str(resume_pg.get_text()) 

    tx = " ".join(temp_resume_text.split('\n')) 

    return tx 

resume_content =read_text_from_pdf('Resume-Arvind.pdf') 

print(resume_content)  

Output: It is shown in Figure 3. 

 

 

Figure 3.  Shows the tools screen to upload resume 

d) Reading doc and docx to get the resume text content: 

import docx2txt 

import re 

""" 

extract_text_from_doc function extracts the text of the given 

resume 

Library is developed as part of research project in Usha 

Martin University 

Usage:read_resume_with_doc_extension API needs 

filename as input parameter 

Output:Text content retrieved from the resume file passed 

""" 

def read_resume_with_doc_extension(filename): 

    print('Reading MS Word file') 

    temp = docx2txt.process(filename) 

    resume_content = [rows.replace('\t', ' ') for rows in 

temp.split('\n') if rows] 

    return ' '.join(resume_content) 
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resumeContent = 

read_resume_with_doc_extension(Arvind.docx') 

print(resumeContent) 

Partial Output is shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Partial Output 

e) Extracting Name 

Regular expressions can be used to extract names from 

resumes. However, we have employed natural language 

processing library for text, spaCy. It is a text processing module 

with industrial-strength natural language processing. It includes 

models for tagging, parsing, and entity recognition that have 

already been trained. 

Installing spaCy 

The command to install spaCy is shown below 

pip install spacy 

python -m spacy download en_core_web_sm 

import spacy 

from spacy.matcher import Matcher 

import docfilereader as docr 

"""Load a spaCy model from an installed package or a local 

path. 

extract_candidate_name function extracts the name of a 

candidate from 

the resume content passed to it 

Library is developed as part of research project in Usha 

Martin University 

 

Usage:get_candidate_name API needs resume content(text 

data) as input parameter 

Output: Name of the candidate is extracted from the resume 

content passed in form of text 

""" 

nlp_for_ne = spacy.load('en_core_web_sm') 

spacy_matcher = Matcher(nlp_for_ne.vocab) 

def get_candidate_name(resume_content_data): 

    print(resume_content_data) 

    nlp_text = nlp_for_ne(resume_content_data) 

    # to get name out of the resume content 

    ne_pattern = [{'POS': 'PROPN'}, {'POS': 'PROPN'}] 

    spacy_matcher.add('NAME', [ne_pattern]) 

    name_found = spacy_matcher(nlp_text, as_spans=True) 

    print(name_found[0]) 

    return name_found[0] 

resume_content = 

docr.read_resume_with_doc_extension(Arvind.docx') 

candidate_name = get_candidate_name(resume_content) 

print("Candidate Name : " + str(candidate_name))  

Output: It is shown in Figure 5. 

Candidate Name: Arvind Kumar 

 
Figure 5.  Shows the name extraction from resume 

f) Extracting Phone Numbers 

We have used regular expressions to extract phone numbers. 

Phone numbers can also be written as (+91) 1234567890, 

+911234567890, +91 123 456 7890, or +91 1234567890. As a 

result, regular expression can be used to get the phone number 

of the candidate. 

 

Arvind Kumar Sinha Senior IT professional, seeking an impactful 
leadership role Location:  Hyderabad, India Mobile: +919985122370 
Email:  arvi_k_rnc@yahoo.co.in SUMMARY • Technology professional 
with 18+ years of working experience in technology industry  
predominantly for Banking & Financial Services sector.  • Proven track 
record of leading full life cycle projects/programs of large scale, complex  
distributed systems across digital channels viz web, mobile & content 
management.  • ‘Hands on’ technologist capable of hiring, managing 
high performing technical teams; delivery  under stringent conditions of 
cost & quality.  • Demonstrated ability to work with cross functional 
teams to define product propositions,  technology vision, strategies, 
architecture roadmaps and business cases in line with  organizational 
goals. • Proven expertise in building operating model, execution 
strategies to enable reliable and cost  effective delivery across 
onsite/offshore teams. Considerable working experience in US &  
Singaporean markets. • Strategic and creative thinker; skilled in 
positioning solutions, technology, delivery options to  Senior Executives. 
• Pursuing research scholar program(PHD) on Machine learning 
AREAS OF EXPERTISE: Consumer Banking, Payments,  Liquidity 
Management Enterprise Architecture, Design Patterns, Frameworks 
(Struts, Spring), Web services, Micro-services, CI/CD  pipeline, Netflix 
OSS  Investment Banking and Asset  management Delivery management 
adopting agile practices  (Scrum, Kanban), tooling (Atlassian stack, 
Jenkins)  Java Stack Cloud services like AWS.  EMPLOYMENT 
HISTORY J.P Morgan Chase, Hyderabad, India Vice President – 
Corporate Technology, June-2019 to Present Key 
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import re 

import docfilereader as docr 

""" 

extract_mobile_number function extracts the mobile number 

of the given candidate  

from the given resume 

Library is developed as part of research project in Usha 

Martin University 

Usage:get_candidate_mobile_number API needs resume 

content(text data) as input parameter 

Output:Mobile number of the candidate is extracted from the 

resume content passed in form of text 

""" 

mobile_no = "" 

def get_candidate_mobile_number(resume): 

 #standard reg ex is used to fetch mob no 

    mobile_no = re.findall(re.compile( 

        r'(?:(?:\+?([1-9]|[0-9][0-9]|[0-9][0-9][0-9])\s*(?:[.-

]\s*)?)?(?:\(\s*([2-9]1[02-9]|[2-9][02-8]1|[2-9][02-8][02-

9])\s*\)|([0-9][1-9]|[0-9]1[02-9]|[2-9][02-8]1|[2-9][02-8][02-

9]))\s*(?:[.-]\s*)?)?([2-9]1[02-9]|[2-9][02-9]1|[2-9][02-

9]{2})\s*(?:[.-]\s*)?([0-

9]{4})(?:\s*(?:#|x\.?|ext\.?|extension)\s*(\d+))?'), 

        resume) 

    if mobile_no: 

        cand_ph_n = ''.join(mobile_no[0]) 

        if len(cand_ph_n) > 10: 

            return '+' + cand_ph_n 

        else: 

            return cand_ph_n 

resume_content = 

docr.read_resume_with_doc_extension("Arvind.docx") 

num = get_candidate_mobile_number(resume_content) 

print('Mobile Number : ' + num) 

Output: It is shown in Figure 6. 

 

 

Figure 6.  Mobile Number 

 

g) Extracting Email 

We can use the same method we used to extract mobile 

numbers to extract email addresses from resumes. Email 

addresses have a known pattern, and regular expression provides 

good result. 

import re 

import docfilereader as docr 

""" 

extract_email function extracts the email of the given 

candidate from the resume 

Library is developed as part of research project in Usha 

Martin University 

Usage:get_candidate_mobile_number API needs resume 

content(text data) as input parameter 

Output: Email address of the candidate is extracted from the 

resume content passed in form of text 

""" 

def extract_email(resume): 

    candidate_em = 

re.findall("([^@|\s]+@[^@]+\.[^@|\s]+)", resume) 

    if candidate_em: 

        try: 

            return candidate_em[0].split()[0].strip(';') 

        except IndexError: 

            return "" 

resume_content = 

docr.read_resume_with_doc_extension("Arvind.docx") 

email = extract_email(resume_content) 

print("Email Address extracted:"+email) 

Output: It is shown in Figure 7. 

 

 

Figure 7.  Email Address 

h) Extracting Skills 

import pandas as pd 

import nameextractor as ne 

import docfilereader as docr 

import spacy 

Mobile Number: 9985122370 

 

Email Address extracted: arvi_k_rnc@yahoo.co.in 
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"""Load a spaCy model from an installed package or a local 

path. 

extract_candidate_name function extracts the name of a 

candidate from 

the resume content passed to it 

Library is developed as part of research project in Usha 

Martin University 

Usage:get_candidate_skills API needs resume content(text 

data) as input parameter 

Output: Skills of the candidate is extracted from the resume 

content passed in form of text 

""" 

nlp_skill = spacy.load('en_core_web_sm') 

def get_candidate_skills(resume_comtent_skills): 

    content = nlp_skill(resume_comtent_skills) 

    noun_chunks = content.noun_chunks 

    nominal = [nom.text for nom in content if not 

nom.is_stop] 

    print(nominal) 

    # 

    data = pd.read_csv("allskills.csv") 

    candidate_skills = list(data.columns.values) 

    all_av_skills = [] 

    for token in nominal: 

        if token.lower() in candidate_skills: 

            all_av_skills.append(token) 

    for token in noun_chunks: 

        token = token.text.lower().strip() 

        if token in candidate_skills: 

            all_av_skills.append(token) 

    return [i.capitalize() for i in set([i.lower() for i in 

all_av_skills])] 

resume_content = 

docr.read_resume_with_doc_extension(Arvind.docx') 

skills = get_candidate_skills(resume_content) 

print("Skills of the candidate : " + str(skills))  

Output: It is shown in Figure 8. 

 

 

 

 

 

Figure 8.  Skills of the Candidate 

i) Extracting Education 

Moving on to the final step, we have extracted candidate's 

education information. The specific details that we will be 

obtaining are grade and year of degree. We have used the nltk 

module to load an entire list of stopwords and then remove them 

from our resume text. 

Installing nltk: 

pip install nltk 

python -m nltk nltk.download('words') 

Recruiters are very specific about the level of education or 

degree required for a specific job. As a result, we will be 

preparing a list of EDUCATION that will specify all of the 

equivalent degrees that are required. 

import re 

import spacy 

import nameextractor as ne 

from nltk.corpus import stopwords 

import docfilereader as docr 

import pandas as pd 

"""Load a spaCy model from an installed package or a local 

path. 

extract_candidate_education function extracts the education 

of a candidate from 

the resume connect passed to it 

Library is developed as part of research project in Usha 

Martin University 

Usage:get_candidate_mobile_number API needs resume 

content(text data) as input parameter 

Output: Email address of the candidate is extracted from the 

resume content passed in form of text 

""" 

nlp_qualification = spacy.load('en_core_web_sm') 

# Grad all general stop words 

Skills of the Candidate: ['Administration', 'Design', 'Api', 
'Analysis', 'Routing', 'Access', 'Writing', 'Data analysis', 'Reporting', 
'Lifecycle', 'Reports', 'Analytical', 'Schedule', 'Database', 'Sql', 
'Website', 'Cloud', 'Process', 'Modeling', 'Big data', 'Warehouse', 
'Email', 'Windows', 'Sql server', 'Js', 'Analytics', '.net', 'Communication', 
'Data analytics', 'Technical', 'Transactions', 'Sap', 'C', 'Metrics', 'Etl'] 
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STOPWORDS_IN_RESUME = 

set(stopwords.words('english')) 

def get_candidate_education(resume_content_qual): 

    nlp_qual = nlp_qualification(resume_content_qual) 

    nlp_qual.sents 

    candidate_education = pd.read_csv("degree.csv") 

    CANDIDATE_QUAL = list(candidate_education) 

    nlp_qual = [qual_s.text.strip() for qual_s in 

nlp_qual.sents] 

    edu = {} 

    for idx, txt in enumerate(nlp_qual): 

        for tex in txt.split(): 

            tex = re.sub(r'[?|$|.|!|,]', r'', tex) 

            if tex.upper() in CANDIDATE_QUAL and tex not in 

STOPWORDS_IN_RESUME: 

                edu[tex] = txt + nlp_qual[idx] 

    qual = [] 

    for pk in edu.keys(): 

        yop = re.search(re.compile(r'(((20|19)(\d{2})))'), 

edu[pk]) 

        if yop: 

            qual.append((pk, ''.join(yop[0]))) 

        else: 

            qual.append(pk) 

    return qual 

resume_content = 

docr.read_resume_with_doc_extension(Arvind.docx') 

education = get_candidate_education(resume_content) 

print("Education of the Candidate : " + str(education)) 

Output: It is shown in Figure 9. 

 

 

Figure 9.  Education of the Candidate 

Code Available at GitHub: 

https://github.com/arvindindia123/ResumeParser 

https://github.com/arvindindia123/ResumeParserUI 

 

B. Findings 

This paper discusses segmenting resumes in order to extract 

data and perform text analysis. Python is used to demonstrate the 

step-by-step pilot implementation. The pilot implementation 

accepts the resume in PDF/Doc format and is cleansed as part of 

first step to remove stop-words, punctuations etc. Cleansing and 

removing unnecessary content is the first and critical step to 

perform natural language processing. The raw CV file was 

imported, and the resume field data was cleansed to remove extra 

spaces and numbers in the date. To extract names from resumes, 

regular expressions are used. However, we have also used spaCy 

library which is considered the most accurate natural language 

processing library. Spacy is an industrial-strength natural 

language processing text and language processing module. It 

includes already trained models for entity recognition, parsing, 

tagging etc. Regular expressions were also used to extract phone 

numbers and emails. Email IDs have a consistent format: an 

alphanumeric string followed by a @ symbol, another string, a. 

(dot), followed by a string (com, in, org etc.). Furthermore, the 

candidate's educational information is extracted, as well as 

qualification and passing year. For example, if candidate 

completed PhD in 2022, we extracted a row that looks like (PhD, 

'2022'). All stop-words must be removed as a result of this. The 

NLTK module was used to load an entire list of stop-words and 

then remove from our resume text for further processing. 

The application using hybrid approach of AI and regular 

expression, which makes it unique. It has achieved 93.5% 

accuracy in text-extraction which improves the accuracy by 

19.5% compared to CNN models. 

IV. CONCLUSION  

In this paper, we have demonstrated the step-by-step pilot 

implementation of resume parsing using Python. The resume is 

provided as input in this process and is cleaned to remove any 

unusual or junk characters. The CV file is imported, and based 

on PDF or MS word, appropriate read method is called to get the 

CV content in text format. It was cleansed to remove extra 

spaces and dates along with removal of stop-words which 

doesn’t add value in decision making. Hybrid approach has been 

adopted, where in trained models are used along with rule based 

regular expression approach in different scenario. This resume 

parse will further be used for decision making of screening of a 

candidate against the given job description. 
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