
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6945

Article Received: 30 March 2023 Revised: 19 May 2023 Accepted: 01 June 2023

391

IJRITCC | June 2023, Available @ http://www.ijritcc.org

Break Down Resumes into Sections to Extract Data

and Perform Text Analysis using Python

Arvind Kumar Sinha1, Md. Amir Khusru Akhtar2, Mohit Kumar3
1Faculty of Computing and IT

Usha Martin University

Ranchi, India

passionarvind@gmail.com
2Faculty of Computing and IT

Usha Martin University

Ranchi, India

akakhtar.2020@gmail.com
3Department of Information Technology

MIT Art, Design and Technology University

Pune, India

mohitsmailbox13@gmail.com

Abstract— The objective of AI-based resume screening is to automate the screening process, and text, keyword, and named entity

recognition extraction are critical. This paper discusses segmenting resumes in order to extract data and perform text analysis. The raw CV file

has been imported, and the resume data cleaned to remove extra spaces, punctuation and stop words. To extract names from resumes, regular

expressions are used. We have also used the spaCy library which is considered the most accurate natural language processing library. It includes

already-trained models for entity recognition, parsing, and tagging. The experimental method is used with resume data sourced from Kaggle,

and external Source (MTIS).

Keywords- Resume Parser, Text Analysis, text classification, python, regular expressions, tagging, parsing.

I. INTRODUCTION

Resume/CV is extracted from the given document using

natural language processing with complex patterns / language

analysis techniques. It is a method of converting unstructured

information from unknown resumes provided to a structured

target. Typically, this process converts pdf, doc and docx type of

files, as all companies accepts these types of files as resume, into

structured data format. To understand human language and

automate processes, AI and NLP technologies have been used.

Semantic search is used by resume parsers to understand the

resume data and screening criteria is applied to find the

shortlisted candidate. The extraction of an indigenous language

is a complex process because indigenous languages are

extremely different as well as incomprehensible. Because text

forms like resumes are written and interpreted by “n” number of

ways, the analytical tool should be able to capture it using

complex rule engine and mathematical algorithms. There are

many instances where the same word would mean different

things in different contexts, there is ambiguity that needs to be

handled in the parsing tool. A few digit number in the resume/cv

can be part of phone, address, email etc. As a result, the idea

behind training a machine is to analyze the context of documents

written as if by a person.

Hiring agencies use analytics system to streamline the

process and cut down on hiring time for employers. The resume

launcher automatically categorizes information based on the

conditions found in CV/resume, which contains personal details

like candidate name, address, email, phone, experience like

companies worked, start-end date, designation, education

details, hobbies and so on [1]. Resumes can be written in a

variety of ways, making it difficult for online recruitment

companies to store this information in relational databases. In

this study, Kariyer.net (Turkey's largest online recruitment

website) and TUBITAK (Turkey's Scientific and Technological

Research Council) proposed a system that allows free structured

resume formats to be transformed into an ontological structure

model. [2]

The specific information from free text sources is extracted

and the process is called as “information extraction”. Sentence

segmentation or sentence boundary detection is used to divide

textual information into sentences [3]. The rule-based AI method

[4] for subdivision employs list of punctuation like '; ', '?', '.' and

so on, but it doesn’t work when it finds contractions like 'e.g.',

'etc.', 'n.d.' and so on. The supervised machine learning approach

was implemented to classify punctuation marks. It uses decision

tree to build sentence boundaries to categorize punctuation [5].

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6945

Article Received: 30 March 2023 Revised: 19 May 2023 Accepted: 01 June 2023

392

IJRITCC | June 2023, Available @ http://www.ijritcc.org

The supervised AI and ML model builds large amounts of

training and contraction knowledge [3]. Kiss and Strunk

proposed a type-based classification approach for unsupervised

machine learning. This method analyses a word throughout the

text and annotates it with sentence boundary and abbreviation

annotation [3].

Tokenization is the process by which the application splits a

line of resume into tokens after segmenting the sentence

boundaries [21-22]. Several tokenization approaches, including

rule-based and statistical approaches, have been discussed in the

paper. A rule-based tokenizer like the “Penn Tree Bank”

tokenizer (PTB) [6], applies a set of rules to classify tokens.

Hidden Markow Model (HMM)s [7] are used in the statistical

approach to classify “word” and “sentence boundaries” [8].

Tokenization is accomplished through the use of scan and the

“HMM Boundary” detector modules.

To determine the sense from a word, “part of speech” (POS)

tagging techniques like “Penn Treebank Tagset” (PTT) [6] and

the “CLAWS 5 (C5)” Tagset [9] to be used. The “Name Entity

Recognition” (NER) is one of the very important task in

information extraction because it understands names of entities

such as candidate names, companies worked at etc. [10].

The structure of the remaining paper has various sections;

section 2 discusses the methodology. Section 3 explains results

and step wise implementation. Finally, section 4 concludes the

paper.

II. METHODOLOGY

Text analysis is an AI and NLP learning technique that

allows businesses to analyse unstructured text data like

resume/CV analysis [11]. It is commonly used in the screening

of resumes. Further, “Text classification” used for mapping pre-

defined tags to random text. It is regarded as important process

for dealing with natural language because it is versatile and can

edit, edit, and parse any type of text to bring logical facts and

issue resolution. NLP i.e., Natural Language Processing is a sub

system of AI and Machine learning, where system can decipher

as well as comprehend text in the same way that humans do. The

sentiment analysis scans and classifies text for polarity (positive,

negative, or neutral) and beyond using sophisticated machine

learning algorithms. This method is concerned with the author's

moods, emotions, context, and sarcasm. Topic analysis is also

useful in text classification, which organises text by topic or

subject. Intent classification is used to understand the intent

rather than looking for literal meaning [10].

On the other hand, cluster analysis is a method of organising

a collection to identify and classify based on the similarity within

the group. It is a common mathematical data analysis process

that is used in a variety of industries like pattern identification,

bio-metric based recognition, text analysis etc. [12]. Text

collections can interpret and collect large amounts of unrelated

information. Compilation algorithms are faster to use than

classification algorithms because we don't have to label models

for training, despite being less accurate. Unsupervised learning

machines are intelligent data for algorithms which helps in

predicting results without training data.

At the basic, token making is used for dividing a string of

letters into logical blocks which is analysed while removal of

useless data. Building tokens is important for text data

processing. Tokens for all words or tones in a sentence [13]. It

separates the various objects in a sentence by the word border

such as tokens. Basically, it is the same as the separation of

words. Eg: Python is a Programing Language

“Python”, “is”, “a”, “Programing”, “Language"

It provides various tokens with varying values.

Now the question arises in mind that why is Tokenization

required when dealing with Indigenous Languages? Definitely,

before we can process natural language, we must first identify

the words that comprise the strings. This is why creating tokens

is a fundamental step forward in NLP (text data). This is

significant because analyzing the text beforehand allows the

meaning of the text to be easily interpreted.

Once the tokens have been received, they must be classified.

There is a half-speech tagging, in which a program category like

noun or action is mapped to received tokens. Part of the process

of marking a speech is translating a sentence into list of words

and a list of rows. The basic foundation of marking that is part

of speech is automatic tagging. This is accomplished through the

use of the Default Tagger section. In the Default Tagger section,

'tag' is treated as a single argument. The singular noun tag NN

works with most common part of speech tag, Default Tagger

comes in handy. As a result, a name tag is advised.

The tokens when separated from the language model, the

system can now generate complex textual presentations for

analysis. This is referred to as analysis. Separation refers to the

process of determining the structure of a text. The mathematical

algorithm accomplishes this by utilizing the grammar in which

the text is written.

Further, dependency parsing means the language that

establishes a direct relationship between words or sentences is

known as dependent grammar. The process of using dependency

grammar to prevent my own sentence formation is known as

dependency parsing [14-15]. Various tags in Dependency

Separation indicate the relationship between two words in a

sentence. These tags are dependent on one another. In the

sentence 'rain,' for example, the word rainy modifies the

meaning of the noun weather. As a result, there is dependence

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6945

Article Received: 30 March 2023 Revised: 19 May 2023 Accepted: 01 June 2023

393

IJRITCC | June 2023, Available @ http://www.ijritcc.org

on weather conditions -> it rains when the weather acts as the

head and the rain acts as a dependent or child. The amod tag,

which represents the adjectival modifier, represents this

dependency.

The structure of grammatical structures is a model of usage

that employs unambiguous nodes with respect to words and

other incomprehensible categories and their indirect

relationships. The method of identifying sentence structure using

a constituency grammar is referred to as regional segregation.

[16]

The membrane removal and membrane formation are for

removing all conjunctions like suffixes, prefixes, etc. used in the

word in order to preserve lexical structure. It is also regarded as

root/stem/dictionary or lemma form. The key difference between

the two processes is that the stem is generally rule based, that

reduce the beginnings and endings of words , while

lemmatization uses dictionaries and very complex behavioral

analysis. [13]

To provide an accurate automatic text analysis, we must

eliminate words which are not relevant for semantic information

and are meaningless. These words are also termed as stop words

like a, or, and, the, and so on [11]. In every language, there are

numerous lists of stop words. However, it is critical to

understand that depending on the text to be analyzed, we may

need to add or remove words from the list. To determine which

words should be included in the list of stop words, we may want

to conduct an open-ended analysis of the content of our texts.

We know that informal text analysis is unreliable. There are

methods for textual analysis, but the two most critical ones are

“text classification” and “text extraction”. Text classification is

the process of classifying tags as texts based on their content and

Text-splitting earlier used to be done by hand, which was very

time-consuming, inefficient, and inaccurate. Now automated

text-analysis models work in seconds and with great accuracy.

A. Text Classification

The text classification functions include attributes for emotional

analysis like if it conveys positive or negative impression, topic

discovery to get the details about topic and objective discovery

i.e determining the main purpose or objective of a text.

a) Rule based Systems

The separation of given text data and law is a man-made

relationship between a language pattern found in text and tags.

The rules typically refer to lexical, morphological or syntactic

patterns, Semantics or phonology are the other aspect that can be

referred.

Example of product differentiation:

(C ++ | Java | Python | R) → Editing Language

The benefits of legal-based programs are easy for humans to

understand them. However, developing complex legal

applications requires significant knowledge of both languages as

well as the topics in the literature that the system must analyze.

Furthermore, legislation-based programs are tough to

measure and sustain because new rules get introduced or any

change in existing rules necessitates extensive impact.

b) Machine Learning-Based Systems

Machine Learning based systems learn from previous

observations and data to predict the results. The programs

require many text examples as well as predictable expectations.

This is known as training data. The final predictions will be

much better if our training details are consistent and accurate.

When using machine learning to train a division, the training

data must be converted into something that the machine can

comprehend, like vectors i.e., a list of numbers that contain data.

The system can excerpt applicable topographies from current

data and make forecasts for future data by using vectors. There

are several approaches to this, but one of the most common is

vectorization. After text conversion into vectors, a machine

learning algorithm is applied on top of it, which should produce

a segmentation model capable of determining which features

represent texts more accurately and performing predictive text

forecasts. The trained model is applied to unknown data text to

a vector, performs feature extraction, and predicts data with

Model Classification [14].

c) Machine learning algorithms

Few of the machine learning methods has been applied for

text classification. The Naive Bayes algorithms SVM (Support

Vector Machines) referred in Figure 1. This in-depth learning

algorithm that is very widely used. [14]

Naive Bayes algorithm family is built on top of Bayes' Theorem

and conditional obligations for the appearance of sample text

names within a set of tagged text. Vectors representing

documents include information about how text words can appear

in the tags provided. The writing possibilities of any mark given

to the model can be calculated using this information. The

possible outcomes are included in the provided document, the

marker with the highest probability as the output is returned by

the segmentation model for the provided inputs [14]. This

algorithm provides good results even with less training data.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6945

Article Received: 30 March 2023 Revised: 19 May 2023 Accepted: 01 June 2023

394

IJRITCC | June 2023, Available @ http://www.ijritcc.org

Figure 1. Support Vector Hyperplanes

Support Vector Hyperplanes (SVM) results are better

compared to Naive Bayes, however, it requires high resources in

training shown in Figure 1.

There is another algorithm that is very popular, that uses

artificial neural networks to process data in a similar manner that

the human brain does. The neural network uses a large amount

of training data and uses extensive resource during training and

perform excellently in predicting results [18]

B. Hybrid Systems

Hybrid Machine Learning typically is combination of

machine learning and rule-based systems for better prediction

[15]. Classifier performance is frequently evaluated using

machine learning industry standard metrics such as correctness,

meticulousness, memory, and F1-score. Comprehending the

result will provide a clear picture of the effectiveness of classifier

[16] for analysing the provided text data. [17]

The testing is done with limited test data, through cross-

verification is required on the expectation from the result.

The process of knowing the edited pieces of information

from an unavailable text is referred to as text extraction. It may

be useful to automatically find keywords that are more relevant

for analysing and predicting the text data like resume/CV.

The rules defined in the classification functions are followed

by common expressions (regexes). The common denominator in

this case describes the pattern recognition.

This approach has pros and cons, while text extractors are

fast and accurate with the known patterns on the other hand, it

can be had for maintenance as anytime there is change of rules,

it needs to be updated otherwise results will be incorrect.

C. Open-source library/API

The text analysis solutions are available in the form of open

source library as well as software as a service APIs. The library

usage needs good technical understanding, while software as a

service provides faster text analysis solution.

a) Python

Python is one of the best and very widely used computer

programming language. NumPy and SciPy have ability to call C

and Fortran libraries whenever required. It has great community

support and has number of libraries to support data science and

natural language processing (NLP), which has helped Python to

become one of the most popular scripting languages.

b) NLTK

Natural Language Toolkit library also called as NLTK, is a

cutting-edge library of analysing text. Using the Rapid

Automatic Keyword Extraction Rake algorithm and the NLTK

tool kit, you can create a powerful keyword extraction tool.

Known as Rake NLTK.

c) SpaCy

SpaCy is a statistical NLP library for industry. It enhances

the standard features by combining in-depth learning with

multimedia neural network models. Spacy is a free and open

library that makes use of Natural Language Development (NLP)

[18]. It is written in Python and Cython and is especially useful

for applications that require text comprehension. It is used in

deep reading to process text (Machine Learning section). SpaCy,

in contrast to NLTK text-based library.

d) Scikit-learning

Skikit-learning is an advances Python Data science and ML

library built on top of SciPy, NumPy and matplotlib, that

provides very good performance in building text-based analysis

models.

D. High Level Design

The Artificial intelligence-based resume parser provides user

the ability to upload a file, and based on the type of the file

uploaded, it applies text extraction by calling the appropriate

API like reading from PDF or from word format. The text is

extracted and transformed further by applying various

techniques like tokenization, cleansing by removing stop words.

Further, a hybrid approach of rule based and NLP based

algorithm is applied to extract specific information. As an end

state, the extracted content is matched against the resume

description and cosine similarity and cosine distance algorithms

are used to derive the prediction. Figure 2, explains the high-

level design.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6945

Article Received: 30 March 2023 Revised: 19 May 2023 Accepted: 01 June 2023

395

IJRITCC | June 2023, Available @ http://www.ijritcc.org

Figure 2. Resume Parser using AI/NLP: System Design

III. RESULTS AND DISCUSSION

A. Pilot implementation through Python

This section will go over the step-by-step pilot

implementation in Python [19].

a) Pre-processing

The resume is provided as input in this process and is cleaned

to eliminate any unusual or jumble characters. All unusual

characters and single-letter words like ‘a’, ‘.’ etc. are removed

during cleaning. Following these steps, a clean dataset is

obtained. It is further tokenized using NLTK tokenizers [20].

Stop-word removal along with stemming, and lemmatization are

some of the pre-processing steps used on tokenized datasets. The

raw CV file is imported, and the resume/CV content data is

cleansed. The System design of Resume parser is shown in

Figure 2.

b) Reading the Resume

The critical issue with CV/Resumes is that they are not in

structured form and there is no standard file format, like

.pdf,.doc, or.docx. So, our first step is to convert the CV into

plain text irrespective of the format. We have used mainly two

Python modules for this: PyMuPDF and doc2text. These

modules help in the extraction of text from.pdf,.doc, and.docx

file formats.

c) Python code to extract text from PDF

import sys, fitz

"""

pip install PyMuPDF

This PyMuPDF library works better than PyPDF2, tested with all types of PDF

extract_text_from_doc function extracts the text of the given resume Library is

developed as part of research project in Usha Martin University

Usage:read_text_from_pdf API needs filename as input parameter

Output: Text content retrieved from the resume file passed

"""

def read_text_from_pdf(filename):

 document = fitz.open(filename)

 temp_resume_text = ""

 for resume_pg in document:

 temp_resume_text=temp_resume_text +

str(resume_pg.get_text())

 tx = " ".join(temp_resume_text.split('\n'))

 return tx

resume_content =read_text_from_pdf('Resume-Arvind.pdf')

print(resume_content)

Output: It is shown in Figure 3.

Figure 3. Shows the tools screen to upload resume

d) Reading doc and docx to get the resume text content:

import docx2txt

import re

"""

extract_text_from_doc function extracts the text of the given

resume

Library is developed as part of research project in Usha

Martin University

Usage:read_resume_with_doc_extension API needs

filename as input parameter

Output:Text content retrieved from the resume file passed

"""

def read_resume_with_doc_extension(filename):

 print('Reading MS Word file')

 temp = docx2txt.process(filename)

 resume_content = [rows.replace('\t', ' ') for rows in

temp.split('\n') if rows]

 return ' '.join(resume_content)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6945

Article Received: 30 March 2023 Revised: 19 May 2023 Accepted: 01 June 2023

396

IJRITCC | June 2023, Available @ http://www.ijritcc.org

resumeContent =

read_resume_with_doc_extension(Arvind.docx')

print(resumeContent)

Partial Output is shown in Figure 4.

Figure 4. Partial Output

e) Extracting Name

Regular expressions can be used to extract names from

resumes. However, we have employed natural language

processing library for text, spaCy. It is a text processing module

with industrial-strength natural language processing. It includes

models for tagging, parsing, and entity recognition that have

already been trained.

Installing spaCy

The command to install spaCy is shown below

pip install spacy

python -m spacy download en_core_web_sm

import spacy

from spacy.matcher import Matcher

import docfilereader as docr

"""Load a spaCy model from an installed package or a local

path.

extract_candidate_name function extracts the name of a

candidate from

the resume content passed to it

Library is developed as part of research project in Usha

Martin University

Usage:get_candidate_name API needs resume content(text

data) as input parameter

Output: Name of the candidate is extracted from the resume

content passed in form of text

"""

nlp_for_ne = spacy.load('en_core_web_sm')

spacy_matcher = Matcher(nlp_for_ne.vocab)

def get_candidate_name(resume_content_data):

 print(resume_content_data)

 nlp_text = nlp_for_ne(resume_content_data)

 # to get name out of the resume content

 ne_pattern = [{'POS': 'PROPN'}, {'POS': 'PROPN'}]

 spacy_matcher.add('NAME', [ne_pattern])

 name_found = spacy_matcher(nlp_text, as_spans=True)

 print(name_found[0])

 return name_found[0]

resume_content =

docr.read_resume_with_doc_extension(Arvind.docx')

candidate_name = get_candidate_name(resume_content)

print("Candidate Name : " + str(candidate_name))

Output: It is shown in Figure 5.

Candidate Name: Arvind Kumar

Figure 5. Shows the name extraction from resume

f) Extracting Phone Numbers

We have used regular expressions to extract phone numbers.

Phone numbers can also be written as (+91) 1234567890,

+911234567890, +91 123 456 7890, or +91 1234567890. As a

result, regular expression can be used to get the phone number

of the candidate.

Arvind Kumar Sinha Senior IT professional, seeking an impactful
leadership role Location: Hyderabad, India Mobile: +919985122370
Email: arvi_k_rnc@yahoo.co.in SUMMARY • Technology professional
with 18+ years of working experience in technology industry
predominantly for Banking & Financial Services sector. • Proven track
record of leading full life cycle projects/programs of large scale, complex
distributed systems across digital channels viz web, mobile & content
management. • ‘Hands on’ technologist capable of hiring, managing
high performing technical teams; delivery under stringent conditions of
cost & quality. • Demonstrated ability to work with cross functional
teams to define product propositions, technology vision, strategies,
architecture roadmaps and business cases in line with organizational
goals. • Proven expertise in building operating model, execution
strategies to enable reliable and cost effective delivery across
onsite/offshore teams. Considerable working experience in US &
Singaporean markets. • Strategic and creative thinker; skilled in
positioning solutions, technology, delivery options to Senior Executives.
• Pursuing research scholar program(PHD) on Machine learning
AREAS OF EXPERTISE: Consumer Banking, Payments, Liquidity
Management Enterprise Architecture, Design Patterns, Frameworks
(Struts, Spring), Web services, Micro-services, CI/CD pipeline, Netflix
OSS Investment Banking and Asset management Delivery management
adopting agile practices (Scrum, Kanban), tooling (Atlassian stack,
Jenkins) Java Stack Cloud services like AWS. EMPLOYMENT
HISTORY J.P Morgan Chase, Hyderabad, India Vice President –
Corporate Technology, June-2019 to Present Key

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6945

Article Received: 30 March 2023 Revised: 19 May 2023 Accepted: 01 June 2023

397

IJRITCC | June 2023, Available @ http://www.ijritcc.org

import re

import docfilereader as docr

"""

extract_mobile_number function extracts the mobile number

of the given candidate

from the given resume

Library is developed as part of research project in Usha

Martin University

Usage:get_candidate_mobile_number API needs resume

content(text data) as input parameter

Output:Mobile number of the candidate is extracted from the

resume content passed in form of text

"""

mobile_no = ""

def get_candidate_mobile_number(resume):

 #standard reg ex is used to fetch mob no

 mobile_no = re.findall(re.compile(

 r'(?:(?:\+?([1-9]|[0-9][0-9]|[0-9][0-9][0-9])\s*(?:[.-

]\s*)?)?(?:\(\s*([2-9]1[02-9]|[2-9][02-8]1|[2-9][02-8][02-

9])\s*\)|([0-9][1-9]|[0-9]1[02-9]|[2-9][02-8]1|[2-9][02-8][02-

9]))\s*(?:[.-]\s*)?)?([2-9]1[02-9]|[2-9][02-9]1|[2-9][02-

9]{2})\s*(?:[.-]\s*)?([0-

9]{4})(?:\s*(?:#|x\.?|ext\.?|extension)\s*(\d+))?'),

 resume)

 if mobile_no:

 cand_ph_n = ''.join(mobile_no[0])

 if len(cand_ph_n) > 10:

 return '+' + cand_ph_n

 else:

 return cand_ph_n

resume_content =

docr.read_resume_with_doc_extension("Arvind.docx")

num = get_candidate_mobile_number(resume_content)

print('Mobile Number : ' + num)

Output: It is shown in Figure 6.

Figure 6. Mobile Number

g) Extracting Email

We can use the same method we used to extract mobile

numbers to extract email addresses from resumes. Email

addresses have a known pattern, and regular expression provides

good result.

import re

import docfilereader as docr

"""

extract_email function extracts the email of the given

candidate from the resume

Library is developed as part of research project in Usha

Martin University

Usage:get_candidate_mobile_number API needs resume

content(text data) as input parameter

Output: Email address of the candidate is extracted from the

resume content passed in form of text

"""

def extract_email(resume):

 candidate_em =

re.findall("([^@|\s]+@[^@]+\.[^@|\s]+)", resume)

 if candidate_em:

 try:

 return candidate_em[0].split()[0].strip(';')

 except IndexError:

 return ""

resume_content =

docr.read_resume_with_doc_extension("Arvind.docx")

email = extract_email(resume_content)

print("Email Address extracted:"+email)

Output: It is shown in Figure 7.

Figure 7. Email Address

h) Extracting Skills

import pandas as pd

import nameextractor as ne

import docfilereader as docr

import spacy

Mobile Number: 9985122370

Email Address extracted: arvi_k_rnc@yahoo.co.in

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6945

Article Received: 30 March 2023 Revised: 19 May 2023 Accepted: 01 June 2023

398

IJRITCC | June 2023, Available @ http://www.ijritcc.org

"""Load a spaCy model from an installed package or a local

path.

extract_candidate_name function extracts the name of a

candidate from

the resume content passed to it

Library is developed as part of research project in Usha

Martin University

Usage:get_candidate_skills API needs resume content(text

data) as input parameter

Output: Skills of the candidate is extracted from the resume

content passed in form of text

"""

nlp_skill = spacy.load('en_core_web_sm')

def get_candidate_skills(resume_comtent_skills):

 content = nlp_skill(resume_comtent_skills)

 noun_chunks = content.noun_chunks

 nominal = [nom.text for nom in content if not

nom.is_stop]

 print(nominal)

 #

 data = pd.read_csv("allskills.csv")

 candidate_skills = list(data.columns.values)

 all_av_skills = []

 for token in nominal:

 if token.lower() in candidate_skills:

 all_av_skills.append(token)

 for token in noun_chunks:

 token = token.text.lower().strip()

 if token in candidate_skills:

 all_av_skills.append(token)

 return [i.capitalize() for i in set([i.lower() for i in

all_av_skills])]

resume_content =

docr.read_resume_with_doc_extension(Arvind.docx')

skills = get_candidate_skills(resume_content)

print("Skills of the candidate : " + str(skills))

Output: It is shown in Figure 8.

Figure 8. Skills of the Candidate

i) Extracting Education

Moving on to the final step, we have extracted candidate's

education information. The specific details that we will be

obtaining are grade and year of degree. We have used the nltk

module to load an entire list of stopwords and then remove them

from our resume text.

Installing nltk:

pip install nltk

python -m nltk nltk.download('words')

Recruiters are very specific about the level of education or

degree required for a specific job. As a result, we will be

preparing a list of EDUCATION that will specify all of the

equivalent degrees that are required.

import re

import spacy

import nameextractor as ne

from nltk.corpus import stopwords

import docfilereader as docr

import pandas as pd

"""Load a spaCy model from an installed package or a local

path.

extract_candidate_education function extracts the education

of a candidate from

the resume connect passed to it

Library is developed as part of research project in Usha

Martin University

Usage:get_candidate_mobile_number API needs resume

content(text data) as input parameter

Output: Email address of the candidate is extracted from the

resume content passed in form of text

"""

nlp_qualification = spacy.load('en_core_web_sm')

Grad all general stop words

Skills of the Candidate: ['Administration', 'Design', 'Api',
'Analysis', 'Routing', 'Access', 'Writing', 'Data analysis', 'Reporting',
'Lifecycle', 'Reports', 'Analytical', 'Schedule', 'Database', 'Sql',
'Website', 'Cloud', 'Process', 'Modeling', 'Big data', 'Warehouse',
'Email', 'Windows', 'Sql server', 'Js', 'Analytics', '.net', 'Communication',
'Data analytics', 'Technical', 'Transactions', 'Sap', 'C', 'Metrics', 'Etl']

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6945

Article Received: 30 March 2023 Revised: 19 May 2023 Accepted: 01 June 2023

399

IJRITCC | June 2023, Available @ http://www.ijritcc.org

STOPWORDS_IN_RESUME =

set(stopwords.words('english'))

def get_candidate_education(resume_content_qual):

 nlp_qual = nlp_qualification(resume_content_qual)

 nlp_qual.sents

 candidate_education = pd.read_csv("degree.csv")

 CANDIDATE_QUAL = list(candidate_education)

 nlp_qual = [qual_s.text.strip() for qual_s in

nlp_qual.sents]

 edu = {}

 for idx, txt in enumerate(nlp_qual):

 for tex in txt.split():

 tex = re.sub(r'[?|$|.|!|,]', r'', tex)

 if tex.upper() in CANDIDATE_QUAL and tex not in

STOPWORDS_IN_RESUME:

 edu[tex] = txt + nlp_qual[idx]

 qual = []

 for pk in edu.keys():

 yop = re.search(re.compile(r'(((20|19)(\d{2})))'),

edu[pk])

 if yop:

 qual.append((pk, ''.join(yop[0])))

 else:

 qual.append(pk)

 return qual

resume_content =

docr.read_resume_with_doc_extension(Arvind.docx')

education = get_candidate_education(resume_content)

print("Education of the Candidate : " + str(education))

Output: It is shown in Figure 9.

Figure 9. Education of the Candidate

Code Available at GitHub:

https://github.com/arvindindia123/ResumeParser

https://github.com/arvindindia123/ResumeParserUI

B. Findings

This paper discusses segmenting resumes in order to extract

data and perform text analysis. Python is used to demonstrate the

step-by-step pilot implementation. The pilot implementation

accepts the resume in PDF/Doc format and is cleansed as part of

first step to remove stop-words, punctuations etc. Cleansing and

removing unnecessary content is the first and critical step to

perform natural language processing. The raw CV file was

imported, and the resume field data was cleansed to remove extra

spaces and numbers in the date. To extract names from resumes,

regular expressions are used. However, we have also used spaCy

library which is considered the most accurate natural language

processing library. Spacy is an industrial-strength natural

language processing text and language processing module. It

includes already trained models for entity recognition, parsing,

tagging etc. Regular expressions were also used to extract phone

numbers and emails. Email IDs have a consistent format: an

alphanumeric string followed by a @ symbol, another string, a.

(dot), followed by a string (com, in, org etc.). Furthermore, the

candidate's educational information is extracted, as well as

qualification and passing year. For example, if candidate

completed PhD in 2022, we extracted a row that looks like (PhD,

'2022'). All stop-words must be removed as a result of this. The

NLTK module was used to load an entire list of stop-words and

then remove from our resume text for further processing.

The application using hybrid approach of AI and regular

expression, which makes it unique. It has achieved 93.5%

accuracy in text-extraction which improves the accuracy by

19.5% compared to CNN models.

IV. CONCLUSION

In this paper, we have demonstrated the step-by-step pilot

implementation of resume parsing using Python. The resume is

provided as input in this process and is cleaned to remove any

unusual or junk characters. The CV file is imported, and based

on PDF or MS word, appropriate read method is called to get the

CV content in text format. It was cleansed to remove extra

spaces and dates along with removal of stop-words which

doesn’t add value in decision making. Hybrid approach has been

adopted, where in trained models are used along with rule based

regular expression approach in different scenario. This resume

parse will further be used for decision making of screening of a

candidate against the given job description.

References

[1] A. Sinha, Md. A. K. Akhtar, and A. Kumar, Resume

Screening using Natural Language Processing and Machine

Learning: A Systematic Review. In: Swain, D., Pattnaik,

P.K., Athawale, T. (eds) Machine Learning and Information

Processing. Advances in Intelligent Systems and Computing,

vol 1311. 2021 Springer, Singapore.

Education of the Candidate: ['BE', 'MTECH', 'PHD']

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6945

Article Received: 30 March 2023 Revised: 19 May 2023 Accepted: 01 June 2023

400

IJRITCC | June 2023, Available @ http://www.ijritcc.org

[2] D. Çelik et al., “Towards an Information Extraction System

Based on Ontology to Match Resumes and Jobs,” in 2013

IEEE 37th Annual Computer Software and Applications

Conference Workshops, Jul. 2013, pp. 333–338. doi:

10.1109/COMPSACW.2013.60.

[3] T. Kiss and J. Strunk, “Unsupervised multilingual sentence

boundary detection. Computational Linguistics,” pp. 485–

525, 2006.

[4] J. C. Reynar and A. Ratnaparkhi, “A maximum entropy

approach to identifying sentence boundaries. Proceedings of

the Fifth Conference on Applied Natural Language

Processing,” pp. 16–19, 1997.

[5] M. D. Riley, “Some applications of tree-based modelling to

speech and language. Proceedings of the Workshop on

Speech and Natural Language,” pp. 339–352, 1989.

[6] “The Stanford Natural Language Processing Group.”

https://nlp.stanford.edu/software/tokenizer.shtml (accessed

Jul. 08, 2021).

[7] C. D. Manning and H. Schütze, “Foundations of Statistical

Natural Language Processing. MIT Press.,” 1999.

[8] B. Jurish and K. M. Würzner, “Word and Sentence

Tokenization with Hidden Markov Models.,” pp. 61–83,

2013.

[9] “UCREL CLAWS5 Tagset.”

http://ucrel.lancs.ac.uk/claws5tags.html (accessed Jul. 08,

2021).

[10] L. Derczynski, D. Maynard, G. Rizzo, and M. Van Erp,

“Analysis of named entity recognition and linking for tweets.

Information Processing & Management,” pp. 32–49, 2015.

[11] “Text Analysis Starter Guide: What You Need to Know,”

MonkeyLearn. https://monkeylearn.com/text-analysis/

(accessed Jul. 08, 2021).

[12] “Cluster analysis,” Wikipedia. Jun. 29, 2021. Accessed: Jul.

08, 2021. [Online]. Available:

https://en.wikipedia.org/w/index.php?title=Cluster_analysis

&oldid=1031035663

[13] “Python Stemming Lemmatization.” https://www.python-

ds.com/python-stemming-lemmatization (accessed Jul. 08,

2021).

[14] P. K. Roy, S. S. Chowdhary, and R. Bhatia, “A Machine

Learning approach for automation of Resume

Recommendation system,” 2019.

[15] “Machine Learning with Python: Metrics: Accuracy,

precision, recall, F1-Score.” https://www.python-

course.eu/metrics.php (accessed Jul. 08, 2021).

[16] A. Hetherington, “Evaluating Classifier Model

Performance,” Medium, Jul. 05, 2020.

https://towardsdatascience.com/evaluating-classifier-model-

performance-6403577c1010 (accessed Jul. 08, 2021).

[17] “Precision vs Recall | Precision and Recall Machine

Learning,” Analytics Vidhya, Sep. 03, 2020.

https://www.analyticsvidhya.com/blog/2020/09/precision-

recall-machine-learning/ (accessed Jul. 08, 2021).

[18] “spaCy · Industrial-strength Natural Language Processing in

Python.” https://spacy.io/ (accessed Jul. 08, 2021).

[19] O. Pathak, OmkarPathak/ResumeParser. 2021. Accessed:

Jul. 08, 2021. [Online]. Available:

https://github.com/OmkarPathak/ResumeParser

[20] E. Loper and S. Bird, “Nltk: the natural language toolkit,”

2002.

[21] H. Shah, N. ., T. Khan, D. ., A. Banu, A. ., & H. Shah, L. .

(2023). Symmetric and Asymmetric Encryption Schemes for

Internet of Things: A Survey . International Journal of

Intelligent Systems and Applications in Engineering, 11(1),

254–260. Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/2465

[22] Md Amir Khusru Akhtar, Mohit Kumar, and Gadadhar

Sahoo. "Automata for santali language processing." In 2017

International Conference on Advances in Computing,

Communications and Informatics (ICACCI), pp. 939-943.

IEEE, 2017.

[23] Md Amir Khusru Akhtar, Gadadhar Sahoo, and Mohit

Kumar. "Digital corpus of Santali language." In 2017

International Conference on Advances in Computing,

Communications and Informatics (ICACCI), pp. 934-938.

IEEE, 2017.

http://www.ijritcc.org/

