
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6944

Article Received: 28 March 2023 Revised: 12 May 2023 Accepted: 31 May 2023

379

IJRITCC | June 2023, Available @ http://www.ijritcc.org

Framework for the Automation of SDLC Phases

using Artificial Intelligence and Machine Learning

Techniques

Sahana P. Shankar1, Shilpa Shashikant Chaudhari2
1Department of Computer Science and Engineering

Ramaiah University of Applied Sciences

Bengaluru, India

e-mail: sahanaprabhushankar@gmail.com
2Department of Computer Science and Engineering

M S Ramaiah Institute of Technology (Affiliated to VTU)

Bengaluru, India

e-mail: shilpasc29@msrit.edu

Abstract— Software Engineering acts as a foundation stone for any software that is being built. It provides a common road-map for

construction of software from any domain. Not following a well-defined Software Development Model have led to the failure of many software

projects in the past. Agile is the Software Development Life Cycle (SDLC) Model that is widely used in practice in the IT industries to develop

software on various technologies such as Big Data, Machine Learning, Artificial Intelligence, Deep learning. The focus on Software

Engineering side in the recent years has been on trying to automate the various phases of SDLC namely- Requirements Analysis, Design,

Coding, Testing and Operations and Maintenance. Incorporating latest trending technologies such as Machine Learning and Artificial

Intelligence into various phases of SDLC, could facilitate for better execution of each of these phases. This in turn helps to cut-down costs,

save time, improve the efficiency and reduce the manual effort required for each of these phases. The aim of this paper is to present a framework

for the application of various Artificial Intelligence and Machine Learning techniques in the different phases of SDLC.

Keywords-Requirements Elicitation, Knowledge Bank, Testing, Software Maintenance, Chatbot, Design.

I. INTRODUCTION

Software Engineering (SE) can be defined as application of

engineering skills to the development of a software product.

Over the years engineers have spent much time in building more

intelligent software. With the increase in the level of intelligence

associated with the software, the level of complexity also seems

to be increasing. Complex software again poses new challenges

to the software engineers at each of the phases of the software

development life cycle (SDLC). Where developing complex

system is a challenging task to the software engineers,

developing intelligent ways of building the complex intelligent

systems can be considered to a bigger challenge in itself. If a

software engineer is able to achieve the latter task, it could as

well simplify and aid in improving the efficiency of the earlier

task. The Figure 1 below shows the relationship between

Planning, Decision and Searching in terms of AI, ML and SE

where SE involves more of planning, AI involves searching and

ML involves decision making.

Fig 1. Connectivity between AI-ML-SE

Artificial Intelligence has gained a lot of popularity in the recent

years in the various fields of Automotive, Banking, Medicine,

Retails and Service Industry. It has been observed that AI has

made its way into mundane everyday tasks of people in day to

day life. With rapid growth and extensive research work being

carried out in the field of AI and ML at an exponential rate,

these results can be used to improve the Software Engineering

Process.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6944

Article Received: 28 March 2023 Revised: 12 May 2023 Accepted: 31 May 2023

380

IJRITCC | June 2023, Available @ http://www.ijritcc.org

The different phases of SDLC on a high level can be broadly

classified as Requirement Analysis, Design, Implementation,

Testing, Operation and Maintenance. These phases will be

present in any Software development model in additional to a

few more phases. The Requirements phase involves mainly

elicitation of the business requirements from the clients or stake

holders through personal interviews or brainstorming. These

requirements that are collected in Natural Language such as

English are then converted to a more formal representation of

data for the Software Requirements Specification Document.

The conversion from Informal English sentences to more

Formal Document is generally carried out by a Business

Analyst who is a domain expert of the project. Alongside, with

the development of SRS document, another document called as

Risk Analysis and Mitigation document is prepared by making

use of the Project and Process Metrics. A decision is also made

as to what Requirements can be actually implemented and

which cannot be.

This SRS document then acts as an input for the Design Phase,

where the Formal Requirements are then converted to High

Level Architectural Design and more detailed Low-Level

Design Patterns. This job is carried out by the Software

Architect. The selection of Appropriate Architectural Design or

Design pattern is based on various Software Metrics and

Measurement Parameters such as Halsted and McCabe’s

Metrics, Chidamber and Kerner (CK) Metrics to name a few.

The output of this phase is the detailed Design Document.

The Detailed Document is then converted to a Computer

Program or Code using various Product Metrics. This job is

carried out by a Software Developer, who decides on which

programming language and programming styles to be adopted.

The output of this phase is working source code and the

Software Application or Product. The developer also decides on

the White Box Testing Techniques to be adopted.

The Source Code and the Software Application is then passed

onto the Testing Phase, where a dedicated Testing team

performs the Black Box Testing. The Quality Engineer who

carries out this activity designs the test cases based on various

Black Box Testing Techniques that are available. The Test Plan

also needs to be designed at the beginning of the testing activity

based on project Metrics by the Test Team Lead. This plan

contains important decision as to which test cases need to be

tested as a part of Regression Testing. The test cases then need

to be executed either manually or using Automation Tools. Any

bugs identified during this phase is generally logged in a Bug

Report and then reverted back to the Development Team.

The final Quality Software is then released to the customers for

use. The phase that comes into action now is the Operations and

Maintenance Phase during which support will be extended to

the end users or clients if any issues arise during the use of the

software. The companies generally have a dedicated Support

Team that cater to these issues by logging a ticket for every

concern raised by the client.

The Figure 2 shows the different phases of SDLC which are

found in any of the Software Development Models in terms of

process model to be followed.

Fig 2. Overview of Different Phases of SDLC

II. RELATED WORK

This section discusses on the various works that has already

been carried out in application of machine learning and AI

techniques for improvising the different phases. In [1] the

authors talk about applying supervised machine learning

techniques to automate and address some the issues during the

requirements engineering phase. It also discusses the datasets

that have been used to carry out these experiments. The

PROMISE data repository, Metric Data Program and iTrust

electronic healthcare systems are used for the datasets. The

problems addressed include linguistic problem detection in the

SRS document that is written in natural language, application of

classification algorithms to classify the contents of SRS

document, defect traceability to the requirements, software effort

estimation, prediction of failures using SRS and generation of

business rules. The machine learning techniques used are

random forest, Naïve Bayes, Support Vector Machine, decision

tree and K-nearest neighbor. In [2] author discusses that

uncertainty is an integral part of any software, especially the

embedded softwares involving robots, automated cars or

unmanned vehicles. Customer satisfaction being the important

goal of any software being developed, it is also important to

address these uncertainties and ensure software compliance. The

important requirements include security and privacy among

others. This paper also addresses the security and privacy

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6944

Article Received: 28 March 2023 Revised: 12 May 2023 Accepted: 31 May 2023

381

IJRITCC | June 2023, Available @ http://www.ijritcc.org

concerns of the software by proposing a framework for handling

uncertainty. In [3] the authors proposes a tool that can

automatically convert the elicited requirements in a technical

format. It also provides an option to collect the end user

feedback. The manual way of doing this slows down the process

and has an impact on usability and reliability. The tool uses

supervised machine learning and unsupervised deep learning

strategies. The supervised machine learning algorithms used

include Logistic, LogitBoost, Linear Regression, J48, and

AdaBoostM1. In [4] the author talks about generation of use

cases from the elicited requirements. The requirements collected

will be in natural language and hence it is difficult to

comprehend the dependencies, inconsistencies or any missing

requirements. The very first UML diagram that is generally

drawn is the Use Case that depicts the interaction of the user with

the outside world. It helps to identify the different stakeholders

interacting with the software system. Such a graphical document

is very easy to comprehend and understand. The diagram also

depicts the dependencies between the use cases using

relationships such as include and extend. This takes considerable

amount if effort if it needs to be done manually. This process

when automated with the proposed machine learning techniques

has proven shorten the time taken for generation. In [5] the

authors discuss about the difficulties in eliciting the

requirements for a machine learning based software. They

suggest a new strategy called as Goal Oriented Software

Requirements Engineering to collect the requirements. In [6] the

authors discuss about implementing one of the most important

characteristic of good requirements i.e. traceability. He talks

about using trace matrix or providing the connection between the

various requirements. This work also has been carried out using

the datasets from the PROMISE repository. In [7], the authors

talk about the challenges involved in carrying out the

requirements engineering phase for machine learning based

projects. Specific legal requirements, explain ability and

freedom from discrimination are the new techniques adopted in

the requirements engineering process. In [8] the authors talk

about improving the efficiency of software process models using

AI techniques. They implement IoT based methods to automate

the existing process with minimum disruption. They also

provide the datasets for researchers to continue the research

further. They have suggested the use of various unsupervised

machine learning algorithms for the same. In [9] the author yet

again discusses about ensuring the good characteristics of the

requirements, more specifically assurance of requirements

quality and validating the same. Detection and correction of the

errors in the requirements is an important aspect of this paper.

Some of the techniques include formal methods, prototyping,

test oriented, and knowledge oriented validation among others.

The latest trend is to perform validation using Machine Learning

techniques. In [10] the authors provide the recommendations and

suggestions to the practitioners on the various machine learning

algorithms that can be used across the various phases, based on

the survey conducted by them. In [11] the authors propose a new

tool called “BUDGET” that helps in the high level design phase

of software engineering. They propose the use of supervised

machine learning algorithms for the same. By using these

techniques the user can bridge the gap between requirements,

architecture and code. In [12] the authors propose a testing

framework for validating the software products based on

machine learning techniques. Testing of ML based software

products is much difficult than the non-ML counterparts mainly

because of self-learning and rapid evolution capability of ML

algorithms. Hence, there must be special measures that would be

considered for these products. Robustness, avoid ability,

achievability, improvability and allow ability are the features

taken into consideration for evaluating the performance of the

ML based software products. In [13] the authors propose how to

use machine learning techniques for Agile software

development process. They talk about automating the client

feedback received during the retrospective meeting to improve

the Agile development process continuously. They use

sentiment analysis for this purpose. In [14] the authors handle a

very important aspect i.e. software project effort estimation

which needs to be performed during the project inception. This

paper proposed “Extreme Learning Machine” model to perform

the effort estimation. It is suggested that Particle Swarm

Optimization technique can be used to optimize this further. In

[15] the authors conduct a literature survey on what algorithms

are used in what phases of the software development life cycle.

It was observed that most of applications of the machine learning

algorithm is mainly for the testing and quality assurance phase,

design and architecture, development, requirements engineering

and maintenance in that order. It was also observed that Artificial

Neural Network (ANN) is the most widely applied algorithm

and Linear Regression being the least preferred technique. In

[16], the author talks about applying machine learning technique

to the implementation phase. He suggests how to detect

vulnerable or faulty code in the software. He uses classification

techniques to separate vulnerable code from non-vulnerable

ones. Decision Tree, Support Vector Machine, and Random

Forest to do the job. They used the projects developed using

C++/C. Software metrics are used along with machine learning

techniques to do the job. In [17] the authors talk about software

size estimation using the machine learning model deep learning.

This is achieved using software metrics called as Function Points

(FP). He says that the manual way of estimating the software

takes considerable amount of effort and also can be erroneous.

This also leads to increase in the cost of software estimation. The

deep learning based model called as “Named Entity

Recognition” model does the job automatically. The

experiments were conducted on the 29 live projects. The Table

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6944

Article Received: 28 March 2023 Revised: 12 May 2023 Accepted: 31 May 2023

382

IJRITCC | June 2023, Available @ http://www.ijritcc.org

1 below summarizes the various machine learning techniques

used in the different phases of Software Development Life Cycle

[15]. In the software quality assurance phase, bug prediction and

detection are the two most important aspects. After the bug has

been detected or predicted, it is also important to categorize them

into various categories based on priority and severity. The

authors in [18] propose a method for doing this automatically

using machine learning and natural language processing

technique. This helps to identify and address the high priority

bugs early. The Mozilla and Eclipse repository has been used for

the experimental purpose. The classification algorithms Naïve

Bayes, logistic regression, decision tree and random forest has

been used for the experimental purpose. In the software

development models like the Boehm’s spiral model, risk

mitigation is a very important factor. Identification and

mitigation of risks is an important phase that happens in every

iteration. In [19] the authors discuss a way of doing this

automatically using machine learning techniques. They use

association rule mining for identifying the associations between

risks and mitigation strategies. This uses a hybrid approach

consisting of Case based reasoning and Association Rule

mining. Based on the data collected, they list down 26 different

software risk factors and 50 different mitigation strategies to

address the same [19]. In [20] the authors talk about the different

ways of predicting the bugs in the software even before the

quality assurance phase can begin. They make use of deep

learning algorithms to achieve this task. These include the two

algorithms namely Convolutional Neural Networks and Multi-

Layer Perceptron. They have conducted the experiments on the

NASA defect datasets namely CM1, KC1, KC2 and PC1. In [21]

authors talk about the importance of documentation throughout

all the phases of the software development life cycle. Bug

duplication is also an important aspect that needs to be addressed

during the testing phase. After the duplicate bugs are detected,

the next step is using the classification algorithm to classify

whether the bug is duplicate or not. These experiments were

carried out on datasets provided by Eclipse, Mozilla, Firefox,

NetBeans and Open office. In [22] the authors discuss about the

growing complexity of the software and its influence on the

quality of the product. There is no way that all the defects can be

predicted beforehand using machine learning techniques. So we

can never say that we have detected all the defects before the

software enters the testing phase. The authors here propose a

technique for predicting the failures using ensemble machine

learning techniques. Research shows that ensemble techniques

provide better result than the individual models. In [23], the

authors talk about the bias that influence the experimental results

in the field of defect prediction. The results show that there is a

relationship between the research group who perform the task

and the dataset that has been used. This needs to be addressed

immediately to remove the bias in the results thus obtained. In

[24] the authors use the 10 NASA defect datasets to perform

defect prediction. They propose a novel technique called as

“Hellinger Net Model” that is a deep forward neural network to

perform the task. The experimental results show a drastic

improvement in the performance measures. In [25] the authors

propose a framework for predicting the faulty modules. This

uses the historical data for predicting the faulty modules. The

experiments have been conducted on the NASA defect datasets.

Three different learning algorithms used were OneR, Naïve

Bayes and J48 on twelve different datasets. In [26] the authors

talk about the commonalities between the two fields of Software

Engineering and Artificial Intelligence in aspects of modelling

real world objects. He talks about role of Software Agents in

Distributed Artificial Intelligence Systems. He speaks about role

of Learning Software Organizations and Knowledge Based

Systems. Computational Intelligence plays an important role in

analysis of software and project management, knowledge

discovery from existing databases. They talk about the current

role and future trends in the intersection of these two areas where

a major part of the research is being carried out by international

conference and journal called “Automated Software

Engineering”. In [27] the author emphasizes on the importance

of Search Based Software Engineering and application of

Machine Learning for software engineering. Since there is a shift

in focus from small, localized, insulated construction of software

to more interactive, intelligent, real-time, complex systems, the

application of AI to SE is a good option. He also proposes to

intelligently balance automation and human intervention. He

also talks about adopting search technique for test data to cover

a specific requirements set. In [28] the authors say that by using

Software Analytics, we can eliminate some assumptions made

by developers on good and bad software on the basis of a few

projects they have worked upon. He also speaks about the

problem of context in Software Analytics where models learned

from one project may not be applicable to a new project at hand.

This is one open area of research. Yet another issue is that the

models generated by software analytics are not always easy and

direct to understand and read. The machine learning algorithms

make use of the complex mathematical models such as Naïve

Bayes Classifier, Random Forests which are hard to understand.

The focus could be on developing the results from these models

in a simplified manner that is easier to understand. In [29] the

author focuses on shifting the use of human intelligence to model

intelligent systems that can do the designing and other software

engineering tasks rather than doing the software engineering task

itself. The author talks on the synergy between co-operative

testing, human and artificial intelligence. He talks about some of

the example problems where AI can be applied such as Test

Generation, Specification generation, Debugging and

Programming. He also suggests on improving the AI algorithms,

by taking using continuous feedback loop. In [30] the author

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6944

Article Received: 28 March 2023 Revised: 12 May 2023 Accepted: 31 May 2023

383

IJRITCC | June 2023, Available @ http://www.ijritcc.org

focuses entirely on the Requirements Phase, where he says that

Software Requirements Classification task requires a lot of effort

and hence incorporating NLP and Information Retrieval

techniques at this stage. This paper employs Deep Learning and

Neural Networks to do the task. They also propose employing

AI to do project cost and effort estimation by even considering

team member capabilities. In [31] the authors talk about the

application of ML to SE phases such as Behavior Extraction,

Defect Fixing, and Testing. They also propose that with the rapid

development in the field of AI, the performance of the algorithm

improves every year because of the rapid amount of data

accumulated over time which in turn improves the learning

process. They also talk about the challenges of how scalability

of the machine learning algorithms need to be handled with

increase in software complexity. In [32] authors talk about

employing Software Metrics with Defect Data to develop

Predictive Models for Open Source Software Systems. The

comparison of 14 different ML algorithms such as variants of

Perceptron, Multi-Layer Perceptron, LVQ, SOM, AIRS,

CLONAL and Immune for defect prediction is used. The study

of the results show that Single layer Perceptron is the best defect

prediction algorithm. In [33] authors talk about the ongoing

work in ML and AI platforms and how these results can be

applied to SE. The authors talk about the many open source tools

that are available for ML that create motivation for students to

work in this field. They talk about the essentials to develop

algorithms in this field such as programming skills in R, Python

with MatPlotLib. They also mention Jupyter Notebook which is

an open-source web application that allows to creation and

sharing of live-code, visualization and text. In [34] authors use

three machine learning algorithms namely Logistic Regression,

Naïve Bayes and J48 on several datasets to perform defect

prediction. The experimental results proved that using reduced

metrics set is better than using the entire metric set to generate

the results. G-score and recall provide good results despite using

full set of metrics. Among the algorithm tested on reduced set of

metrics, J48 outperformed others using G-score. Datasets that

were used were from open source eclipse releases. The Table 1

lists the AI/ML algorithm used in SDLC phases based on studied

literature.

Table 1. Summary of algorithms used based on literature review

PHASE IN

SDLC

ML ALGORITHMS USED

Requirements

Engineering

Support Vector Machines, Naïve Bayes,

Random Forest, Decision Tree, K-Nearest

Neighbor, Linear Regression, AdaBoost,

Logistic Regression, Natural Language

Processing, Recurrent Neural Network, and

Long Short-Term Memory

Software Design Natural Language Processing, Decision Tree,

Multinomial Naïve Bayes, Perceptron, Linear

Classifier, Passive Aggressive Classifier,

Vector Space Machines, Recurrent Neural

Network, Random Forest, Linear Regression,

Principal Component Analysis, Artificial

Neural Network, Genetic Algorithm

Software

Development

Convolution Neural Networks, Recurrent

Neural Network, Natural Language

Processing, Artificial Neural Network,

Decision Tree, Naïve Bayes, Support Vector

Machine, Linear Regression, AdaBoost, J48,

Extreme Gradient Boosting

Software Testing Recurrent Neural Network, Decision Tree,

Natural Language Processing, Naïve Bayes,

Artificial Neural Network, Convolutional

Neural Network, Support Vector Machine,

Tree Augmented Naïve Bayes, KStar, Genetic

Algorithm, Clustering, K-Means, Long Short

Term Memory, Association Rule Mining,

Multi-Layer Perceptron

Software

Maintenance

Support Vector Machine, Recurrent Neural

Network, Decision Tree, Natural Language

Processing, Naïve Bayes, K Nearest Neighbor,

Sequential Minimal Optimization, Federated

Learning

III. PROPOSED METHODOLOGY

The proposed framework in the Figure 3 shows how AI and ML

techniques can be adopted to replace some of the Mundane

Tasks that are carried out in each phase of SDLC. The ML and

AI techniques used in the proposed novel framework are

summarized in the Table 2. It also proposes some innovative

ways of adopting AI and ML to make the flow of the tasks in

each of these phases smoother. If the company has been qualified

as a CMMI level company or adheres to the ISO standards, then

the standard process or template can be stored in the KB at each

of the levels of SDLC, so that the algorithm is able to make sure

quality is met each time.

A Requirements Analysis Phase

 The Requirements Gathering and Engineering is a very

important phase in the entire SDLC since it is the inception stage,

from which the project kicks off. The success at this stage greatly

impacts the success of overall project. This contains the

information in an unstructured format that acts as main source of

input to the Software Architects in the Design Phase. Some of

the common problems in the Requirements Engineering Phase

includes, Poor Requirements Quality where the requirements are

ambiguous, incomplete, inconsistent, and incorrect and obsolete

[1]. One of the major causes of any of these problems is lack of

expertise or inadequate training of the Requirement Engineers.

This dependency on the personnel can be eliminated by making

use of a CHATBOT-an AI chat agent as shown in the fig 2. This

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6944

Article Received: 28 March 2023 Revised: 12 May 2023 Accepted: 31 May 2023

384

IJRITCC | June 2023, Available @ http://www.ijritcc.org

CHATBOT makes use of the Knowledge Base which is mainly

constructed from the Domain Knowledge of the Project under

consideration like Banking, Retail, HealthCare, Finance, Travel,

and Entertainment. This KB in turn consists of two parts,

Knowledge Representation and Inference Engine. The

CHATBOT also needs to make use of a NLP Analyzer to parse

the sentences posed by the end-users and understand them in

order to take necessary actions. Here the KB consists of the

domain specific ontology definitions, common vocabulary as to

how to represent the data, all the previous chat history of

conversation with its end-users or stake-holders, and also some

frequently asked questions related to that domain. This KB must

be rich with data in order to facilitate the CHATBOT to make

intelligent decisions. The CHATBOT can also be implemented

to take input in the form of audio from the clients. Since most of

requirements are unstructured and gathered in free-flow English,

the conversion from unstructured form to a more formal

representation depends entirely on the knowledge base and

experience of the Requirements Engineer. Having a CHATBOT

in place of a Requirement Engineer can eliminate the

dependency on human personnel to get the task done. It is also

seen that different dimensionally. If you must use mixed units,

clearly state the units for each quantity that you use in an

equation people interpret the same requirement in different

ways. This leads to conflict of interest if more Requirement

Engineers are participating in the task of eliciting requirements.

Also on many occasions, the quality of the requirement

elicitation depends on the emotional mood, health and temper of

the requirement engineer, on the contrary an AI CHATBOT, it

is very stable. Once the requirements are elicited by the

CHATBOT, they are converted to a more formal representation

and added to the SRS document. The SRS document is also

updated further based on the second KB pertaining to the domain

knowledge of the project, details on project team, and archives

of the previous projects carried out in the same domain. A

Classification Algorithm, can be implemented to identify and

classify the requirements as Function or Non-Functional

Requirements. The Risk Analysis and Mitigation is another

important part of SDLC. This is incorporated at various stages

in different ways depending on the Software Development

Model used. The main aim of this stage, is to identify the

potential risks that might come-up in the project based on the

new requirements gathered along with the existing requirements

and the other project details present in the KB. These details are

then updated to the SRS document. Various machine learning

Prediction Algorithms can be incorporated at this stage. The next

important phase is to do the Metric Calculation and Cost

Estimation of the project. This is very important very any

software project and there are some well-defined software

metrics standards to carry out this task. Here again some

Machine Learning Algorithms can be designed to perform the

Estimation and Prediction activities. This takes the input from

the existing data in the KB along with the SRS document. Also

a Recommender System can be implemented based on the SRS

Document and the existing KB to suggest which of the new

requirements can be practically implemented given the various

factors and circumstances and which cannot be. This also

identifies the non-testable requirements. Provides suggestions

on any incomplete logic that is present. From the existing KB,

the ML algorithm will be able to learn those requirements which

when implemented in the past have led to the failure or the

project or have not been able to reach the end-user.

B Design Phase

The SRS Document acts as input to the design phase, based

on the new requirements incorporated, a ML algorithm can be

used to recommend the suitable High-Level Architectural

Design and Low-Level Design patterns. The ML Algorithms

recommends the Functions, Modules and Interfaces that can be

implemented based on the Requirements in the SRS Document.

It also generates a skeletal Entity-Relationship Diagram, Flow-

Charts indicating the flow of entire process.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6944

Article Received: 28 March 2023 Revised: 12 May 2023 Accepted: 31 May 2023

385

IJRITCC | June 2023, Available @ http://www.ijritcc.org

Fig 3. Proposed Novel Framework

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6944

Article Received: 28 March 2023 Revised: 12 May 2023 Accepted: 31 May 2023

386

IJRITCC | June 2023, Available @ http://www.ijritcc.org

The Low-Level Detailed Design involves employing a ML

algorithm to suggest the design patterns based on the interaction

between the modules, functions and interfaces identified in the

High-Level Design. The Design Engineers and Software

Architects can make use of these inputs and further make

modifications to it in more detail and create a solid Design

Document. This phase makes use of a separate KB containing

the information needed to support the design.

C Implementation Phase

The Design Document acts as an input to the Coding Phase,

where a software can be developed to convert the design to a

skeletal code. The developer then can make use of this skeletal

code and the work on it further to write a more detailed code. A

CHATBOT-Coding Assistant is employed in this phase that

provides assistance to the developer for developing the code.

During the code phase, if the developer gets stuck in any part

while developing the code, by contacting the CHATBOT it

provides tips as to how to tackle with the problem by providing

suggestions which is again derived from a KB which is a rich

repository of common problems encountered by the developers

in the past. In addition to this, it can also provide links to the

websites from around the web that are most commonly consulted

by the developers while developing the code. Prior to this the

KB, can also be loaded with information on the team members

and developers who have worked on that piece of code in past,

and the AI-CHATBOT can provide suggestions on whom to

contact. In addition to this a Machine Learning Prediction

Algorithm can be developed to predict the coding mistakes

before the developer makes and prevent them.

C Quality Assurance Phase

The Design Document acts as an input to the Coding Phase,

where a software can be developed to convert the design to a

skeletal code. The developer then can make use of this skeletal

code and the work on it further to write a more detailed code. A

CHATBOT-Coding Assistant is employed in this phase that

provides assistance to the developer for developing the code.

During the code phase, if the developer gets stuck in any part

while developing the code, by contacting the CHATBOT it

provides tips as to how to tackle with the problem by providing

suggestions which is again derived from a KB which is a rich

repository of common problems encountered by the developers

in the past. In addition to this, it can also provide links to the

websites from around the web that are most commonly consulted

by the developers while developing the code. Prior to this the

KB, can also be loaded with information on the team members

and developers who have worked on that piece of code in the

past, and the AI-CHATBOT can provide suggestions on whom

to contact. In addition to this a Machine Learning Prediction

Algorithm can be developed to predict the coding mistakes

before the developer makes and prevent them. The fully

developed and functional application acts as an input to the

Quality Team, where Test Plan Generator is employed to

generate the Test Plan for the current cycle of SDLC. It makes

use of the KB present in this phase that contains the details on

the personnel, schedule, history of previous defects, test case

repository i.e. test case management tool, Requirements from

SRS. The Test Plan is a standard template document that

contains the set of test cases to be executed from existing Test

bed based on the Requirements and the Code. The Test Case

development is one of the activities that takes a significant

percentage of verification and validation efforts. The Test Case

Table 2.Summary of activities for the proposed framework

PHASE ACTIVITY ML TECHNIQUES AI TECHNIQUES

Requirements

Analysis

Requirements Elicitation-Interview

Requirements Classification

Risk Mitigation and Analysis

Classification

Algorithms, Prediction

Algorithms

CHATBOT-

Requirements Elicitation

Software Design High-Level Architectural Design

Low-Level Detailed Design

Classification

Algorithms, Prediction

Algorithms

Software

Development

Skeletal Code Generator

Trouble Shoot while Coding

Suggest White-Box Testing

techniques.

Classification

Algorithms, Prediction

Algorithms

CHATBOT-Coding

Assistant,

Software Testing Test Plan Generator

Test Case Recommender

Bug Report Generator

Classification

Algorithms, Clustering,

Prediction Algorithms

Software

Maintenance

Customer Support

Service Log Generator

Classification

Algorithms

CHATBOT-Support

Representative

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6944

Article Received: 28 March 2023 Revised: 12 May 2023 Accepted: 31 May 2023

387

IJRITCC | June 2023, Available @ http://www.ijritcc.org

Recommender takes the input from the KB of the Test Phase as

well as Test Plan that is generated by the Test Plan Generator. It

is practically impossible to run nearly lakhs of tests in the Test

Bed. It is necessary to identify the most likely functions to get

impacted and run optimal regression tests. This Recommender

makes use of the Machine Learning Prediction algorithm along

with historical defect data present in the KB to build a prediction

model that is able to capture the new data and predict what test

cases need to be executed from existing test bed as well as

develop new test cases for the missing scenarios based on the

new requirements. After the Recommended Test Cases are

executed, the results of Test Case Execution are passed onto the

Bug Report Generator. This Bug Report Generator makes use of

KB to generate a Bug Report in a standard template format as

decided by the Quality Team. This Bug Report also indicates the

Severity, Priority of each Bug reported along with assigning the

bug to the respective developer or concerned team.

D Operations and Maintenance Phase

After the tested quality software has been delivered to the

customer/client/end-user for use, if they encounter any problem

during the operation phase, they can consult the customer care

team of the company. Here the CHATBOT-Call Centre

Assistant acts a point of contact to the customer. The client

places the service request with the CHATBOT that makes use of

a dedicated KB to try to address the problem. This KB consists

of some frequently asked question-answers by customers,

required amount of domain knowledge, information on the

teams, knowledge on commonly encountered problems and

workaround. The CHATBOT makes use of this rich knowledge

base to log a ticket for every query of the customer. The

CHATBOT also assigns the ticket to the concerned team/team

manager with priority and severity. The service log generator

generates a ticket based on the input from the CHATBOT. A

standard template is agreed upon for the Service Log. Once the

details are updated in this log by the CHATBOT, this is again

updated in the KB to help in training of learning algorithms of

ML that will be used in this phase.

IV. RESULTS

The results section here shows the pictorial representation of the

framework represented using Figure 3 that has been described

above in the method section. Each of these phases can be

executed independently or can be implemented end to end for

any software. The Table 3 above provides a matrix that indicates

the coverage of AI and ML techniques across the various phases.

The results section also discusses the current usage percentage

of AI and ML algorithms across the different phases. These are

indicated in the Figure 3. It gives an overview as to which

algorithms are used across all the phases of Software

Development Life Cycle (SDLC) and which algorithms are used

only for a single phase of SDLC. Figure 4 is a bar graph

representing the percentage usage of AI/ML algorithms across

the different phases of SDLC. The X-Axis represents the various

algorithms used for automating the phases of SDLC. Twenty

five different algorithms are considered based on Table 1.

Considering that SDLC has five phases, 100% in the above

graph implies that the corresponding algorithms are used in all

the five phases of SDLC. From the Figure 4, one can imply that

DT, NB, NLP, RNN and SVM are used in all the phases of

SDLC.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6944

Article Received: 28 March 2023 Revised: 12 May 2023 Accepted: 31 May 2023

388

IJRITCC | June 2023, Available @ http://www.ijritcc.org

The 60% in the Figure 4 corresponding to Artificial Neural

Networks (ANN) and Linear Regression implies that these

algorithms are applicable to three phases of SDLC. The

corresponding phases can be identified from the matrix in the

Table 3. Convolutional Neural Network (CNN), Clustering,

Genetic Algorithm (GA), K-Nearest Neighbor (KNN), Long

Short Term Memory (LSTM), Perceptron and Random Forest

(RF) are being used in two phases of SDLC. Hence their

percentage usage is 40%. Similarly Association Rule Mining

(ARM), Extreme Gradient Boosting (EGB), Federated

Learning (FL), K-Star, Logistic Regression, Principal

Component Analysis (PCA), Passive Aggressive Classifier

(PAC), Sequential Minimal Optimization (SMO) and Vector

Space Machine (VSM) are used only in one of the phases of

SDLC. Hence the usage is 20% across the phases of SDLC. A

part of the framework in the Table 3 below has already been

implemented and published as an IEEE conference paper in

[35]. The automation of requirements elicitation phase of

requirements engineering was carried out using an AI chatbot

that elicited the requirements from the customer both in text

mode and voice mode. It used the AI techniques Natural

Language Processing (NLP) and Natural Language Generation.

Machine Learning techniques such as Long Short Term

Memory (LSTM) and Recurrent Neural Networks (RNN) were

used. The classification algorithms such as Support Vector

Machine (SVM) and Naïve Bayes (NB) were used for

classification of functional requirements and non-functional

requirements. A comparative analysis of these two

classification algorithms were carried out and the results are

indicated in the Table 4 given below.

Table 3. Mapping of AI/ML Algorithm Usage for SDLC phases

ML Algorithms Requirements Design Development Testing Maintenance

ADA Boost √ - √ - -

ANN - √ √ √ -

-ARM - - - √ -

CNN - - √ √ -

Clustering - - - √ -

DT √ √ √ √ √

EGB - - √ - -

FL - - - - √

GA - √ - √ -

J48 - - √ - -

KNN √ - - - √

K Star - - - - -

LSTM √ - - √ -

Linear Regression √ √ √ √ -

Logistic Regression √ - - - -

NB √ √ √ √ √

NLP √ √ √ √ √

Perceptron - √ - √ -

PCA - √ - - -

PAC - √ - - -

RF √ √ - - -

RNN - √ √ √ √

SVM √ - √ √ √

SMO - - - - √

VSM - √ - - -

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6944

Article Received: 28 March 2023 Revised: 12 May 2023 Accepted: 31 May 2023

389

IJRITCC | June 2023, Available @ http://www.ijritcc.org

Fig 4. Percentage usage of AI/ML algorithms for the stages of SDLC

Table 4. Comparative Analysis of the Classification Techniques

for Requirements Engineering Phase

Classification

Technique

Performance Metrics

Accura

cy

Precisi

on
Recall

F1-

Score

Naïve Bayes 0.91 0.91 0.91 0.91

SVM 0.88 0.88 0.88 0.88

V. CONCLUSION AND FUTURE WORK

Software engineering defines the process of developing a

software that meets the customer requirements within the time

and budget constraint. This is generally considered to be

definition of successful software. But the definition of successful

software is changing. A software can be a failure even if it meets

all the requirements and is delivered on time and within budget

because it simply fails to impress the customers. However, a

software that is delivered with a few requirements and stretches

a little beyond the deadlines can be considered as successful

because it becomes a hit in the market release. What is more

important here is to be able to deliver the same quality of work

repeatedly to the end users each time irrespective of the project

on hand. This can be achieved by having a framework in place

such as the one defined in the paper which relies heavily of data

archives and past experiences to cater better for the customer

needs. The Machine Learning and Artificial Intelligence

techniques are evolving rapidly and with the advent of new

algorithms, small changes can be adopted to the framework

simply by replacing the algorithms. As a part of the future work,

more algorithms can be suggested to fully automate the process

at various levels. Also customized frameworks can be proposed

for individual process models.

REFERENCES

[1] Gramajo, M., Ballejos, L. and Ale, M., 2020. Seizing

requirements engineering issues through supervised learning

techniques. IEEE Latin America Transactions, 18(07),

pp.1164-1184.

[2] Chechik, M., 2019, September. Uncertain requirements,

assurance and machine learning. In 2019 IEEE 27th

International Requirements Engineering Conference (RE)

(pp. 2-3). IEEE.

[3] Panichella, S. and Ruiz, M., 2020, August. Requirements-

collector: automating requirements specification from

elicitation sessions and user feedback. In 2020 IEEE 28th

International Requirements Engineering Conference (RE)

(pp. 404-407). IEEE.

[4] Tiwari, S., Rathore, S.S., Sagar, S. and Mirani, Y., 2020,

August. Identifying Use Case Elements from Textual

Specification: A Preliminary Study. In 2020 IEEE 28th

International Requirements Engineering Conference (RE)

(pp. 410-411). IEEE.

[5] Ishikawa, F. and Matsuno, Y., 2020, August. Evidence-

driven requirements engineering for uncertainty of machine

learning-based systems. In 2020 IEEE 28th International

Requirements Engineering Conference (RE) (pp. 346-351).

IEEE.

[6] Dekhtyar, A. and Hayes, J.H., 2018. Automating

requirements traceability: two decades of learning from

KDD. arXiv preprint arXiv:1807.11454.

[7] Vogelsang, A. and Borg, M., 2019, September. Requirements

engineering for machine learning: Perspectives from data

scientists. In 2019 IEEE 27th International Requirements

Engineering Conference Workshops (REW) (pp. 245-251).

IEEE.

[8] Canedo, Arquimedes, Palash Goyal, Di Huang, Amit Pandey,

and Gustavo Quiros. "ArduCode: Predictive Framework for

Automation Engineering." IEEE Transactions on

Automation Science and Engineering 18, no. 3 (2020): 1417-

1428.

[9] Atoum, I., Baklizi, M., Alsmadi, I., Otoom, A.A., Alhersh,

T., Ababneh, J., Almalki, J. and Alshahrani, S., 2021.

Challenges of Software Requirements Quality Assurance and

Validation: A Systematic Literature Review. IEEE Access.

[10] Wan, Z., Xia, X., Lo, D. and Murphy, G.C., 2019. How does

machine learning change software development practices?.

IEEE Transactions on Software Engineering, 47(9), pp.1857-

1871.

[11] Santos, J.C., Mirakhorli, M., Mujhid, I. and Zogaan, W.,

2016, April. BUDGET: A tool for supporting software

architecture traceability research. In 2016 13th Working

IEEE/IFIP Conference on Software Architecture (WICSA)

(pp. 303-306). IEEE.

[12] Nishi, Y., Masuda, S., Ogawa, H. and Uetsuki, K., 2018,

April. A test architecture for machine learning product. In

2018 IEEE International Conference on Software Testing,

Verification and Validation Workshops (ICSTW) (pp. 273-

278). IEEE.

[13] Tekbulut, T., Canbaz, N. and Kaya, T.Ö., 2022. Machine

Learning Application in LAPIS Agile Software Development

Process. In Intelligent Computing (pp. 1136-1148). Springer,

Cham.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6944

Article Received: 28 March 2023 Revised: 12 May 2023 Accepted: 31 May 2023

390

IJRITCC | June 2023, Available @ http://www.ijritcc.org

[14] De Carvalho, H.D.P., Fagundes, R. and Santos, W., 2021.

Extreme Learning Machine Applied to Software

Development Effort Estimation. IEEE Access, 9, pp.92676-

92687.

[15] Shafiq, S., Mashkoor, A., Mayr-Dorn, C. and Egyed, A.,

2021. A Literature Review of Machine Learning and

Software Development Life cycle Stages. IEEE Access.

[16] Medeiros, N., Ivaki, N., Costa, P. and Vieira, M., 2020.

Vulnerable code detection using software metrics and

machine learning. IEEE Access, 8, pp.219174-219198.

[17] Zhang, K., Wang, X., Ren, J. and Liu, C., 2020. Efficiency

improvement of function point-based software size

estimation with deep learning model. IEEE Access, 9,

pp.107124-107136.

[18] Ahmed, H.A., Bawany, N.Z. and Shamsi, J.A., 2021.

Capbug-a framework for automatic bug categorization and

prioritization using nlp and machine learning algorithms.

IEEE Access, 9, pp.50496-50512.

[19] Asif, M. and Ahmed, J., 2020. A novel case base reasoning

and frequent pattern based decision support system for

mitigating software risk factors. IEEE Access, 8, pp.102278-

102291.

[20] Al Qasem, O., Akour, M. and Alenezi, M., 2020. The

influence of deep learning algorithms factors in software fault

prediction. IEEE Access, 8, pp.63945-63960.

[21] Kukkar, A., Mohana, R., Kumar, Y., Nayyar, A., Bilal, M.

and Kwak, K.S., 2020. Duplicate bug report detection and

classification system based on deep learning technique. IEEE

Access, 8, pp.200749-200763.

[22] Campos, J.R., Costa, E. and Vieira, M., 2019. Improving

failure prediction by ensembling the decisions of machine

learning models: A case study. IEEE Access, 7, pp.177661-

177674.

[23] Saravanan A., & Venugopal, V. . (2023). Detection and

Verification of Cloned Profiles in Online Social Networks

Using MapReduce Based Clustering and Classification.

International Journal of Intelligent Systems and Applications

in Engineering, 11(1), 195–207. Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/2459.

[24] Shepperd, M., Hall, T. and Bowes, D., 2017. Authors’ Reply

to “Comments on ‘Researcher Bias: The Use of Machine

Learning in Software Defect Prediction’”. IEEE Transactions

on Software Engineering, 44(11), pp.1129-1131.

[25] Chakraborty, T. and Chakraborty, A.K., 2020. Hellinger net:

A hybrid imbalance learning model to improve software

defect prediction. IEEE Transactions on Reliability, 70(2),

pp.481-494.s

[26] Song, Q., Jia, Z., Shepperd, M., Ying, S. and Liu, J., 2010. A

general software defect-proneness prediction framework.

IEEE transactions on software engineering, 37(3), pp.356-

370.

[27] Artificial Intelligence and Software Engineering: Status and

Future Trends, JörgRech, Klaus-Dieter Althoff, 2004

[28] The Role of Artificial Intelligence in Software Engineering,

Mark Harman CREST Centre, University College London,

Malet Place, London, WC1E 6BT, UK.

[29] Software Analytics: What’s Next? Tim Menzies, North

Carolina State University, Thomas Zimmermann, Microsoft

Research. IEEE computer society 2018.

[30] The Synergy of Human and Artificial Intelligence in

Software Engineering. Tao Xie, North Carolina State

University, Raleigh, NC, USA. IEEE RAISE 2013.

[31] Towards supporting Software Engineering using Deep

Learning: A case of Software RequirementsClassification.

Ra´ul Navarro-Almanza, Reyes Ju´arez-Ram´ırez, Guillermo

Licea, School of Chemical Science and Engineering,

Universidad Aut´onoma de Baja California Tijuana, Baja

California, M´exico. Calzada Universidad 14418. 2017 5th

International Conference in Software Engineering Research

and Innovation (CONISOFT).

[32] Machine Learning for Software Engineering: Models,

Methods, and Applications. Karl Meinke, AmelBennaceur.

[33] Empirical comparison of machine learning algorithms for

bug prediction in open source software, Ruchika Malhotra ;

LaavanyeBahl ; Sushant Sehgal ; Pragati Priya, 2017 IEEE

International Conference on Big Data Analytics and

Computational Intelligence.

[34] Open Source Platforms and Frameworks for Artificial

Intelligence and Machine Learning. Sambit Bhattacharya,

Rajeev Agrawal, ErdemErdemir, BalakrishnaGokaraju,

USA, IEEE

[35] Applying machine learning to predict software fault

proneness using change metrics, static code metrics, and a

combination of them. Yasser Ali Alshehri, Katerina Goseva-

Popstojanova, Dale G. Dzielski and Thomas Devine. IEEE

Conference SouthEastCon 2018.

[36] Surana, C.S.R.K., Gupta, D.B. and Shankar, S.P., 2019, May.

Intelligent chatbot for requirements elicitation and

classification. In 2019 4th International Conference on

Recent Trends on Electronics, Information, Communication

& Technology (RTEICT) (pp. 866-870). IEEE

http://www.ijritcc.org/

