
International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 6s 

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6944 

Article Received: 28 March 2023 Revised: 12 May 2023 Accepted: 31 May 2023 

___________________________________________________________________________________________________________________ 

 

379 

IJRITCC | June 2023, Available @ http://www.ijritcc.org 

Framework for the Automation of SDLC Phases 

using Artificial Intelligence and Machine Learning 

Techniques 
 

Sahana P. Shankar1, Shilpa Shashikant Chaudhari2 
1Department of Computer Science and Engineering  

Ramaiah University of Applied Sciences  

Bengaluru, India 

e-mail: sahanaprabhushankar@gmail.com 
2Department of Computer Science and Engineering  

M S Ramaiah Institute of Technology (Affiliated to VTU) 

Bengaluru, India 

e-mail: shilpasc29@msrit.edu 

  

Abstract— Software Engineering acts as a foundation stone for any software that is being built. It provides a common road-map for 

construction of software from any domain. Not following a well-defined Software Development Model have led to the failure of many software 

projects in the past. Agile is the Software Development Life Cycle (SDLC) Model that is widely used in practice in the IT industries to develop 

software on various technologies such as Big Data, Machine Learning, Artificial Intelligence, Deep learning. The focus on Software 

Engineering side in the recent years has been on trying to automate the various phases of SDLC namely- Requirements Analysis, Design, 

Coding, Testing and Operations and Maintenance. Incorporating latest trending technologies such as Machine Learning and Artificial 

Intelligence into various phases of SDLC, could facilitate for better execution of each of these phases. This in turn helps to cut-down costs, 

save time, improve the efficiency and reduce the manual effort required for each of these phases. The aim of this paper is to present a framework 

for the application of various Artificial Intelligence and Machine Learning techniques in the different phases of SDLC. 

Keywords-Requirements Elicitation, Knowledge Bank, Testing, Software Maintenance, Chatbot, Design. 

 

I. INTRODUCTION 

Software Engineering (SE) can be defined as application of 

engineering skills to the development of a software product. 

Over the years engineers have spent much time in building more 

intelligent software. With the increase in the level of intelligence 

associated with the software, the level of complexity also seems 

to be increasing. Complex software again poses new challenges 

to the software engineers at each of the phases of the software 

development life cycle (SDLC).  Where developing complex 

system is a challenging task to the software engineers, 

developing intelligent ways of building the complex intelligent 

systems can be considered to a bigger challenge in itself. If a 

software engineer is able to achieve the latter task, it could as 

well simplify and aid in improving the efficiency of the earlier 

task. The Figure 1 below shows the relationship between 

Planning, Decision and Searching in terms of AI, ML and SE 

where SE involves more of planning, AI involves searching and 

ML involves decision making. 

 

 
Fig 1. Connectivity between AI-ML-SE 

Artificial Intelligence has gained a lot of popularity in the recent 

years in the various fields of Automotive, Banking, Medicine, 

Retails and Service Industry. It has been observed that AI has 

made its way into mundane everyday tasks of people in day to 

day life. With rapid growth and extensive research work being 

carried out in the field of AI and ML at an exponential rate, 

these results can be used to improve the Software Engineering 

Process. 
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The different phases of SDLC on a high level can be broadly 

classified as Requirement Analysis, Design, Implementation, 

Testing, Operation and Maintenance. These phases will be 

present in any Software development model in additional to a 

few more phases. The Requirements phase involves mainly 

elicitation of the business requirements from the clients or stake 

holders through personal interviews or brainstorming. These 

requirements that are collected in Natural Language such as 

English are then converted to a more formal representation of 

data for the Software Requirements Specification Document. 

The conversion from Informal English sentences to more 

Formal Document is generally carried out by a Business 

Analyst who is a domain expert of the project. Alongside, with 

the development of SRS document, another document called as 

Risk Analysis and Mitigation document is prepared by making 

use of the Project and Process Metrics. A decision is also made 

as to what Requirements can be actually implemented and 

which cannot be. 

This SRS document then acts as an input for the Design Phase, 

where the Formal Requirements are then converted to High 

Level Architectural Design and more detailed Low-Level 

Design Patterns. This job is carried out by the Software 

Architect. The selection of Appropriate Architectural Design or 

Design pattern is based on various Software Metrics and 

Measurement Parameters such as Halsted and McCabe’s 

Metrics, Chidamber and Kerner (CK) Metrics to name a few. 

The output of this phase is the detailed Design Document. 

The Detailed Document is then converted to a Computer 

Program or Code using various Product Metrics. This job is 

carried out by a Software Developer, who decides on which 

programming language and programming styles to be adopted. 

The output of this phase is working source code and the 

Software Application or Product. The developer also decides on 

the White Box Testing Techniques to be adopted. 

The Source Code and the Software Application is then passed 

onto the Testing Phase, where a dedicated Testing team 

performs the Black Box Testing. The Quality Engineer who 

carries out this activity designs the test cases based on various 

Black Box Testing Techniques that are available. The Test Plan 

also needs to be designed at the beginning of the testing activity 

based on project Metrics by the Test Team Lead. This plan 

contains important decision as to which test cases need to be 

tested as a part of Regression Testing. The test cases then need 

to be executed either manually or using Automation Tools. Any 

bugs identified during this phase is generally logged in a Bug 

Report and then reverted back to the Development Team. 

The final Quality Software is then released to the customers for 

use. The phase that comes into action now is the Operations and 

Maintenance Phase during which support will be extended to 

the end users or clients if any issues arise during the use of the 

software. The companies generally have a dedicated Support 

Team that cater to these issues by logging a ticket for every 

concern raised by the client. 

The Figure 2 shows the different phases of SDLC which are 

found in any of the Software Development Models in terms of 

process model to be followed. 

 

Fig 2. Overview of Different Phases of SDLC 

II. RELATED WORK 

This section discusses on the various works that has already 

been carried out in application of machine learning and AI 

techniques for improvising the different phases. In [1] the 

authors talk about applying supervised machine learning 

techniques to automate and address some the issues during the 

requirements engineering phase. It also discusses the datasets 

that have been used to carry out these experiments. The 

PROMISE data repository, Metric Data Program and iTrust 

electronic healthcare systems are used for the datasets. The 

problems addressed include linguistic problem detection in the 

SRS document that is written in natural language, application of 

classification algorithms to classify the contents of SRS 

document, defect traceability to the requirements, software effort 

estimation, prediction of failures using SRS and generation of 

business rules. The machine learning techniques used are 

random forest, Naïve Bayes, Support Vector Machine, decision 

tree and K-nearest neighbor. In [2] author discusses that 

uncertainty is an integral part of any software, especially the 

embedded softwares involving robots, automated cars or 

unmanned vehicles. Customer satisfaction being the important 

goal of any software being developed, it is also important to 

address these uncertainties and ensure software compliance. The 

important requirements include security and privacy among 

others. This paper also addresses the security and privacy 
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concerns of the software by proposing a framework for handling 

uncertainty. In [3] the authors proposes a tool that can 

automatically convert the elicited requirements in a technical 

format. It also provides an option to collect the end user 

feedback. The manual way of doing this slows down the process 

and has an impact on usability and reliability. The tool uses 

supervised machine learning and unsupervised deep learning 

strategies. The supervised machine learning algorithms used 

include Logistic, LogitBoost, Linear Regression, J48, and 

AdaBoostM1. In [4] the author talks about generation of use 

cases from the elicited requirements. The requirements collected 

will be in natural language and hence it is difficult to 

comprehend the dependencies, inconsistencies or any missing 

requirements. The very first UML diagram that is generally 

drawn is the Use Case that depicts the interaction of the user with 

the outside world. It helps to identify the different stakeholders 

interacting with the software system. Such a graphical document 

is very easy to comprehend and understand. The diagram also 

depicts the dependencies between the use cases using 

relationships such as include and extend. This takes considerable 

amount if effort if it needs to be done manually. This process 

when automated with the proposed machine learning techniques 

has proven shorten the time taken for generation. In [5] the 

authors discuss about the difficulties in eliciting the 

requirements for a machine learning based software. They 

suggest a new strategy called as Goal Oriented Software 

Requirements Engineering to collect the requirements. In [6] the 

authors discuss about implementing one of the most important 

characteristic of good requirements i.e. traceability. He talks 

about using trace matrix or providing the connection between the 

various requirements. This work also has been carried out using 

the datasets from the PROMISE repository. In [7], the authors 

talk about the challenges involved in carrying out the 

requirements engineering phase for machine learning based 

projects. Specific legal requirements, explain ability and 

freedom from discrimination are the new techniques adopted in 

the requirements engineering process. In [8] the authors talk 

about improving the efficiency of software process models using 

AI techniques. They implement IoT based methods to automate 

the existing process with minimum disruption. They also 

provide the datasets for researchers to continue the research 

further. They have suggested the use of various unsupervised 

machine learning algorithms for the same. In [9] the author yet 

again discusses about ensuring the good characteristics of the 

requirements, more specifically assurance of requirements 

quality and validating the same. Detection and correction of the 

errors in the requirements is an important aspect of this paper. 

Some of the techniques include formal methods, prototyping, 

test oriented, and knowledge oriented validation among others. 

The latest trend is to perform validation using Machine Learning 

techniques. In [10] the authors provide the recommendations and 

suggestions to the practitioners on the various machine learning 

algorithms that can be used across the various phases, based on 

the survey conducted by them. In [11] the authors propose a new 

tool called “BUDGET” that helps in the high level design phase 

of software engineering. They propose the use of supervised 

machine learning algorithms for the same. By using these 

techniques the user can bridge the gap between requirements, 

architecture and code. In [12] the authors propose a testing 

framework for validating the software products based on 

machine learning techniques. Testing of ML based software 

products is much difficult than the non-ML counterparts mainly 

because of self-learning and rapid evolution capability of ML 

algorithms. Hence, there must be special measures that would be 

considered for these products. Robustness, avoid ability, 

achievability, improvability and allow ability are the features 

taken into consideration for evaluating the performance of the 

ML based software products. In [13] the authors propose how to 

use machine learning techniques for Agile software 

development process. They talk about automating the client 

feedback received during the retrospective meeting to improve 

the Agile development process continuously. They use 

sentiment analysis for this purpose. In [14] the authors handle a 

very important aspect i.e. software project effort estimation 

which needs to be performed during the project inception. This 

paper proposed “Extreme Learning Machine” model to perform 

the effort estimation. It is suggested that Particle Swarm 

Optimization technique can be used to optimize this further. In 

[15] the authors conduct a literature survey on what algorithms 

are used in what phases of the software development life cycle. 

It was observed that most of applications of the machine learning 

algorithm is mainly for the testing and quality assurance phase, 

design and architecture, development, requirements engineering 

and maintenance in that order. It was also observed that Artificial 

Neural Network (ANN) is the most widely applied algorithm 

and Linear Regression being the least preferred technique. In 

[16], the author talks about applying machine learning technique 

to the implementation phase. He suggests how to detect 

vulnerable or faulty code in the software. He uses classification 

techniques to separate vulnerable code from non-vulnerable 

ones. Decision Tree, Support Vector Machine, and Random 

Forest to do the job. They used the projects developed using 

C++/C. Software metrics are used along with machine learning 

techniques to do the job. In [17] the authors talk about software 

size estimation using the machine learning model deep learning. 

This is achieved using software metrics called as Function Points 

(FP). He says that the manual way of estimating the software 

takes considerable amount of effort and also can be erroneous. 

This also leads to increase in the cost of software estimation. The 

deep learning based model called as “Named Entity 

Recognition” model does the job automatically. The 

experiments were conducted on the 29 live projects. The Table 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 6s 

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6944 

Article Received: 28 March 2023 Revised: 12 May 2023 Accepted: 31 May 2023 

___________________________________________________________________________________________________________________ 

 

382 

IJRITCC | June 2023, Available @ http://www.ijritcc.org 

1 below summarizes the various machine learning techniques 

used in the different phases of Software Development Life Cycle 

[15]. In the software quality assurance phase, bug prediction and 

detection are the two most important aspects. After the bug has 

been detected or predicted, it is also important to categorize them 

into various categories based on priority and severity. The 

authors in [18] propose a method for doing this automatically 

using machine learning and natural language processing 

technique. This helps to identify and address the high priority 

bugs early. The Mozilla and Eclipse repository has been used for 

the experimental purpose. The classification algorithms Naïve 

Bayes, logistic regression, decision tree and random forest has 

been used for the experimental purpose. In the software 

development models like the Boehm’s spiral model, risk 

mitigation is a very important factor. Identification and 

mitigation of risks is an important phase that happens in every 

iteration. In [19] the authors discuss a way of doing this 

automatically using machine learning techniques. They use 

association rule mining for identifying the associations between 

risks and mitigation strategies. This uses a hybrid approach 

consisting of Case based reasoning and Association Rule 

mining. Based on the data collected, they list down 26 different 

software risk factors and 50 different mitigation strategies to 

address the same [19]. In [20] the authors talk about the different 

ways of predicting the bugs in the software even before the 

quality assurance phase can begin. They make use of deep 

learning algorithms to achieve this task. These include the two 

algorithms namely Convolutional Neural Networks and Multi-

Layer Perceptron. They have conducted the experiments on the 

NASA defect datasets namely CM1, KC1, KC2 and PC1. In [21] 

authors talk about the importance of documentation throughout 

all the phases of the software development life cycle. Bug 

duplication is also an important aspect that needs to be addressed 

during the testing phase. After the duplicate bugs are detected, 

the next step is using the classification algorithm to classify 

whether the bug is duplicate or not. These experiments were 

carried out on datasets provided by Eclipse, Mozilla, Firefox, 

NetBeans and Open office. In [22] the authors discuss about the 

growing complexity of the software and its influence on the 

quality of the product. There is no way that all the defects can be 

predicted beforehand using machine learning techniques. So we 

can never say that we have detected all the defects before the 

software enters the testing phase. The authors here propose a 

technique for predicting the failures using ensemble machine 

learning techniques. Research shows that ensemble techniques 

provide better result than the individual models. In [23], the 

authors talk about the bias that influence the experimental results 

in the field of defect prediction. The results show that there is a 

relationship between the research group who perform the task 

and the dataset that has been used. This needs to be addressed 

immediately to remove the bias in the results thus obtained. In 

[24] the authors use the 10 NASA defect datasets to perform 

defect prediction. They propose a novel technique called as 

“Hellinger Net Model” that is a deep forward neural network to 

perform the task. The experimental results show a drastic 

improvement in the performance measures. In [25] the authors 

propose a framework for predicting the faulty modules. This 

uses the historical data for predicting the faulty modules. The 

experiments have been conducted on the NASA defect datasets. 

Three different learning algorithms used were OneR, Naïve 

Bayes and J48 on twelve different datasets. In [26] the authors 

talk about the commonalities between the two fields of Software 

Engineering and Artificial Intelligence in aspects of modelling 

real world objects. He talks about role of Software Agents in 

Distributed Artificial Intelligence Systems. He speaks about role 

of Learning Software Organizations and Knowledge Based 

Systems. Computational Intelligence plays an important role in 

analysis of software and project management, knowledge 

discovery from existing databases. They talk about the current 

role and future trends in the intersection of these two areas where 

a major part of the research is being carried out by international 

conference and journal called “Automated Software 

Engineering”. In [27] the author emphasizes on the importance 

of Search Based Software Engineering and application of 

Machine Learning for software engineering. Since there is a shift 

in focus from small, localized, insulated construction of software 

to more interactive, intelligent, real-time, complex systems, the 

application of AI to SE is a good option. He also proposes to 

intelligently balance automation and human intervention. He 

also talks about adopting search technique for test data to cover 

a specific requirements set. In [28] the authors say that by using 

Software Analytics, we can eliminate some assumptions made 

by developers on good and bad software on the basis of a few 

projects they have worked upon. He also speaks about the 

problem of context in Software Analytics where models learned 

from one project may not be applicable to a new project at hand. 

This is one open area of research. Yet another issue is that the 

models generated by software analytics are not always easy and 

direct to understand and read. The machine learning algorithms 

make use of the complex mathematical models such as Naïve 

Bayes Classifier, Random Forests which are hard to understand. 

The focus could be on developing the results from these models 

in a simplified manner that is easier to understand. In [29] the 

author focuses on shifting the use of human intelligence to model 

intelligent systems that can do the designing and other software 

engineering tasks rather than doing the software engineering task 

itself. The author talks on the synergy between co-operative 

testing, human and artificial intelligence. He talks about some of 

the example problems where AI can be applied such as Test 

Generation, Specification generation, Debugging and 

Programming. He also suggests on improving the AI algorithms, 

by taking using continuous feedback loop. In [30] the author 
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focuses entirely on the Requirements Phase, where he says that 

Software Requirements Classification task requires a lot of effort 

and hence incorporating NLP and Information Retrieval 

techniques at this stage. This paper employs Deep Learning and 

Neural Networks to do the task. They also propose employing 

AI to do project cost and effort estimation by even considering 

team member capabilities. In [31] the authors talk about the 

application of ML to SE phases such as Behavior Extraction, 

Defect Fixing, and Testing. They also propose that with the rapid 

development in the field of AI, the performance of the algorithm 

improves every year because of the rapid amount of data 

accumulated over time which in turn improves the learning 

process. They also talk about the challenges of how scalability 

of the machine learning algorithms need to be handled with 

increase in software complexity. In [32] authors talk about 

employing Software Metrics with Defect Data to develop 

Predictive Models for Open Source Software Systems. The 

comparison of 14 different ML algorithms such as variants of 

Perceptron, Multi-Layer Perceptron, LVQ, SOM, AIRS, 

CLONAL and Immune for defect prediction is used. The study 

of the results show that Single layer Perceptron is the best defect 

prediction algorithm. In [33] authors talk about the ongoing 

work in ML and AI platforms and how these results can be 

applied to SE. The authors talk about the many open source tools 

that are available for ML that create motivation for students to 

work in this field. They talk about the essentials to develop 

algorithms in this field such as programming skills in R, Python 

with MatPlotLib. They also mention Jupyter Notebook which is 

an open-source web application that allows to creation and 

sharing of live-code, visualization and text. In [34] authors use 

three machine learning algorithms namely Logistic Regression, 

Naïve Bayes and J48 on several datasets to perform defect 

prediction. The experimental results proved that using reduced 

metrics set is better than using the entire metric set to generate 

the results. G-score and recall provide good results despite using 

full set of metrics. Among the algorithm tested on reduced set of 

metrics, J48 outperformed others using G-score. Datasets that 

were used were from open source eclipse releases. The Table 1 

lists the AI/ML algorithm used in SDLC phases based on studied 

literature.   

Table 1. Summary of algorithms used based on literature review 

PHASE IN 

SDLC 

ML ALGORITHMS USED 

Requirements 

Engineering 

Support Vector Machines, Naïve Bayes, 

Random Forest, Decision Tree, K-Nearest 

Neighbor, Linear Regression, AdaBoost, 

Logistic Regression, Natural Language 

Processing, Recurrent Neural Network, and 

Long Short-Term Memory 

Software Design Natural Language Processing, Decision Tree, 

Multinomial Naïve Bayes, Perceptron, Linear 

Classifier, Passive Aggressive Classifier, 

Vector Space Machines, Recurrent Neural 

Network, Random Forest, Linear Regression, 

Principal Component Analysis, Artificial 

Neural Network, Genetic Algorithm 

Software 

Development 

Convolution Neural Networks, Recurrent 

Neural Network, Natural Language 

Processing, Artificial Neural Network, 

Decision Tree, Naïve Bayes, Support Vector 

Machine, Linear Regression, AdaBoost, J48, 

Extreme Gradient Boosting 

Software Testing Recurrent Neural Network, Decision Tree, 

Natural Language Processing, Naïve Bayes, 

Artificial Neural Network, Convolutional 

Neural Network, Support Vector Machine, 

Tree Augmented Naïve Bayes, KStar, Genetic 

Algorithm, Clustering, K-Means, Long Short 

Term Memory, Association Rule Mining, 

Multi-Layer Perceptron 

Software 

Maintenance 

Support Vector Machine, Recurrent Neural 

Network, Decision Tree, Natural Language 

Processing, Naïve Bayes, K Nearest Neighbor, 

Sequential Minimal Optimization, Federated 

Learning 

 

III. PROPOSED METHODOLOGY 

The proposed framework in the Figure 3 shows how AI and ML 

techniques can be adopted to replace some of the Mundane 

Tasks that are carried out in each phase of SDLC. The ML and 

AI techniques used in the proposed novel framework are 

summarized in the Table 2. It also proposes some innovative 

ways of adopting AI and ML to make the flow of the tasks in 

each of these phases smoother. If the company has been qualified 

as a CMMI level company or adheres to the ISO standards, then 

the standard process or template can be stored in the KB at each 

of the levels of SDLC, so that the algorithm is able to make sure 

quality is met each time. 

A  Requirements Analysis Phase 

 The Requirements Gathering and Engineering is a very 

important phase in the entire SDLC since it is the inception stage, 

from which the project kicks off. The success at this stage greatly 

impacts the success of overall project. This contains the 

information in an unstructured format that acts as main source of 

input to the Software Architects in the Design Phase. Some of 

the common problems in the Requirements Engineering Phase 

includes, Poor Requirements Quality where the requirements are 

ambiguous, incomplete, inconsistent, and incorrect and obsolete 

[1]. One of the major causes of any of these problems is lack of 

expertise or inadequate training of the Requirement Engineers. 

This dependency on the personnel can be eliminated by making 

use of a CHATBOT-an AI chat agent as shown in the fig 2. This 
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CHATBOT makes use of the Knowledge Base which is mainly 

constructed from the Domain Knowledge of the Project under 

consideration like Banking, Retail, HealthCare, Finance, Travel, 

and Entertainment. This KB in turn consists of two parts, 

Knowledge Representation and Inference Engine. The 

CHATBOT also needs to make use of a NLP Analyzer to parse 

the sentences posed by the end-users and understand them in 

order to take necessary actions.  Here the KB consists of the 

domain specific ontology definitions, common vocabulary as to 

how to represent the data, all the previous chat history of 

conversation with its end-users or stake-holders, and also some 

frequently asked questions related to that domain. This KB must 

be rich with data in order to facilitate the CHATBOT to make 

intelligent decisions. The CHATBOT can also be implemented 

to take input in the form of audio from the clients. Since most of 

requirements are unstructured and gathered in free-flow English, 

the conversion from unstructured form to a more formal 

representation depends entirely on the knowledge base and 

experience of the Requirements Engineer. Having a CHATBOT 

in place of a Requirement Engineer can eliminate the 

dependency on human personnel to get the task done. It is also 

seen that different dimensionally. If you must use mixed units, 

clearly state the units for each quantity that you use in an 

equation people interpret the same requirement in different 

ways. This leads to conflict of interest if more Requirement 

Engineers are participating in the task of eliciting requirements. 

Also on many occasions, the quality of the requirement 

elicitation depends on the emotional mood, health and temper of 

the requirement engineer, on the contrary an AI CHATBOT, it 

is very stable. Once the requirements are elicited by the 

CHATBOT, they are converted to a more formal representation 

and added to the SRS document. The SRS document is also 

updated further based on the second KB pertaining to the domain 

knowledge of the project, details on project team, and archives 

of the previous projects carried out in the same domain. A 

Classification Algorithm, can be implemented to identify and 

classify the requirements as Function or Non-Functional 

Requirements. The Risk Analysis and Mitigation is another 

important part of SDLC. This is incorporated at various stages 

in different ways depending on the Software Development 

Model used. The main aim of this stage, is to identify the 

potential risks that might come-up in the project based on the 

new requirements gathered along with the existing requirements 

and the other project details present in the KB. These details are 

then updated to the SRS document. Various machine learning 

Prediction Algorithms can be incorporated at this stage. The next 

important phase is to do the Metric Calculation and Cost 

Estimation of the project. This is very important very any 

software project and there are some well-defined software 

metrics standards to carry out this task. Here again some 

Machine Learning Algorithms can be designed to perform the 

Estimation and Prediction activities. This takes the input from 

the existing data in the KB along with the SRS document. Also 

a Recommender System can be implemented based on the SRS 

Document and the existing KB to suggest which of the new 

requirements can be practically implemented given the various 

factors and circumstances and which cannot be. This also 

identifies the non-testable requirements. Provides suggestions 

on any incomplete logic that is present. From the existing KB, 

the ML algorithm will be able to learn those requirements which 

when implemented in the past have led to the failure or the 

project or have not been able to reach the end-user. 

B Design Phase 

The SRS Document acts as input to the design phase, based 

on the new requirements incorporated, a ML algorithm can be 

used to recommend the suitable High-Level Architectural 

Design and Low-Level Design patterns. The ML Algorithms 

recommends the Functions, Modules and Interfaces that can be 

implemented based on the Requirements in the SRS Document. 

It also generates a skeletal Entity-Relationship Diagram, Flow- 

Charts indicating the flow of entire process. 
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Fig 3. Proposed Novel Framework 
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The Low-Level Detailed Design involves employing a ML 

algorithm to suggest the design patterns based on the interaction 

between the modules, functions and interfaces identified in the 

High-Level Design. The Design Engineers and Software 

Architects can make use of these inputs and further make 

modifications to it in more detail and create a solid Design 

Document. This phase makes use of a separate KB containing 

the information needed to support the design. 

C Implementation Phase 

The Design Document acts as an input to the Coding Phase, 

where a software can be developed to convert the design to a 

skeletal code. The developer then can make use of this skeletal 

code and the work on it further to write a more detailed code. A 

CHATBOT-Coding Assistant is employed in this phase that 

provides assistance to the developer for developing the code. 

During the code phase, if the developer gets stuck in any part 

while developing the code, by contacting the CHATBOT it 

provides tips as to how to tackle with the problem by providing 

suggestions which is again derived from a KB which is a rich 

repository of common problems encountered by the developers 

in the past. In addition to this, it can also provide links to the 

websites from around the web that are most commonly consulted 

by the developers while developing the code. Prior to this the 

KB, can also be loaded with information on the team members 

and developers who have worked on that piece of code in past, 

and the AI-CHATBOT can provide suggestions on whom to 

contact. In addition to this a Machine Learning Prediction 

Algorithm can be developed to predict the coding mistakes 

before the developer makes and prevent them. 

C Quality Assurance Phase 

The Design Document acts as an input to the Coding Phase, 

where a software can be developed to convert the design to a 

skeletal code. The developer then can make use of this skeletal 

code and the work on it further to write a more detailed code. A 

CHATBOT-Coding Assistant is employed in this phase that 

provides assistance to the developer for developing the code.  

During the code phase, if the developer gets stuck in any part 

while developing the code, by contacting the CHATBOT it 

provides tips as to how to tackle with the problem by providing 

suggestions which is again derived from a KB which is a rich 

repository of common problems encountered by the developers 

in the past. In addition to this, it can also provide links to the 

websites from around the web that are most commonly consulted 

by the developers while developing the code. Prior to this the 

KB, can also be loaded with information on the team members 

and developers who have worked on that piece of code in the 

past, and the AI-CHATBOT can provide suggestions on whom 

to contact. In addition to this a Machine Learning Prediction 

Algorithm can be developed to predict the coding mistakes 

before the developer makes and prevent them. The fully 

developed and functional application acts as an input to the 

Quality Team, where Test Plan Generator is employed to 

generate the Test Plan for the current cycle of SDLC. It makes 

use of the KB present in this phase that contains the details on 

the personnel, schedule, history of previous defects, test case 

repository i.e. test case management tool, Requirements from 

SRS. The Test Plan is a standard template document that 

contains the set of test cases to be executed from existing Test 

bed based on the Requirements and the Code.  The Test Case 

development is one of the activities that takes a significant 

percentage of verification and validation efforts.   The Test Case 

Table 2.Summary of activities for the proposed framework 

PHASE ACTIVITY ML TECHNIQUES AI TECHNIQUES 

Requirements 

Analysis 

Requirements Elicitation-Interview 

Requirements Classification 

Risk Mitigation and Analysis 

Classification 

Algorithms, Prediction 

Algorithms 

CHATBOT-

Requirements Elicitation 

Software Design High-Level Architectural Design 

Low-Level Detailed Design 

Classification 

Algorithms, Prediction 

Algorithms 

 

Software 

Development 

Skeletal Code Generator 

Trouble Shoot while Coding 

Suggest White-Box Testing 

techniques. 

Classification 

Algorithms, Prediction 

Algorithms 

CHATBOT-Coding 

Assistant, 

Software Testing Test Plan Generator 

Test Case Recommender 

Bug Report Generator 

Classification 

Algorithms, Clustering, 

Prediction Algorithms 

 

Software 

Maintenance 

Customer Support 

Service Log Generator 

Classification 

Algorithms 

CHATBOT-Support 

Representative 
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Recommender takes the input from the KB of the Test Phase as 

well as Test Plan that is generated by the Test Plan Generator. It 

is practically impossible to run nearly lakhs of tests in the Test 

Bed. It is necessary to identify the most likely functions to get 

impacted and run optimal regression tests. This Recommender 

makes use of the Machine Learning Prediction algorithm along 

with historical defect data present in the KB to build a prediction 

model that is able to capture the new data and predict what test 

cases need to be executed from existing test bed as well as 

develop new test cases for the missing scenarios based on the 

new requirements. After the Recommended Test Cases are 

executed, the results of Test Case Execution are passed onto the 

Bug Report Generator. This Bug Report Generator makes use of 

KB to generate a Bug Report in a standard template format as 

decided by the Quality Team. This Bug Report also indicates the  

Severity, Priority of each Bug reported along with assigning the 

bug to the respective developer or concerned team. 

D Operations and Maintenance Phase 

After the tested quality software has been delivered to the 

customer/client/end-user for use, if they encounter any problem 

during the operation phase, they can consult the customer care 

team of the company. Here the CHATBOT-Call Centre 

Assistant acts a point of contact to the customer. The client 

places the service request with the CHATBOT that makes use of 

a dedicated KB to try to address the problem. This KB consists 

of some frequently asked question-answers by customers, 

required amount of domain knowledge, information on the 

teams, knowledge on commonly encountered problems and 

workaround. The CHATBOT makes use of this rich knowledge 

base to log a ticket for every query of the customer. The 

CHATBOT also assigns the ticket to the concerned team/team 

manager with priority and severity. The service log generator 

generates a ticket based on the input from the CHATBOT. A 

standard template is agreed upon for the Service Log. Once the 

details are updated in this log by the CHATBOT, this is again 

updated in the KB to help in training of learning algorithms of 

ML that will be used in this phase.  

IV. RESULTS 

The results section here shows the pictorial representation of the 

framework represented using Figure 3 that has been described 

above in the method section. Each of these phases can be 

executed independently or can be implemented end to end for 

any software. The Table 3 above provides a matrix that indicates 

the coverage of AI and ML techniques across the various phases. 

The results section also discusses the current usage percentage 

of AI and ML algorithms across the different phases. These are 

indicated in the Figure 3. It gives an overview as to which 

algorithms are used across all the phases of Software 

Development Life Cycle (SDLC) and which algorithms are used 

only for a single phase of SDLC. Figure 4 is a bar graph 

representing the percentage usage of AI/ML algorithms across 

the different phases of SDLC. The X-Axis represents the various 

algorithms used for automating the phases of SDLC. Twenty 

five different algorithms are considered based on Table 1. 

Considering that SDLC has five phases, 100% in the above 

graph implies that the corresponding algorithms are used in all 

the five phases of SDLC. From the Figure 4, one can imply that 

DT, NB, NLP, RNN and SVM are used in all the phases of 

SDLC. 
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The 60% in the Figure 4 corresponding to Artificial Neural 

Networks (ANN) and Linear Regression implies that these 

algorithms are applicable to three phases of SDLC. The 

corresponding phases can be identified from the matrix in the 

Table 3. Convolutional Neural Network (CNN), Clustering, 

Genetic Algorithm (GA), K-Nearest Neighbor (KNN), Long 

Short Term Memory (LSTM), Perceptron and Random Forest 

(RF) are being used in two phases of SDLC. Hence their 

percentage usage is 40%. Similarly Association Rule Mining 

(ARM), Extreme Gradient Boosting (EGB), Federated 

Learning (FL), K-Star, Logistic Regression, Principal 

Component Analysis (PCA), Passive Aggressive Classifier 

(PAC), Sequential Minimal Optimization (SMO) and Vector 

Space Machine (VSM) are used only in one of the phases of 

SDLC. Hence the usage is 20% across the phases of SDLC. A 

part of the framework in the Table 3 below has already been 

implemented and published as an IEEE conference paper in 

[35]. The automation of requirements elicitation phase of 

requirements engineering was carried out using an AI chatbot 

that elicited the requirements from the customer both in text 

mode and voice mode. It used the AI techniques Natural 

Language Processing (NLP) and Natural Language Generation. 

Machine Learning techniques such as Long Short Term 

Memory (LSTM) and Recurrent Neural Networks (RNN) were 

used. The classification algorithms such as Support Vector 

Machine (SVM) and Naïve Bayes (NB) were used for 

classification of functional requirements and non-functional 

requirements. A comparative analysis of these two 

classification algorithms were carried out and the results are 

indicated in the Table 4 given below. 

 

Table 3. Mapping of AI/ML Algorithm Usage for SDLC phases 

ML Algorithms Requirements Design Development Testing Maintenance 

ADA Boost √ - √ - - 

ANN - √ √ √ - 

-ARM - - - √ - 

CNN - - √ √ - 

Clustering - - - √ - 

DT √ √ √ √ √ 

EGB - - √ - - 

FL - - - - √ 

GA - √ - √ - 

J48 - - √ - - 

KNN √ - - - √ 

K Star - - - - - 

LSTM √ - - √ - 

Linear Regression √ √ √ √ - 

Logistic Regression √ - - - - 

NB √ √ √ √ √ 

NLP √ √ √ √ √ 

Perceptron - √ - √ - 

PCA - √ - - - 

PAC - √ - - - 

RF √ √ - - - 

RNN - √ √ √ √ 

SVM √ - √ √ √ 

SMO - - - - √ 

VSM - √ - - - 
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Fig 4. Percentage usage of AI/ML algorithms for the stages of SDLC 

Table 4. Comparative Analysis of the Classification Techniques 

for Requirements Engineering Phase 

Classification 

Technique 

Performance Metrics 

Accura

cy 

Precisi

on 
Recall 

F1-

Score 

Naïve Bayes 0.91 0.91 0.91 0.91 

SVM 0.88 0.88 0.88 0.88 

 

V. CONCLUSION AND FUTURE WORK 

Software engineering defines the process of developing a 

software that meets the customer requirements within the time 

and budget constraint. This is generally considered to be 

definition of successful software. But the definition of successful 

software is changing. A software can be a failure even if it meets 

all the requirements and is delivered on time and within budget 

because it simply fails to impress the customers. However, a 

software that is delivered with a few requirements and stretches 

a little beyond the deadlines can be considered as successful 

because it becomes a hit in the market release. What is more 

important here is to be able to deliver the same quality of work 

repeatedly to the end users each time irrespective of the project 

on hand. This can be achieved by having a framework in place 

such as the one defined in the paper which relies heavily of data 

archives and past experiences to cater better for the customer 

needs. The Machine Learning and Artificial Intelligence 

techniques are evolving rapidly and with the advent of new 

algorithms, small changes can be adopted to the framework 

simply by replacing the algorithms. As a part of the future work, 

more algorithms can be suggested to fully automate the process 

at various levels. Also customized frameworks can be proposed 

for individual process models. 
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