
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2574 - 2578

2574
IJRITCC | May 2015, Available @ http://www.ijritcc.org

Developement of Horizontal IoT Platform using DeviceHive Framework

Thakor Jay Chandrasinh
VLSI & Embedded System Design

GTU PG School

Ahmedabad, India

thakor.jay@gmail.com

Mr. Chaitannya Mahatme

Zeroes & Ones Technologies.

Pune,India

info@znotech.com

Abstract—This paper presents the Horizontal IoT(Internet of Things) Platform for IoT application development. This paper

mainly describes the limitations of Vertical Approach for different domain applications and also presents generalized solution for

limitations as Horizontal IoT Platform. In the context of IoT/M2M domain, devices perform the automated tasks data sensing,

generation, logging and reporting to service. For this, a generic solution unifying the infrastructure and platforms that access and

control different Vertical Domains leads to the Horizontal Platform. An Open Source DeviceHive Framework is used for

developing this generic solution for building different IoT application.

Keywords—Horizontal IoT Platform, M2M, DeviceHive Framework, Gateway.

__*****___

I. INTRODUCTION

IoT is revolution in Internet Technology. IoT is the
emerging technology and is very important one in next few
years. As a global prediction by 2020, 50 billion objects are
connected over the internet and communicating smartly over
it[1]. IoT in its culmination, where we lived in data is defined
as:" The IoT creates an intelligent, invisible network fabric that
can be sensed, controlled and programmed. IoT-enabled
products employ embedded technology that allows them to
communicate, directly or indirectly, with each other or the
Internet.[2]" Now using this connected devices called as
Wireless Sensor Networks many applications are developed in
various domains, like Smart Home, Smart Health, Smart
Shopping and Smart Transportation to improve life. But the
main problem of the application is the interoperability of
various wireless protocol over which the sensor devices
communicate. Such applications are built using the Vertical
approach, so they can't be easily shifted in any other domain.

Such problem of interoperability is main concern of the
recent development of IoT application. Which requires
standardized "Protocol Layer" using which any device or
protocol can communicate smoothly. Such a Protocol Layer is
called "Service Capability Layer" between Transport Layer and
Application Layer which is the main objective of this paper.

Here, as discussed the "Service Capability Layer"(SCL) is
the key enabler for the Horizontal IoT Platform. This will help
to develop generic solution for the IoT application across
domains. For devices to communicate smartly with each other
,SCL requires certain features are: i) technologies that enable
“things” to acquire contextual information,(Data Sensing and
Acquisition) ii) technologies that enable “things” to process
contextual information,(Data Analytics) and iii) technologies to
improve security and privacy(Data Security).

II. IOT DOMAINS:FROM VERTICAL TOWARDS HORIZONTAL

Recently IoT applications are used in different domains as
per the specific environment and needs. For this application up
till now the available models are i.e., FP7 projects IoT-I [3] and
IoT-A [4]. But these models specifically used for the vertical
approach only. There is no availability of any standardized
model for Horizontal approach. Since IoT is being percolated
in every vertical there is to unify the infrastructure and

architecture for a generic solution. A paradigm shift in
M2M/IoT space from Vertical to Horizontal domains is being
speculated for this purpose. There is very thin line between
M2M and IoT as in every device will have specific IP address
which makes them to communicate directly with server where
as in M2M localized devices communicate with and aggregator
device called as Gateway which in turn communicates with
server over IP protocol. In recent years several standardization
activities towards a horizontal service layer approach have been
started by standardization organizations (SDO) world-wide.
Here the activities at TIA in the TIA-50[5] group (M2M Smart
Device Communication) in the USA, CCSA TC10 in China
and the activities in the ETSI TC M2M[6] group in Europe
should be explicitly mentioned.

ONEM2M[7] is other example of the M2M communication
Framework. An open world-wide M2M service layer standard,
based on the future ONEM2M standard, will open up the
possibility for a broad range of companies and players to enter
the market with different sets of possible business models.

A. M2M Standardization

As vertical proprietary M2M solutions provides some value
to their vertical sectors, most challenges are identified in
scalability and interoperability[8].Thus standardization of
M2M communication is done by surveying different vertical
domains and collect common ontology from it moving to a
proper horizontal solution. As shown in figure 1 the industries
are moving from Vertical towards Horizontal[9].

As shown in Figure 1 Specific algorithm is used for a
business application in vertical domain whereas a standard
protocol layer i.e., "Service Capability Layer", shown as
Common Application Infrastructure is being used to build the
application across verticals, This "Common Application
Infrastructure" is transforming underlying framework from
Vertical to Horizontal platform. There are many different
business applications as well as many devices are connected to
local network or gateways using different protocols. Mostly
Restful APIs are used for development of this kind of Protocol
Layer. As shown in Figure 1 the layer is not bounded between
Application and Transport Layer. But it's some functionality is
laid in between gateways and devices. So the Services given by
the common layer is distributed in all the components of
proposed architecture.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2574 - 2578

2575
IJRITCC | May 2015, Available @ http://www.ijritcc.org

Figure 1 Moving From Vertical Towards Horizontal (Source:ONEM2M)

B. ETSI TC M2M Architecture

 International standard developing organizations, such as
the European Telecommunication Standard Institute (ETSI)
have set their effort in the definition of a standard for a high
level service layer platform for M2M. For the elaboration of
such a standard, ETSI collected requirements from several
important vertical markets of IoT/M2M. ETSI TC M2M was
created in January 2009 in order to standardize specifications
for developing and maintaining an end-to-end architecture for
M2M systems. ETSI TC M2M has standardized various
common features such as device management, discovery,
security, location, etc. These common features can be used in
various verticals. Such as Connected Vehicle, Smart Metering
and e-Health.

As shown in Figure 2 the ETSI TC M2M Architecture has
three different domains namely: i) Application ii) Network and
iii) Device. The Network Domain comprises a collection of
service capabilities in addition to core and access networks.
The Device Domain contains sensors, actuators and other
devices typically found in a wireless sensor network. ETSI
also defines an M2M Gateway which also holds services that
cannot be directly used by low level tiny devices like
microcontroller. The Application Domain includes M2M
Applications and Client Applications.

Figure 2 ETSI TC M2M Architecture (Source: ETSI)

III. PROPOSED SYSTEM ARCHITECTURE

 The proposed system is divided into Hardware and

Software Models. Figure 3 shows hardware components used

in proposed system architecture. Here the Gateway is the most

important component of the architecture. Raspberry Pi B+

module is being used as a gateway. And it works as the

middleware between the devices/nodes and Server It is similar

to ETSI M2M model. But here we are using Device Hive

Framework for building the Service Capability Layer in the

proposed architecture. Most of the services of common layer

are provided in Gateway only and others are implemented on

the device as well as on server side.

The comparative study is conducted among the available

OneM2M standards and device hive as SCL module.

Table 1 Comparison between ONEM2M and DeviceHive Standards

Functional Entity ETSI M2M DeviceHive

M2M Service Capability

hosted in the network
domain

Yes, Network Service

Capability Layer (NSCL)

Yes

Device Hive API

M2M Service Capability

hosted on an
intermediary node

Yes, Gateway Service

Capability Layer (GSCL)

Yes

Gateway

M2M Service Capability

hosted on an M2M

Device

Yes, Device Service

Capability Layer (DSCL)

Yes

Device Base Class

Device Host Class

Applications in the

network domain

Yes,

Network Applications (NA)

Yes

Application Layer

Client App.

Applications in the
M2M Device

Yes,

Device Application (DA)

Yes

M2M Device Yes, Device with/without

Service Capabilities (D/D')

Yes

Device with OS

Device w/o OS

AAA Server Yes, M2M Authentication

Server (MAS), M2M

Service Bootstrap function

(MSBF)

Two type of

Authentication.

i)Device

ii)User(HTTP)

A. Hardware Model

The model mainly consist the following components as
show in Figure 3.

Figure 3 Proposed Architecture

System Architecture Components:-

(i) Different nodes (sensors, actuators, etc.)

(ii) Gateway(H/W:Raspberry pi b+, S/W:Device Hive

Framework)

(iii) Server (Device Hive API)

(iv) Client Application (PC)

Here we are developing a generic solution so the device
nodes can be of any vertical domains for instance Home
Automation has different sensors like temperature, PIR,

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2574 - 2578

2576
IJRITCC | May 2015, Available @ http://www.ijritcc.org

pressure, etc. In case of Smart Transport it could be any GPS
module. A server for the proposed architecture is designed as
mentioned in DeviceHive Framework[10] which has web based
interface.

B. Software Model

 Device Hive Framework is used as a software framework

for building the IoT Horizontal Platform on a Gateway i.e.,

Raspberry Pi B+. Device Hive is a C++ based Framework

skeleton used for building software to the Hardware Model.

The most important part of software is Gateway Configuration

and Device(Gateway, Sensors) Registration with server

seamless connection between the Server and Devices. for data

communication. For this the flow diagram is shown Figure 4.

 We are using two types of protocols for communication

among system components.

1) Binary Protocol:-

The DeviceHive Binary Protocol is used for

transferring messages between various low-level

devices and the gateway. In the DeviceHive

architecture, the gateway acts as a proxy between

devices and the DeviceHive cloud and converts

binary messages to REST API service calls and vice

versa. Devices connected to the gateway are

considered to be very simple equipment which do not

implement TCP/IP stack on their own and have no

direct access to the Internet. To route messages

from/to the cloud, these devices connect to the

gateway using various wired as well as wireless

interfaces such as RS-232,RS-485, SPI or ZigBee,

and use the Binary Protocol to communicate about

various events in the system.

Figure 4 Flow Diagram

2) Restfull Protocol:-

 The DeviceHive API (Restful API) is the central part

 of the framework which allows different components

to interact with each other. The API provides access

to information about registered components in the

system, and allows them to exchange messages in real

time. Three types of users are there which are using

the DeviceHive API as shown in below Figure 5.

Figure 5 DeviceHive API use cases (Source:DeviceHive)

C. Modules of Implementation

- Study the Device Hive Framework for the

Implementation of the proposed Solution.

- Building of Boost Libraries[11] . Which mainly

contains boost.asio , boost.smart_ptr , boost.bind

- Build the boost for Linux using the Cross

Compile Toolchain build+ using crosstool-ng

tool.

- Gateway Compilation and Configuration

- Connection of Gateway to Server as well as

Devices Connected to it.

- Implement the common service provided by

Service Layer Capabilities.

IV. COMPLITION OF COMMUNICATION LINK

 The flow starts with the initialization of the gateway as

shown in the figure 4. The gateway is Raspberry Pi B+

module. The device hive framework is used for the

initialization and connection to the server as well as devices.

First of all the gateway is activated. For this the gateway must

be configured as per the requirement. For gateway

configuration some command line arguments have to be

passed such as --serial port --server server link --no ws. After

the gateway is configured and made up & running, it polls the

device if it connected to it or not. If the device is connected to

it then it send request to the device to register itself. If the

device didn't respond to request before timeout expired ,then

the gateway is connected to server and gets the server

information. On getting information of the server the gateway

again send request to device for registration. In the registration

request the following bit stream is passed from gateway.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2574 - 2578

2577
IJRITCC | May 2015, Available @ http://www.ijritcc.org

Gateway converts it to JSON[12] value to binary format in a

frame.

Signature Version Flags Length Intent Data Checksum

0xC5 0xC3 0x01 0x00 0x00 0x00 0x0000 0x76

 As shown in the bit stream all fields have significance as

mentioned in Table 2:-

Table 2 Binary Message Format

Field Significance

Signature A sequence of two bytes identifies

the start of new message.

Version Current Protocol Version. Should be

0x01.

Flags Reserved for future use. Should be 0.

Length Length of Data Block in bytes

Intent Identifies the message intent.

Data Data Block

Checksum Represent a check byte.

 During first registration request from gateway to device,

gateway, in mean time, initiates the connection with server and

gather information. Upon the first time device registration

failure, gateway re-polls the device for registration.

Registration Data is the most important data for the gateway to

communicate the proper way with device. So it’s very

important that the data is send to the gateway in proper format

only. After the Device is Registered Successfully on the

Server. The device and Server communicate in both the way.

The device notifies the server on the connection and also

responds with the Updated State every time it got the

commands from the Server Side.

V. RESULTS

 As mentioned in the Proposed System the components are

connected as shown in Figure 6.

Figure 6 Component Setup

A. Gateway and Server Connection

The screen shot of the result below in Figure 7 is taken on

the Raspberry Pi B+ module. It is showing the gateway is

connected to server using restful protocol. And also showing

the server information on gateway terminal.

Figure 7 Server Information on Gateway

B. Gateway and Device Connection

The result below is the Device information sent to the

gateway on the response of the request from the gateway. The

device sends the device information in a particular registration

data structure using binary protocols to gateway.The device

also sends notification to server on connection as well as after

every command is executed on the device is shown in the

Figure 8.

Figure 8 Device Notification on Gateway

C. Device and Server Connection via Gateway

 These results are taken on server side. Here when the

device is connected to gateway it sends registration data, and

the gateway sends it to server using which only device and

sever communication is occurred. This is shown in Figure 9.

The same way the commands from server is passing to the

device and in response to it the commands the device is ending

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2574 - 2578

2578
IJRITCC | May 2015, Available @ http://www.ijritcc.org

notification to the server via gateway only is shown in Figure

10 and 11 respectively.

Figure 9 Device Registration on Server

Figure 10 Device Notification on Server

Figure 11 Commands on Server

VI. CONCLUSION

 The main goal of this research work is to build a Horizontal

Platform for IoT application development. The development

of such platform along with Service Capability Layer is done

using DeviceHive Framework.. In this the discovery and

registration of the device on gateway as well as on Server is

also added. On the device side MSP430 board is used for a

demo device connection. From the server side we also send

commands to board and its also executed on the board. And

also send the notifications to server via gateway. The device

coding is done in C language being a non OS node. Further

work on the scalability and security is under progress.

REFERENCES

[1] Ericsson White Paper, "More than 50 Billion Connected

Devices,"

2011.

[2] Texas Instrument White Paper, "The Evolution of the Internet

of Things, 2013.

[3] “IoT-i.” [Online]. Available: http://www.iot-i.eu/public K.

Elissa, “Title of paper if known,” unpublished.

[4] “IoT-A.” [Online]. Available: http://www.iot-a.eu/public.

[5] “TIA website,” [Online], available: http://www.tiaonline.org/.

[6] TS102690, “ETSI TS 102690, Machine-to-Machine

communications (M2M);. Functional architecture,” Aug. 2013.

[7] “ONEM2M website,” [Online], available:

http://www.onem2m.org/.

[8] Martin Floeck, Apostolos Papageorgiou, Anett Schuelke, and

JaeSeung Song, “Horizontal M2M Platforms Boost Vertical

Industry: Effectiveness Study for Building Energy Management

Systems”, page-15-20 in Internet of Things (WF-IoT), IEEE

World Forum on,2014.

[9] Stefano Severi, Francesco Sottile, Giuseppe Abreu, Claudio

Pastrone, Maurizio Spirito and Friedbert Berens, “M2M

Technologies: Enablers for a Pervasive Internet of Things”,

pages-1-5 in Network and Communication (EuCNC), European

Conference on, 2014.

[10] “Device Hive

website,”[Online],available:http://www.devicehive.com

[11] "BoostLibraries,"[Online],available:http://www.boost.org/.

[12] "JSON,"[Online],available:http://tools.ietf.org/html/rfc4627

http://www.ijritcc.org/

