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Abstract—In this paper we study the transition from B DNA to Z DNA. We find soliton solutions for angular and longitudinal fluctuations in the 

DNA lattice. However non bonded interactions couple the angular and longitudinal fluctuations. Only when the coupled equations are solved 

exactly can we identify the mode which leads to the transition from B DNA to Z DNA.  
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I.  INTRODUCTION 

The right handed helical structure of (B form) DNA was 

discovered by Watson and Crick [1]. The left handed form 

of DNA (Z form) was discovered by Rich et.al [2]. Initially 

the Z form was thought to be an aberration [11]. Later it was 

found to play a pivotal role in the transcription process [3]. 

In this paper we suggest that the Z form of DNA induces (or 

facilitates) Soliton formation which allows transcription to 

take place.  

It has been established [4] that the DNA can switch from the 

left handed (B) to the right handed (Z) conformation and 

vice versa. Further there is evidence of synchronous 

stretching and rotation from the B form to the left handed Z 

form [5]. This transition is concisely written in the 

parametric form of the helix. The parametric form of the 

right handed helix is 

   cos , sin ,i i ix t a t y t a t z t bt  
              (1) 

 
The stretching of the DNA lattice may now be written as 

                         i i Nx t x t , 1,2,3,....N 
             (2) 

   i i Ny t y t
   ,

1,2,3,....N 
                               (3)                                                                                               

 

The stretching is accompanied by rotation:     

     cos cos 4i Nx t a t a t     

                                                                                   sin sini Ny t a t a t                           (5) 

This corresponds to a lattice stretching and base flipping as 

has been confirmed via MD (molecular Dynamics) 

simulations [5].  

      The rotation of the bases takes place about the 

Glycosidic bond. We note that in the Z DNA the base 

motions (oscillations, twisting and tilting) are slower by 

about a factor of ½ than the motion in B DNA [5]. Using P 

NMR and nuclear Overhauser effect Patel et. al. have 

demonstrated that in the right handed B DNA the guanosine 

residue is in anti conformation while in the Z DNA  This 

may be accounted for by the stretching which the lattice 

undergoes in the guanosine residue is in the syn 

conformation. transformation from B to Z DNA. The 

phosphate backbone exists in a double well. 

 The potential for rotation about this bond, for the Z DNA 

may be written as 

                    2 4

0 0

9
1 cos3 9

4
V V V  

 
    

            (6)  

This is the double well potential observed by [5] via 

Molecular Dynamics simulation. However in reality the 

potential is modified via non bonded interactions (while still 

retaining the double well profile). We write this potential as 

              2 4( )
2 4

t tA B
V                                            (7) 

where the coefficients ,t tA B as obtained from fig.(5) of [5] 

For this potential the solutions are Domain walls (Tanh 

Solitons, ()) which propagate down the lattice.  According to 

this picture the BZ junction is a propagating Domain wall. 

II.  MODEL AND DOMAIN WALL SOLUTIONS 

    We approximate the lattice by a point mass m attached to 

a base of mass m   and moment of Inertia I about the 

glycosidic bond.  The model thus accounts for both 

longitudinal and angular fluctuations. The Hamiltonian for 

the system may be written as 

       t LH H H 
                                                              (8)

 

2
2 2 4 ''

0

9
9

4 2

t
t n n n

n n

Ic
H I V   

 
    

 
                  (9) 
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2 2
2 4 ''0

2 2 4 2

n
L n n n

n n n

mu mcA B
H u u u

 
    

 
  



          (10)

 

 

   We have neglected any interaction between longitudinal 

and angular fluctuations. The equations of motion which 

follow from the above Hamiltonian are 

  
3 2 '' 0n t n t n t nI A B mc                        (11) 

 
3 2 '' 0n L n L n L nmu A u B u mc u   

              
 
(12)

 

The domain wall solutions of the above system of equations 

[6] is: 

 
 0tanh ( ) / 2n tt    

                               (13) 

 
  tanh ( / 2n Lu x vt  

                           (14)
 

These solutions describe a longitudinal and an angular 

Solitons. The longitudinal Soliton produces a compression 

of the lattice while the angular fluctuation produces a 

rotation about the glycosidic bond resulting in the left 

handed DNA. The potential energy of longitudinal and 

angular Domain wall is ~
2

2

L

L

A

B

 
 
 

and 
2

2

T

T

A

B

 
 
 

 or the height 

of the respective double wells. We note that 

2

2

T

T

A

B

 
 
 

~ 

14Kcals/mol, as obtained from Molecular Dynamics 

simulations. DNA give 

2

2

L

L

A

B

 
 
 

~ 0.3 Kcals/mole. 

III.  STATISTICAL MECHANICS 

   The double well model offers a convenient platform to 

study the inter conversions of energy from the molecular 

twist (Tw (read   ) to the axial writhe (Wr (read u  )). We 

note first that the motion of the bases  and the lattice 

fluctuation are on different time scales (Base rotation is of 

the order of nano seconds and lattice fluctuation is of the 

order of micro seconds).  Hence we consider the partition 

functions separately. The partition function for the 

Hamiltonian tH  is 

0, 0,s a

L L

l l

uZ e e
 

   
    
    

                        (15)
 

 

1/ 21/ 2 2
*

0, 0*

1 2 1
1 exp

2 2 2
s

A A
m

m B
 

     
                        (16) 

1/ 21/ 2 2
*

0, 0*

1 2 1
1 exp

2 2 2
a

A A
m

m B
 

     
                      (17)

 

With 

 

1/ 2

1 *

1 2

2

A
K

m

 
  

 
, and 

1/ 2
2

*

2
2

A
K m

B

 
  
 

                    (18) 

 one obtains for the statistical average value of 0 (in the 

linear approximation), 

 

0

0

1
ln uZ

 


   


=  

1/ 2 1/ 2
3 3

0tanh
4 2 2 2

L A L A

l B L B




    
    
                                (19)

 

The asymptotic value of  0   is

1/ 2
3

0tanh
2 2

L A

L B




  
  
   

. 

    To understand the behavior near 0 0  we neglect 

the
4

0  term. The non bonded interactions may be written as 

  

2 2
1 1

2 2
i i ii

A B

i

Ve
  

   



   

                         (20) 

The first term in the exponential of (22) represents 

the interactions between positive and negative super coiling 

[14]. The next term represents the non bonded interactions 

[15]. Ramachandran plots of Polynucleotides by Olson and 

Flory [15] have shown that there are only certain regions in 

the  1,i i     space contribute to the interaction. We 

denote these regions by two dimensional gaussians whose 

half width at half height are given by A  i  and B 

 1i   respectively. Evaluating the partition function now 

gives 

 

 
2

0

( )
exp

2

J


 
    

                            (21)

 

Since   is small expanding the exponential to first order 

we get 

             

2

0

( )
1

2

J
   

                             (22)

 

Near 0 0  we have parabolic behavior as observed by 

Rich et. al. 
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IV.  DYNAMICS 

The results of the last section show that it is important to 

include the coupling term J  when 0 0 
. 

Including this term in the Hamiltonian, we find the coupled 

equations of motion to be 

 

   2 2

3 2 '' 2 2 0
n n

n n

A B u
u

n t n t n t n

n

I A B mc Ve e




   
 

             (23) 

   2 2

3 2 '' 2 2 0
n n

n n

A B u
u

n L n L n L n

n

mu A u B u mc u Ve e


 

      

 (24) 

Expanding the exponential one obtains 

 

   3 2 '' 2 0
2

n n

n t n t n t n n n

A B u
I A B mc V u


        

     

                                           

                                                     

(25)

    3 2 '' 2 0
2

n n

n L n L n L n n n

A B u
mu A u B u mc u V u


       (26) 

We look for travelling wave solutions [6] of the form 

              1 1 ( )n f z v t   ,   (27)  

               2 2( )nu f z v t     (28) 

 
   2 2 '' 3 2

1 1 1 1 1 2 0
2

n n

t t t

A B u
I mc f A f B f V f f


                                                                                                       

(29) 

 
   2 2 '' 3 2

2 2 2 2 2 1 0
2

n n

L L L

A B u
mv mc f A f B f V f f


      (30) 

We convert the above coupled equations to the 

dimensionless form              

'' 3 2

1 1 1 1 1 1 1 1 2 0A f B f C f D f f          (31)                      

Making the substitutions 

   Let  21 1 2 1 1
1 1 2 2 3

1 0 0 1 0 1 0

1 1
, , , ,

A f f C D

B u u B u B u
           (32)                          

  21 1 2 1 1
1 1 2 2 3

1 0 0 1 0 1 0

1 1
, , , ,

A f f C D

B u u B u B u
               (33)                            

we obtain 

   
2

3 21
1 1 1 22

0
d

ds


             (34)                                  

 

 

2
3 22

2 2 1 22
0

d

ds


            (35)   

Adding two equations one obtains                          

       
2

3

1 2 1 2 1 2 1 2 1 22
4 0

d

ds
                                 (36)    

Let us put  

   2 2

1 2 1 2

1
, ,

4

i n i n
y ke e

k

   
   

    
          (37)          

        Where  0,1,2,3.........n           

We note here that           

      

2
3

2
0

d y
y y y

ds
                                              (38)                      

      

2
3

2
2

d y
y y

ds
                                                         (39)                                       

       1 2 tanh                                                    (40)                                   

      or 
 

 

 
2

2
tanh

4

i n
i n e

ke
k

 
 

  
 

          (41)                  

 Taking the real part we obtain 

                           

 
 

 
cos 2

cos 2 tanh
4

n
k n

k

 
 

 
        (42)                  

              

      24 1 cos 2 tanhk n                     (43)                     

 
 

 2

tanh
cos 2

4 1
n

k
 


  


                                  (44)                    

     Since 2 0n    , we obtain  

                          
24 1k                                                (45) 

                     or 
1

2
k                                                (46) 

   Hence          

      
1

cos 2 tanh
2

n                                (47)                        

 

    or    1 1
2 cos tanh

2
n    

    
 

            (48)                        

  This gives   1 1
cos tanh 2

2
n   

  
 

     (49)                    

Here 2n is the winding number []. (The positive 

(negative) sign of n refers to the positive (negative) super 

coiling of DNA [].) Note that if    it corresponds to a 

base flip. This corresponds to the B DNA to Z DNA 

transformation (see equations (1) – (5)). For  
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      For the DNA, the linking number Lk , can be expressed 

in terms of the twist Tw and the writhing number Wr [12] 

                 Lk Tw Wr                                   (50)          

We identify   with the twist Tw  and n  with linking 

number Lk . We note that the free energy of the super coiled 

DNA in terms of the linking number and twist has been 

derived by [12].  

We note that the energy  of the Lattice due to the presence of 

the Soliton is given by 

 

2 2
2 40

2 2

1
sec

2 2

s
n

n n

Mu v n
M h

l a l


 
  

 
 

            (51) 

                                   

 

                                                

 

      Thus both the axial writhe Solitons and the Molecular 

twist Solitons have the above energy distribution.  In the 

model developed far there is no scope of energy interchange 

as we have not built any interaction between the angular and 

longitudinal fluctuations.  As there is coupling between the 

two forms of energy we are forced to include the coupling 

term u .Further in the limit of t=0 (static case) one obtains 

the modified Marko-Siggia model. For 0t   the equations 

describe both bending and twisting of the DNA as the 

Soliton propagates down the lattice.   

V. CONCLUSION 

         We have developed a physical picture of the transition 

from B DNA to Z DNA. In the process we have made the 

following approximations: 

1) We have neglected the non bonded interactions 

2) We have neglected interactions between longitudinal and 

angular fluctuations 

This model yields a picture of coupled domain wall model. 

A particular solution of the coupled model (  ) 

corresponds to the B DNA to Z DNA transition.  

 

REFERENCES 

[1] J. D. Watson and F.H.C Crick Nature," A Structure for 

Deoxyribose Nucleic Acid" 171,pp.737-778(1953). 

[2] A. Wang et.al, "Molecular Structure of a left-handed 

double helical DNA fragment at atomic resolution, 

Nature, 282 pp.682-686(1979). 

[3] H. Drew et.al "High-salt d(CpCpCpG), a left-handed Z 

DNA double helix", Nature, 286 pp.567-(1980). 

[4] F.M.Pohl and T.M.Jovin, "Salt-induced co-operative 

conformational change of a synthetic DNA:Equilibrium 

and Kinetic studies with poly(dG-dC)",J.Mol Biol.67 

pp.375-(1972) 

[5] Oliver K. Strobel, Robert S. Keyes, and Albert M. Bobst 

" Base Dynamics of Local Z-DNA Conformations As 

Detected by Electron Paramagnetic Resonance with 

Spin-Labeled Deoxycytidine Analogues" Bio Chemistry 

29, pp.8522-8528 (1990). 

[6] Juyong Lee et.al, Journal of Physical Chemistry B, 

114(30), 9872(2010). 

[7] J.A.Krumhansl and J.R.Schrieffer, "Dynamics and 

Statistical Mechanics of a one-dimensional model for 

structural phase transitions" Physical Review B, 9, 

pp.3535-3545(1975). 

[8] Liming Ying, Mark J.Wallace and David Klenerman, 

"Two State model of conformation fluctuation in a DNA 

hairpin-loop", Chemical Phyics letters,145 pp                                  

[9] Todd M. Alam, John Orban and Gary P.Drobny, 

Biochemistry, 30. 9229(1991) 

[10] Michael E.Hogan and Oleg Jarditzky, Biophysics, 76. 

6341(1979). 

[11] M. D. Barkley and B. H. Zimm, J. Chem. Phys. 70, 

2991(1970). 

[12] J. L. Marx, "Z-DNA: still searching for a function ",230 

pp.794-796(1985). 

[13] Proc. Natl. Acad. 85, 7069(1988) 

[14] R. Daniel Camerini-Otero and Gary Felsenfeld,"A simple 

model of DNA super helices in solution", Proc. Natl. 

Acad. Sci., 75 pp1708-1712 (1978). 

[15] J. F. Marko and E. D. Siggia "Statistical Mechanics of 

supercoiled DNA" Physical Review E, 52 pp2912-2938 

(1995). 

[16] Raymond J. Kelleher III et.al., "Competitive behavior of 

multiple, discrete B-Z transitions in supercoiled DNA", 

Proc. Natl. Acad. Sci., 83 pp.6342-6346(1986) 

[17] P. Shing Ho, "The non-B-DNA structure of 

d(CA/TG)does not differ from that of Z DNA" Proc. 

Natl. Acad. Sci., 91 pp.9549-9553(1994). 

[18] Wilma K. Olson, Paul J. Flory, "Polynucleotide spatial 

configuration I,II,III" Biopolymers 

[19] Wilbur Lim "Solitary Excitations in B-Z DNA transition: 

A theoretical and numerical study", Physical Review E 

75 pp.031918-1 031918-9(2007). 

 

 

 

     

 


