
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 7 98 - 101

__

98

IJRITCC | July 2018, Available @ http://www.ijritcc.org

A Landmark Based Shortest Path Detection by Using A* and Haversine Formula

Ms. Megha G. Mathpal

Department of Information Technology

Government Engineering College

Modasa, Gujarat, India

mathpalmegha@gmail.com

Abstract—In 1900, less than 20 percent of the world populace lived in cities, in 2007, fair more than 50 percent of the world populace lived in

cities. In 2050, it has been anticipated that more than 70 percent of the worldwide population (about 6.4 billion individuals) will be

city tenants. There's more weight being set on cities through this increment in population [1]. With approach of keen cities, data and

communication technology is progressively transforming the way city regions and city inhabitants organize and work in reaction to
urban development. In this paper, we create a nonspecific plot for navigating a route throughout city

A asked route is given by utilizing combination of A* Algorithm and Haversine equation. Haversine Equation gives least distance between any

two focuses on spherical body by utilizing latitude and longitude. This least distance is at that point given to A* calculation to calculate

minimum distance. The method for identifying the shortest path is specify in this paper.

Keywords- Haversine Formula, Dijkstra Algorithm, Google Map, XML.

__*****___

I. INTRODUCTION

The downsides happened in past paper of shortest path

discovery by utilizing Dijkstra calculation is recuperated in

this paper by employing A* calculation. A* calculation is

heuristic in nature. The point of Paper is to discover the route

between two places inside a city entered by client utilizing

the Intersections between Source and Goal intersections. The

witticism behind it is to progress navigation of client inside a

city; particularly in India where Town Arranging approach

doesn’t take after a standard rule for naming the diverse

places. Most of the times an unknown person can’t discover

indeed the foremost popular places inside the city due to

nonappearance of noteworthy identities. Hence the paper is

planning to allow a suitable route to client by coordinating it

through different intersections and streets which will be

effortlessly distinguished by the related landmarks and a

Google map. The route is given in two parts as: 1) Content

route containing route giving a intersection to intersection

movement to client in conjunction with the appropriate

directions and turnings directing the client to induce the

precise halfway intersections or landmarks 2) Google Map

for correct requested route. Paper uses client-server

engineering. Communication between them is entirely in

XML for adaptability. The client has client interface from

where an input is taken in XML for processing. The server

comprises of a Java Processing Application and Database for

it. The Database utilized by handling application could be a

Social database containing whole information around city.

The processing application after parsing request computes

route between them with all necessary subtle elements with

Latitude/Longitude for Google map and sends it as XML

response. Client once more parsing response gets it on Client

Interface with Google map handling done in JavaScript.

II. PROBLEM DEFINATION

The Point of Paper is to discover out the route in between two

spots/junctions inside a city entered by client by making use of

the Intersections in between the Source and Goal spots/junctions.

The main motto behind it is to progress the navigation of client

inside a city; particularly in Indian cities where Town Arranging

approach doesn’t take after a standard rule for numbering or

naming the distinctive spots or places. Most of the times an

obscure individual can’t discover indeed the most famous places

inside the city due to nonappearance of naming sheets or other

noteworthy identities. Subsequently the project is intended to

allow a suitable route to client by coordinating it through various

junctions and streets which is able be easily identified by the

related landmarks given with the route. The requested route is

given to client in terms of the intersections present in between the

source and goal route along with landmarks and streets

interfacing them. The Landmarks utilized within the route may be

noteworthy Buildings, Statues, Streets, Complexes, Landmarks,

Sanctuaries, etc. The use of Landmarks includes an advantage of

getting to the exact place having no critical personality whereas

voyaging through route provided to client making the application

friendly to the client obscure of the city to discover out the route

in between any two spots or intersections within the city. The

application is bound to deliver the shortest route providing a

junction to junction movement to client in conjunction with the

appropriate directions and turnings directing the client to induce

the precise intermediate intersections (with their significant

landmarks) or landmarks in specific zones in between two

junctions/spots provided by client.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 7 98 - 101

__

99

IJRITCC | July 2018, Available @ http://www.ijritcc.org

III. LITERATURE SURVEY

This paper contains “great circle distance” which speaks to

the shortest path for distance modeling and optimal facility

area on spherical surface. Great circle distances take into

consideration the geometrical reality of the spherical Earth

and offers an elective to broadly held idea that travel over

water can be precisely displayed by Euclidean distances. The

need for geometrical presentation of the spherical earth gets

to be exceptionally important when we take into thought an

ever-expanding junction inside a city. The utilize of “Great

circle distances” opens another avenue for merging of

Navigation and Spherical Trigonometry into progression of

logistics and facility location. In this paper an assessment of

distance area utilizing great circle distances is utilized to

illustrate the application of the concept [4][3]. This paper

proposes and executes a strategy for performing shortest

path calculations taking crowdsourced information, in the

form of imperatives and impediments, into consideration.

The strategy is built on top of Google Maps (GM) and

employments its directing benefit to calculate the most

limited distance between two areas. Clients give the

limitations and obstacles in the form of polygons which

identify closed areas in the real world [5].

A.Haversine Formula

The Haversine formula is an equation important in

navigation, giving great-circle distances between two points

on a sphere from their longitudes and latitudes [4]. These

names follow from the fact that they are customarily written

in terms of the haversine function, given by haversin (θ) =

sin2 (θ/2). The haversine formula is used to calculate the

distance between two points on the Earth’s surface specified

in longitude and latitude. d is the distance between two points

with longitude and latitude (ψ,φ) and r is the radius of the

Earth. Translation to SQL statement[1] 3956 * 2 * ASIN (

SQRT (POWER(SIN((orig.lat - dest.lat)*pi()/180 / 2), 2)

+COS(orig.lat *pi()/180) *COS(dest.lat * pi()/180)

*POWER(SIN((orig.lon - dest.lon) * pi()/180 / 2), 2))) AS

distance [2].

B.A* Algorithm

A* uses a best-first search and finds a least-cost path from a

given beginning node to one objective node (out of one or

more possible objectives). As A* navigates the chart, it takes

after a path of the least anticipated total cost or distance,

keeping a sorted priority queue of alternate path segments

along the way. It uses a knowledge-plus-heuristic cost

function of node (usually indicated) to decide the arrange in

which the search visits nodes in the tree. The cost function is

a whole of two functions: • the past path-cost function, which

is the known distance from the beginning node to the current

node • a future path-cost function, which is an allowable

"heuristic estimate" of the distance from to the goal

Pseudo Code:

function A*(start,goal)

closedset := the empty set // The set of nodes already evaluated.

openset := {start} // The set of tentative nodes to be evaluated,

initially containing the start node

came_from := the empty map // The map of navigated nodes.

g_score[start] := 0 // Cost from start along best known path.

// Estimated total cost from start to goal through y.

f_score[start] := g_score[start] + heuristic_cost_estimate(start,

goal) while openset is not empty

current: = the node in openset having the lowest f_score[] value

if current = goal

return reconstruct_path(came_from, goal)

remove current from openset

add current to closedset

for each neighbour in neighbor_nodes(current)

tentative_g_score:=g_score[current]+

dist_between(current,neighbor)

if neighbor in closedset

if tentative_g_score>= g_score[neighbor]

continue

if neighbor not in openset or tentative_g_score<g_score[neighbor]

came_from[neighbor] := current

g_score[neighbor] := tentative_g_score

f_score[neighbor]:=g_score[neighbor]+heuristic_cost_estimate(ne

ighbor, goal)

if neighbor not in openset

add neighbor to openset

return failure;

function reconstruct_path(came_from, current_node)

if current_node in came_from

p:=reconstruct_path(came_fromcame_from[current_node])

return (p + current_node)

else

return current_node.

The above pseudo code assumes that the heuristic function is

monotonic, which is a frequent case in many practical problems,

such as the Shortest Distance Path in road networks. However, if

the assumption is not true, nodes in the closed set may be

rediscovered and their cost improved.

IV. SYSTEM DESIGN

The Point of the paper is to discover out the route in between any

two spots inside a city entered by the client. This may be

implemented using a client-server design where a request having

two intersections as Source and Goal is sent from client to server

and requested route is returned to client as a response from server.

The client-server execution assumes that the client gets to the

functional application remotely from client end to server one. This

makes a clear thought of having client at one machine remotely

accessing the application and server at the other. Hence the plan

incorporates noteworthy components shown in functional project

plan below: The client end consists of client interface from where

an input is taken for processing. The server end consists of a Java

Processing Application and Database for it.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 7 98 - 101

__

100

IJRITCC | July 2018, Available @ http://www.ijritcc.org

The preparing application essentially takes as it were begin

and end junctions and computes the route in between them

with all fundamental subtle elements having middle

intersections with landmarks and streets in a specific region.

The Database utilized by preparing application may be a

Social database containing entirety data almost city in terms

of intersections, landmarks, streets and areas. The input

containing source and goal intersections for the asked route is

sent to the server conclusion as a request from client end.

This request is inserted in a XML record can be called as

XML request to be sent to server. At server on accepting a

XML request; it is provided to a XML parser for extricating

fundamental information i.e. source and destination junctions

which are in turn provided to Java Processing application as

an input. This application computes a requested route (a most

limited one) by connection with the database utilizing SQL

inquiries to get vital data for computation. For a computed

route to be sent to client, it is once more implanted into a

XML forming a XML response. This reaction on accepting at

client end is once more sent to a parser to extricate a route to

be shown to the client at to user interface.

A. Shortest route in the form of text route:

A client has arrangement to know the shortest way from

source to goal in two ways content-based route and graphical

route by utilizing Google outline. A content-based route

gives correct way from source to goal in the shape of

directions, turns, middle spots and distance between that

spots. A path is given to client by utilizing SQL query. At

last it gives the overall shortest distance from source to

destination.

B. Shortest route graphical representation:

Graphical representation of shortest route is appeared in figure. It

highlighted the shortest course from source to destination. Client

can utilize both the procedures to effortlessly know the route

between source to goal. GPI provides different strategies to get to

the highlighted route.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 7 98 - 101

__

101

IJRITCC | July 2018, Available @ http://www.ijritcc.org

V. FUTURESCOPE

The downsides happened in past paper of shortest way

discovery by utilizing Dijkstra calculation is recovered in

this paper by employing A* algorithm. In this paper, we

utilize A* calculation for deciding shortest way between two

junctions. But A* is heuristic in nature it implies that A*

algorithm does not grant any guaranty for great solution.

This is property of any heuristic algorithm A* algorithm. So,

able to utilize any algorithm related with A* algorithm

which can donate best arrangement to calculate shortest path

between two cities. A* algorithm is combination of Dijkstra

algorithm and Breadth First Search algorithm. In expansion

to that, A* is heuristic in nature. This System can be applied

as a navigation system which can navigate through out city.

Together with intracity shortest path detection, we will

implement same concept for intercity.

VI. CONCLUSION

“Landmark Based Routing in Indian Cities” is bound to

allow the briefest route giving a junction to junction

movement to client together with the appropriate bearings

and turnings directing the client to urge the precise

intermediate junctions (with their noteworthy points of

interest) or points of interest in specific zones in between

two junctions/spots provided by user. The client moreover

gets correct route with direction of inserted Google Map.

VII. ACKNOWLEDGEMENT

We would like to thank Government engineering college,

Modasa for providing all the required amenities. I am also

grateful to Prof. J.S. Dhobi, Head of Information Technology

Department, GECM, Gujarat for their indispensable support,

suggestions and motivation.

REFERENCES

[1] By Mr. Reid “Shortest distance between two points on earth”

http://wordpress.mrreid.org/haversine-formula/ This is an

electronic document. Date of publishing 20/12/2011.

[2] Samuel Idowu, Nadeem Bari, “A Development Framework for

Smart City,” Luleå University of Technology International

journal of Computer Application, vol 6, 9 Nov. 2012

[3] Javin J. Mwemzi, YoufangHuang,” Optimal Facility location

on spherical surfaces”, New york science Journal, April 2011.

[4] Ben Gardiner, Waseem Ahmad, Travis Cooper,”Collision

Avoidance Techniques for unmanned Aerial Vehicles”, Auburn

University, National Science Foundation, 08/07/2011.

[5] Simeon Nedkov, SisiZlatanova, “Enabling Obstacle Avoidance

for Google maps”,June 2011.

[6] Bing Pan,john C. Crotts and Brian Muller,”Developing Web

Based Tourism Information using Google Map” Departemnt of

Huminity and Tourism Mangement,Charston ,USA.

[7] ElinaAgapie.jason Ryder, Jeff Burke, Deborth Estrin,”

Probable Path Interference for GPS traces in cities”, university

of California,2009.

[8] K.M.Chandy,J. Misra, “Distributed Computation on Graphs:

Shortest Path Algorithm”, University of Texas, March 1982.

[9] Siemens AG. Munchen, Ulrich Lauther “An Extremely Fast

Exact Algorithm for Finding Shortest Path in static network

with geographic backgroung”, International journal on

Computer science and Engineering, June2006.

[10] Philip Klein,Satish Rao ,Monika Rauch, Sairam Subramnyam,

“Faster Shortest Path Algorithm for Planner Graphs”, March

1994.

[11] Andrew v. Goldberg, Haim Kaplan, Renato F. Werneck,

“Efficient Point to point shortest Path Algorithm”, Internation

Research on Advance Research in Computer Science and

Software Engineering, Oct 2005.

