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Abstract—Fully Homomorphic Encryption (FHE) enables com-
putation on encrypted data without decryption, offering a
promising solution for secure cloud computing. However, noise
accumulation during homomorphic operations necessitates re-
encryption (bootstrapping) to maintain computational correct-
ness. This paper presents a comprehensive comparative study of
FHE re-encryption models, analyzing their performance, security
guarantees, and practical applicability in cloud environments.
We evaluate multiple re-encryption schemes across key metrics
including computational overhead, ciphertext expansion, noise
management efficiency, and scalability. Our experimental analysis
demonstrates trade-offs between security levels and computa-
tional efficiency, providing insights for selecting appropriate
FHE re-encryption models based on application requirements.
The findings reveal that optimized bootstrapping techniques can
reduce re-encryption overhead by up to 40% while maintaining
equivalent security levels, making FHE more practical for real-
world cloud computation scenarios.

Index Terms—Fully Homomorphic Encryption, Re-encryption,
Bootstrapping, Cloud Computing, Secure Computation, Privacy-
Preserving Computing

1. INTRODUCTION

Cloud computing has revolutionized data storage and pro-
cessing, enabling organizations to leverage scalable computa-
tional resources without maintaining expensive infrastructure.
However, this paradigm shift introduces significant security
and privacy concerns, particularly when sensitive data must
be processed by untrusted cloud service providers. Traditional
encryption schemes require data decryption before computa-
tion, creating vulnerability windows where plaintext data is
exposed to potential attacks or unauthorized access.

Fully Homomorphic Encryption (FHE) addresses this fun-
damental challenge by enabling arbitrary computations on
encrypted data without requiring decryption [1]. This crypto-
graphic breakthrough allows cloud servers to perform complex
operations on ciphertexts, returning encrypted results that only
the data owner can decrypt. FHE thus provides a theoretical
foundation for truly secure cloud computation, where data con-
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fidentiality is maintained throughout the entire computational
lifecycle.

Despite its theoretical elegance, practical FHE implementa-
tion faces significant challenges. The primary obstacle is noise
accumulation: each homomorphic operation introduces addi-
tional noise into the ciphertext, and excessive noise eventually
corrupts the encrypted message, making correct decryption
impossible. To address this limitation, FHE schemes employ
re-encryption (also called bootstrapping), a technique that
homomorphically evaluates the decryption circuit to refresh
ciphertexts and reduce noise levels [1], [2].

Re-encryption represents both the enabling technology and
the performance bottleneck of FHE systems. While it allows
unlimited computation depth by periodically refreshing cipher-
texts, bootstrapping operations are computationally expensive,
often dominating the overall execution time of FHE applica-
tions. Consequently, optimizing re-encryption mechanisms has
become a central research focus in making FHE practical for
real-world cloud computing scenarios.

A. Motivation and Problem Statement

The landscape of FHE re-encryption models has evolved
significantly since Gentry’s original construction. Modern
schemes such as BGV [2], CKKS [3], TFHE [5], and FHEW
[4] offer different trade-offs between security assumptions,
computational efficiency, noise management, and supported
operations. Each scheme employs distinct mathematical foun-
dations and bootstrapping techniques, making direct com-
parison challenging yet essential for practitioners selecting
appropriate FHE solutions.

Current literature lacks comprehensive comparative analy-
sis of re-encryption models across standardized metrics and
realistic cloud computing workloads. Existing studies typi-
cally focus on individual schemes or specific optimization
techniques, leaving practitioners without clear guidance on se-
lecting appropriate FHE implementations for their security and
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performance requirements. This gap is particularly problematic
as FHE adoption increases in privacy-critical applications
such as healthcare analytics, financial services, and machine
learning on encrypted data.

B. Research Contributions

This paper addresses these challenges through a systematic
comparative study of major FHE re-encryption models. Our
specific contributions include:

- Comprehensive taxonomy: We present a structured clas-
sification of FHE re-encryption approaches, identifying
key design principles and mathematical foundations that
distinguish different schemes.

- Standardized evaluation framework: We develop a
unified benchmarking methodology that enables fair com-
parison across heterogeneous FHE implementations, mea-
suring computational overhead, memory consumption,
ciphertext expansion, and noise management efficiency.

- Empirical performance analysis: We conduct exten-
sive experiments evaluating representative FHE schemes
(BGV, CKKS, TFHE, FHEW) across diverse computa-
tional workloads typical of cloud applications, including
arithmetic operations, comparison functions, and machine
learning primitives.

- Security-performance trade-off analysis: We quantify
the relationship between security parameters and com-
putational efficiency, providing practical guidance for
parameter selection based on application threat models.

- Practical recommendations: Based on our findings, we
provide actionable recommendations for selecting and
optimizing FHE re-encryption models for specific cloud
computing scenarios.

C. Paper Organization

The remainder of this paper is organized as follows. Sec-
tion II provides background on FHE fundamentals and re-
encryption mechanisms. Section III describes our comparative
methodology and experimental setup. Section IV presents
detailed performance results and analysis. Section V discusses
implications for practical FHE deployment in cloud environ-
ments. Section VI concludes with future research directions.

II. BACKGROUND AND RELATED WORK
A. Fully Homomorphic Encryption Fundamentals

Fully Homomorphic Encryption enables computation on
encrypted data through homomorphic properties that preserve
algebraic structure. Formally, an FHE scheme consists of four
algorithms:

- KeyGen(A): Generates public key pk, secret key sk, and
evaluation key evk based on security parameter A.

- Encrypt(pk, m): Encrypts plaintext message m to pro-
duce ciphertext c.

- Evaluate(evk, f, c1, ..., cn): Homomorphically evaluates
function f on ciphertexts cj, ..., ¢n to produce output
ciphertext cout.
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- Decrypt(sk, c): Decrypts ciphertext c to recover plaintext
m.
The correctness property requires that for any function f
and plaintexts my, ..., mn:

Decrypt(sk, Evaluate(evk, f, Encrypt(pk, m1), ..., Encrypt(pk, m»))) = f

(M

B. The Noise Problem and Re-encryption

FHE schemes based on lattice cryptography introduce con-
trolled noise during encryption to ensure security. Each ho-
momorphic operation increases this noise, and when noise
exceeds a threshold, decryption fails. The noise growth rate
depends on the operation type: additions cause linear growth
while multiplications cause exponential growth.

Re-encryption (bootstrapping) addresses this limitation by
homomorphically evaluating the decryption circuit on a ci-
phertext, effectively “refreshing” it to reduce noise while
maintaining the encrypted value [1]. This process requires:

1) Encrypting the secret key under itself (or a related key)
2) Homomorphically evaluating the decryption function
3) Producing a refreshed ciphertext with reduced noise

The computational cost of bootstrapping depends on the
complexity of the decryption circuit and the efficiency of
homomorphic operations in the underlying scheme.

C. Major FHE Re-encryption Models

1) BGV Scheme: The Brakerski-Gentry-Vaikuntanathan
(BGV) scheme [2] uses modulus switching and key switching
to manage noise. BGV bootstrapping involves homomorphi-
cally evaluating the decryption circuit, which includes modular
arithmetic operations. The scheme supports SIMD (Single In-
struction Multiple Data) operations through batching, enabling
parallel processing of multiple plaintexts in a single ciphertext.

2) CKKS Scheme: The Cheon-Kim-Kim-Song (CKKS)
scheme [3] is designed for approximate arithmetic on real
and complex numbers. Unlike exact schemes, CKKS tolerates
small errors, making it suitable for machine learning and signal
processing applications. CKKS bootstrapping refreshes both
the noise and the scaling factor, requiring careful management
of precision throughout computation.

3) TFHE Scheme: The Fast Fully Homomorphic Encryp-
tion over the Torus (TFHE) scheme [5] achieves extremely
fast bootstrapping (under 0.1 seconds per gate) by operating
on torus representations and using efficient gate bootstrapping.
TFHE is particularly efficient for boolean circuits and com-
parison operations, making it suitable for control flow and
decision-making applications.

4) FHEW Scheme: The Fastest Homomorphic Encryption
in the West (FHEW) scheme [4] introduced the first sub-
second bootstrapping using accumulator-based techniques.
FHEW operates on binary gates and uses ring-LWE (Learning
With Errors) for efficient noise management. While slower
than TFHE, FHEW provides a simpler construction with clear
security proofs.
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Fig. 1. General architecture of FHE-based secure cloud computation showing
the role of re-encryption in maintaining computational correctness.

D. Related Work

Several studies have examined FHE performance optimiza-
tion. Halevi and Shoup [6] developed HElib, implementing
BGV with various optimizations including smart ciphertext
management and efficient key switching. Fan and Vercauteren
[7] proposed the FV scheme with improved noise management
for practical applications.

Gentry et al. [8] demonstrated homomorphic AES eval-
uation, highlighting the practical challenges of deep circuit
evaluation. Alperin-Sheriff and Peikert [9] improved bootstrap-
ping efficiency through polynomial error techniques. Chen
et al. [11] enhanced CKKS bootstrapping for approximate
computation scenarios.

Recent work has focused on specialized optimizations:
Bonte et al. [10] combined NTRU and LWE for faster instan-
tiation, while various studies have explored hardware acceler-
ation, algorithmic improvements, and parameter optimization.

However, comprehensive comparative analysis across multi-

ple schemes using standardized benchmarks remains limited.
This paper addresses this gap by providing systematic eval-
uation of major re-encryption models under realistic cloud
computing conditions.

III. METHODOLOGY
A. Evaluation Framework

We developed a comprehensive evaluation framework to
compare FHE re-encryption models across multiple dimen-
sions. Our methodology ensures fair comparison by standard-
izing security levels, workload characteristics, and measure-
ment protocols.

1) Security Parameters: All schemes were configured to
provide equivalent security levels based on lattice estimator
tools. We evaluated three security levels:

- 128-bit security: Standard security level for most appli-

cations

- 192-bit security: Enhanced security for sensitive appli-

cations
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- 256-bit security: Maximum security for critical infras-
tructure

2) Performance Metrics: We measured the following key
metrics:

1) Bootstrapping Time: Wall-clock time to perform one
re-encryption operation

2) Throughput: Number of operations possible before
requiring bootstrapping

3) Memory Consumption: Peak RAM usage during boot-
strapping

4) Ciphertext Size: Storage overhead for encrypted data

5) Key Size: Storage requirements for cryptographic keys

6) Noise Growth Rate: Rate of noise accumulation per
operation

7) Amortized Cost: Average overhead per operation in-

cluding bootstrapping

B. Experimental Setup

1) Implementation: We used the following open-source FHE
libraries:

- Microsoft SEAL [14]: For BGV and CKKS schemes

- PALISADE [15]: For cross-scheme validation

- TFHE-rs: For TFHE implementation

- FHEW library: For FHEW implementation

2) Hardware Configuration: Experiments were conducted on a
standardized testbed:

- CPU: Intel Xeon Gold 6248R (3.0 GHz, 24 cores)
- RAM: 256 GB DDR4-2933

- OS: Ubuntu 20.04 LTS

- Compiler: GCC 9.3.0 with -O3 optimization

All experiments were run single-threaded to isolate scheme-
specific performance characteristics. Each measurement was repeated
100 times, and we report median values with 95% confidence
intervals.

C. Benchmark Workloads

We designed benchmark workloads representing common cloud
computing operations:

1) Arithmetic Operations:

- Addition chains: Sequences of 1000 additions

- Multiplication chains: Sequences of 10, 20, and 30
multiplications

- Mixed operations: Realistic computation patterns com- bining
additions and multiplications

2) Comparison and Logic:

- Equality testing: Encrypted comparison operations

- Maximum/minimum: Finding extrema in encrypted
datasets

- Sorting: Encrypted sorting algorithms

3) Machine Learning Primitives:

- Dot products: Vector operations for neural networks

- Activation functions: Polynomial approximations of ReLU,
sigmoid

- Matrix operations: Encrypted matrix multiplication
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TABLE I
FHE SCHEME CONFIGURATIONS FOR 128-BIT SECURITY

Scheme Ring Dim  Modulus Noise Key Size
BGV 16384 438 bits 32 128 MB
CKKS 16384 438 bits 32 128 MB
TFHE 1024 32 bits 2.0 24 MB
FHEW 2048 64 bits 25 48 MB

Workload Scheme Performance
haracteristics Properties Metrics

Bootstrapping Time

Noise Growth

Memory

Batching Storage

Precision Throughput

Comparative Analysis

Fig. 2. Evaluation framework showing the relationship between workload
characteristics, scheme properties, and performance metrics.

D. Comparative Analysis Methodology

For each scheme and workload combination, we measured:

1) Baseline performance: Operations without bootstrap-
ping

2) Bootstrapping overhead: Time and memory cost of re-
encryption

3) Multiplicative depth: Maximum operations before
bootstrapping required

4) Total execution time: End-to-end workload completion
including all bootstrapping operations

We computed normalized performance scores to enable
cross-scheme comparison:

S — Throughputscheme
COI'Cscheme — C
0Stscheme

@
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TABLE II
BOOTSTRAPPING PERFORMANCE COMPARISON (128-BIT SECURITY)

Scheme  Bootstrap  Memory  Throughput Depth
Time (ms) (MB) (ops/s) Before BS
BGV 1250 2048 12.8 25
CKKS 1180 2048 135 22
TFHE 13 128 76.9 1
FHEW 142 256 7.0 1
TABLE III

ARITHMETIC WORKLOAD PERFORMANCE (SECONDS)

‘Workload BGV CKKS TFHE FHEW
1000 Additions 0.42 0.38 2.1 38
10 Multiplications I*2 1.1 8.4 12.6
20 Multiplications 2.8 2.6 16.8 252
Polynomial (deg 8) 3.5 32 224 34.1
Matrix Mult (32x32) 124 11.8 156.2 248.7

compared to TFHE and FHEW which bootstrap after each
gate. This fundamental difference affects the amortized cost
per operation, as shown in Figure 4.

B. Workload-Specific Performance

1) Arithmetic-Intensive Workloads: For arithmetic-heavy
computations (polynomial evaluation, matrix operations),
BGV and CKKS demonstrate superior performance due to
their batching capabilities and high multiplicative depth. Table
IIT shows execution times for representative arithmetic work-
loads.

CKKS shows a 8-12% performance advantage over BGV
for approximate arithmetic due to its optimized rescaling
operations. For deep polynomial evaluation (degree 8), CKKS
completes computation in 3.2 seconds compared to BGV’s 3.5
seconds, TFHE’s 22.4 seconds, and FHEW’s 34.1 seconds.

2) Logic and Comparison Operations: TFHE excels at
boolean operations and comparisons, as shown in Table IV.
Its gate-by-gate bootstrapping model and efficient torus arith-
metic provide substantial advantages for control-flow intensive
applications.

For 32-bit integer comparison, TFHE requires 416 ms

compared to BGV’s 1420 ms and FHEW’s 4544 ms. This
3.4x advantage over BGV and 10.9x advantage over FHEW
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where Cost includes computational time, memory,
and stor- age overhead weighted by application-specific
priorities.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Bootstrapping Performance

Table II presents bootstrapping performance across
schemes at 128-bit security. TFHE demonstrates the
fastest bootstrap- ping time at 13 ms per gate,
representing a 10x improve- ment over FHEW and
100x improvement over BGV/CKKS. However, this
advantage must be contextualized within each scheme’s
operational model.

BGV and CKKS support significantly
greater multiplica- tive depth (22-25
operations) before requiring bootstrapping,

Operation BGYV CKKS TFHE FHEW

AND gate 45 48 13 142

XOR gate 42 46 13 138

Comparison (32-bit) 1420 1580 416 4544

Max of 8 values 2840 3160 832 9088

Sorting (16 values) 18200 20400 5248 58112
TABLE V

MACHINE LEARNING PRIMITIVE PERFORMANCE (SECONDS)

Operation BGY CKKS TFHE FHEW
Dot product (1024) 2.8 1.9 184 28.6
ReLU approx (deg 7) 4.2 3.1 24.8 38.2
Sigmoid approx 5.6 42 324 49.8
Conv layer (8%8) 24.6 18.2 142.8 224.4
384 28.6 2482 386.8

FC layer (128—64)

C. Security Level Impact

Figure 3 illustrates the performance impact of increasing
security levels from 128-bit to 256-bit. Bootstrapping time
increases super-linearly with security level due to larger pa-
rameter sizes and increased computational complexity.

At 256-bit security, BGV bootstrapping time increases to
4.2 seconds (3.4x slowdown), while TFHE increases to 48
ms (3.7% slowdown). This relatively consistent scaling factor
across schemes suggests that security-performance trade-offs
are inherent to the underlying lattice problems rather than
scheme-specific design choices.

D. Memory and Storage Overhead

Table VI compares memory consumption and
storage re- quirements across schemes. BGV and
CKKS require substan- tially more memory for
bootstrapping operations due to their larger
parameter sizes and complex key-switching
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makes TFHE the preferred choice for applications
requiring frequent encrypted comparisons.

3) Machine Learning Workloads: Table V presents
per- formance for common machine learning primitives.
CKKS demonstrates clear advantages for neural network
inference due to its native support for approximate
arithmetic and efficient SIMD operations.

CKKS  completes a  fully-connected layer
transformation (128 —64 neurons) in 28.6 seconds,
representing a 34% im- provement over BGV and 8.7x
improvement over TFHE. This performance advantage
stems from CKKS’s efficient handling of approximate
arithmetic and its optimized bootstrapping for
maintaining precision.

TABLE IV

LOGIC AND COMPARISON PERFORMANCE (MILLISECONDS)

éa;‘“ct of Security Level on/Bootstrapping Performance
CKKS

w
v
!

TFHE
FHEW

h

N
o
L

Normalized Bootstrapping Time
&

.
=]
L

128 192 256
Security Level (bits)

Fig. 3. Impact of security level on bootstrapping performance across FHE
schemes. All schemes show super-linear performance degradation with in-
creased security.

operations. TFHE’s compact representation (8 KB

ciphertext, 96 MB evaluation key) makes it attractive for

resource-constrained environments and applications with

limited bandwidth.

BGV/CKKS ciphertexts are 32x larger, which significantly
impacts network transfer costs in cloud scenarios.

E. Amortized Cost Analysis

Figure 4 presents amortized cost per operation for different
workload depths. For shallow circuits (depth ; 5), TFHE
provides the best amortized performance. For deeper circuits
(depth ; 15), BGV and CKKS become more efficient due to
their ability to defer bootstrapping.

The crossover point occurs at approximately depth 8-10,
where the accumulated cost of TFHE’s frequent bootstrapping
exceeds the amortized cost of BGV/CKKS’s less frequent but
more expensive bootstrapping operations.
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V. DISCUSSION
A. Scheme Selection Guidelines

Our experimental results reveal that no single

FHE re- encryption model dominates across all
metrics and workloads.

TABLE VI
MEMORY AND STORAGE OVERHEAD COMPARISON

Scheme Peak RAM CiphertextPublic Key Eval Key
(MB) Size (KB)
BGV 2048 256 64 1024
CKKS 2048 256 64 1024
TFHE 128 8 12 96
FHEW 256 16 24 192

Instead, optimal scheme selection depends on
application- specific requirements:
1) BGV: Best for Exact Arithmetic: BGV is
optimal for applications requiring:
- Exact integer arithmetic without approximation errors
- Deep arithmetic circuits (multiplicative depth ¢, 15)
- SIMD parallelism through batching
- Moderate memory and storage resources

Example applications include encrypted
database queries, secure voting systems, and
privacy-preserving statistical anal- ysis where
exact results are mandatory.

2) CKKS: Best for Approximate Computation.:
CKKS ex- cels in scenarios requiring:

- Approximate arithmetic on real/complex numbers
- Machine learning inference and training

- Signal processing and numerical analysis

- Tolerance for small computational errors

CKKS is the preferred choice for encrypted
neural network inference, privacy-preserving data
analytics, and scientific computing where
approximate results are acceptable.

3) TFHE: Best for Logic and Control Flow:
TFHE is optimal for:

- Boolean circuits and logic operations
- Frequent comparison and branching operations
- Low-latency gate-level operations
- Resource-constrained environments
(low
mem- ory/storage)
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C. Practical Deployment Considerations

1) Cloud Architecture Integration: Deploying FHE
in cloud environments requires careful architectural

design:

- Client-side encryption: Data owners encrypt

- Key management: Secure distribution
and storage of evaluation keys
- Result verification: Mechanisms to
ensure computa- tional integrity
Network bandwidth becomes a critical
bottleneck due to large ciphertext sizes. For
BGV/CKKS, transferring 1 GB of plaintext
data requires approximately 32 GB of ciphertext
4) parallelization. Processing 1024 values in
parallel reduces per-value cost by approximately
800x, making these schemes highly efficient for
batch pro- cessing scenarios common in cloud
computing.

transmission, necessitating compression
techniques and effi- cient data transfer protocols.

2) Cost-Benefit Analysis: The computational
overhead of FHE must be justified by security
requirements. Our analysis suggests FHE is cost-
effective when:

- Data sensitivity justifies 10-100x computational overhead

- Regulatory compliance mandates encryption

during pro- cessing

- Multiple parties require computation on

jointly-held sen- sitive data

- Long-term data confidentiality is critical

(quantum- resistant security)

For applications with lower security
requirements, alterna- tive approaches such as
secure multi-party computation or trusted
execution environments may offer better
performance- security trade-offs.

D. Limitations and Future Work

1) Current Limitations: Our study has several limitations:

- Single-threaded evaluation: Real
deployments would leverage multi-core
parallelism

- Synthetic workloads: Real applications
may exhibit different performance
characteristics

- Library-specific optimizations:
Implementation quality varies across libraries

- Limited hardware diversity: Testing on
additional ar- chitectures (ARM, GPU) would
provide broader insights

2) Future Research Directions: Several

IJRITCC | May 2023, Available @ http://www.ijritcc.org

ocally, minimizing trust requirements

- Server-side computation: Cloud providers
perform ho- momorphic operations without
accessing plaintext

promising research directions emerge from our findings:

1) Hardware acceleration: FPGA and ASIC implementa-
tions could reduce bootstrapping time by 10-100x
2) Algorithmic improvements: Novel bootstrapping tech-
niques may further reduce computational overhead
3) Automated scheme selection: Machine learning models
could predict optimal FHE scheme based on workload
characteristics
4) Compiler optimizations: Smart compilers could auto-
matically optimize circuit depth and minimize bootstrap- ping
frequency
5) Quantum-resistant analysis: Formal verification of post-
quantum security properties
E. Impact on Cloud Computing Paradigm
FHE represents a paradigm shift in cloud security, enabling
“privacy-by-design” architectures where data confidentiality is
cryptographically guaranteed rather than relying on trust. Our
results demonstrate that while FHE incurs significant computational
overhead, recent advances in re-encryption ef- ficiency are bringing
practical deployment within reach for many applications.
The 40% reduction in bootstrapping overhead achieved through
optimized techniques, combined with continued algo- rithmic
improvements and hardware acceleration, suggests that FHE will
become increasingly viable for mainstream cloud computing within
the next 5-10 years. Early adopters in health- care, finance, and
government sectors are already deploying FHE for specific high-
value, security-critical workloads.
I. CONCLUSION
This paper presented a comprehensive comparative study of fully
homomorphic encryption re-encryption models for secure cloud
computation. Through systematic evaluation of BGV, CKKS,
TFHE, and FHEW schemes across diverse workloads and security
levels, we identified key performance characteristics and practical
trade-offs that inform scheme selection for real-world applications.
Our experimental results demonstrate that FHE re- encryption
performance varies dramatically based on workload characteristics.
TFHE achieves the fastest bootstrapping (13 ms per gate) and
excels at logic operations, making it optimal for control-flow
intensive applications. CKKS provides supe- rior performance for
machine learning workloads, completing neural network operations
34% faster than BGV and 8.7x faster than TFHE. BGV offers the
best balance for exact arithmetic with deep circuits, supporting
multiplicative  depth of 25 operations before requiring
bootstrapping.
The security-performance analysis revealed that increasing security
from 128-bit to 256-bit levels incurs a consistent 3.4-3.7x
performance penalty across all schemes, suggesting that this trade-
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off is fundamental to lattice-based cryptography rather
than scheme-specific. Memory and storage overhead
varies significantly, with TFHE requiring 32x less
cipher- text storage than BGV/CKKS, an important
consideration  for  bandwidth-constrained  cloud
environments.

Our amortized cost analysis identified circuit

depth as the critical factor in scheme selection,

with crossover points at depth 8-10 where
BGV/CKKS become more efficient than TFHE

despite  slower individual  bootstrapping
operations. This insight enables practitioners to

select appropriate schemes based on application-

specific computational patterns.

The practical deployment guidelines derived

from our study provide actionable
recommendations for integrating FHE into cloud
architectures. Hybrid approaches combining
multiple schemes can achieve 25-40%
performance improvements by leveraging
complementary strengths. Lazy bootstrapping

and batching strategies offer additional
optimization opportunities, reducing
bootstrapping frequency by 15-30% and per-

value costs by up to 800x respectively.

While FHE currently incurs  10-100%
computational over- head compared to plaintext
operations, our results demonstrate that optimized
re-encryption techniques can reduce this gap
significantly. The 40% reduction in bootstrapping
overhead achieved through recent optimizations,
combined with ongoing algorithmic improvements
and hardware acceleration efforts, positions FHE
as an increasingly practical solution for privacy-
critical cloud computing applications.

Future work should focus on hardware
acceleration, au- tomated scheme selection based
on workload profiling, and compiler optimizations
to further reduce the performance gap between
encrypted and plaintext computation. As these
technologies mature, FHE will enable a new
generation of cloud services that provide
cryptographic guarantees of data confidentiality
throughout the entire computational lifecycle,
fundamentally transforming the security landscape
of cloud computing.

The comparative framework and empirical
findings pre- sented in this paper provide
researchers and practitioners with the knowledge
needed to effectively deploy FHE in real- world
cloud environments, balancing security
requirements with performance constraints to
enable truly private cloud computation.
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