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Abstract—Fully Homomorphic Encryption (FHE) enables com- 
putation on encrypted data without decryption, offering a 
promising solution for secure cloud computing. However, noise 
accumulation during homomorphic operations necessitates re- 
encryption (bootstrapping) to maintain computational correct- 
ness. This paper presents a comprehensive comparative study of 
FHE re-encryption models, analyzing their performance, security 
guarantees, and practical applicability in cloud environments. 
We evaluate multiple re-encryption schemes across key metrics 
including computational overhead, ciphertext expansion, noise 
management efficiency, and scalability. Our experimental analysis 
demonstrates trade-offs between security levels and computa- 
tional efficiency, providing insights for selecting appropriate 
FHE re-encryption models based on application requirements. 
The findings reveal that optimized bootstrapping techniques can 
reduce re-encryption overhead by up to 40% while maintaining 
equivalent security levels, making FHE more practical for real- 
world cloud computation scenarios. 

Index Terms—Fully Homomorphic Encryption, Re-encryption, 
Bootstrapping, Cloud Computing, Secure Computation, Privacy- 
Preserving Computing 

 

I. INTRODUCTION 

Cloud computing has revolutionized data storage and pro- 

cessing, enabling organizations to leverage scalable computa- 

tional resources without maintaining expensive infrastructure. 

However, this paradigm shift introduces significant security 

and privacy concerns, particularly when sensitive data must 

be processed by untrusted cloud service providers. Traditional 

encryption schemes require data decryption before computa- 

tion, creating vulnerability windows where plaintext data is 

exposed to potential attacks or unauthorized access. 

Fully Homomorphic Encryption (FHE) addresses this fun- 

damental challenge by enabling arbitrary computations on 

encrypted data without requiring decryption [1]. This crypto- 

graphic breakthrough allows cloud servers to perform complex 

operations on ciphertexts, returning encrypted results that only 

the data owner can decrypt. FHE thus provides a theoretical 

foundation for truly secure cloud computation, where data con- 

fidentiality is maintained throughout the entire computational 

lifecycle. 

Despite its theoretical elegance, practical FHE implementa- 

tion faces significant challenges. The primary obstacle is noise 

accumulation: each homomorphic operation introduces addi- 

tional noise into the ciphertext, and excessive noise eventually 

corrupts the encrypted message, making correct decryption 

impossible. To address this limitation, FHE schemes employ 

re-encryption (also called bootstrapping), a technique that 

homomorphically evaluates the decryption circuit to refresh 

ciphertexts and reduce noise levels [1], [2]. 

Re-encryption represents both the enabling technology and 

the performance bottleneck of FHE systems. While it allows 

unlimited computation depth by periodically refreshing cipher- 

texts, bootstrapping operations are computationally expensive, 

often dominating the overall execution time of FHE applica- 

tions. Consequently, optimizing re-encryption mechanisms has 

become a central research focus in making FHE practical for 

real-world cloud computing scenarios. 

A. Motivation and Problem Statement 

The landscape of FHE re-encryption models has evolved 

significantly since Gentry’s original construction. Modern 

schemes such as BGV [2], CKKS [3], TFHE [5], and FHEW 

[4] offer different trade-offs between security assumptions, 

computational efficiency, noise management, and supported 

operations. Each scheme employs distinct mathematical foun- 

dations and bootstrapping techniques, making direct com- 

parison challenging yet essential for practitioners selecting 

appropriate FHE solutions. 

Current literature lacks comprehensive comparative analy- 

sis of re-encryption models across standardized metrics and 

realistic cloud computing workloads. Existing studies typi- 

cally focus on individual schemes or specific optimization 

techniques, leaving practitioners without clear guidance on se- 

lecting appropriate FHE implementations for their security and 
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performance requirements. This gap is particularly problematic 

as FHE adoption increases in privacy-critical applications 

such as healthcare analytics, financial services, and machine 

learning on encrypted data. 

B. Research Contributions 

This paper addresses these challenges through a systematic 

comparative study of major FHE re-encryption models. Our 

specific contributions include: 

• Comprehensive taxonomy: We present a structured clas- 

sification of FHE re-encryption approaches, identifying 

key design principles and mathematical foundations that 

distinguish different schemes. 

• Standardized evaluation framework: We develop a 

unified benchmarking methodology that enables fair com- 

parison across heterogeneous FHE implementations, mea- 

suring computational overhead, memory consumption, 

ciphertext expansion, and noise management efficiency. 

• Empirical performance analysis: We conduct exten- 

sive experiments evaluating representative FHE schemes 

(BGV, CKKS, TFHE, FHEW) across diverse computa- 

tional workloads typical of cloud applications, including 

arithmetic operations, comparison functions, and machine 

learning primitives. 

• Security-performance trade-off analysis: We quantify 

the relationship between security parameters and com- 

putational efficiency, providing practical guidance for 

parameter selection based on application threat models. 

• Practical recommendations: Based on our findings, we 

provide actionable recommendations for selecting and 

optimizing FHE re-encryption models for specific cloud 

computing scenarios. 

C. Paper Organization 

The remainder of this paper is organized as follows. Sec- 

tion II provides background on FHE fundamentals and re- 

encryption mechanisms. Section III describes our comparative 

methodology and experimental setup. Section IV presents 

detailed performance results and analysis. Section V discusses 

implications for practical FHE deployment in cloud environ- 

ments. Section VI concludes with future research directions. 

II. BACKGROUND AND RELATED WORK 

A. Fully Homomorphic Encryption Fundamentals 

Fully Homomorphic Encryption enables computation on 

encrypted data through homomorphic properties that preserve 

algebraic structure. Formally, an FHE scheme consists of four 

algorithms: 

• KeyGen(λ): Generates public key pk, secret key sk, and 

evaluation key evk based on security parameter λ. 

• Encrypt(pk, m): Encrypts plaintext message m to pro- 

duce ciphertext c. 

• Evaluate(evk, f , c1, ..., cn): Homomorphically evaluates 

function f on ciphertexts c1, ..., cn to produce output 

ciphertext cout. 

• Decrypt(sk, c): Decrypts ciphertext c to recover plaintext 

m. 

The correctness property requires that for any function f 
and plaintexts m1, ..., mn: 

Decrypt(sk, Evaluate(evk, f, Encrypt(pk, m1), ..., Encrypt(pk, mn))) = f 
(1) 

B. The Noise Problem and Re-encryption 

FHE schemes based on lattice cryptography introduce con- 

trolled noise during encryption to ensure security. Each ho- 

momorphic operation increases this noise, and when noise 

exceeds a threshold, decryption fails. The noise growth rate 

depends on the operation type: additions cause linear growth 

while multiplications cause exponential growth. 

Re-encryption (bootstrapping) addresses this limitation by 

homomorphically evaluating the decryption circuit on a ci- 

phertext, effectively ”refreshing” it to reduce noise while 

maintaining the encrypted value [1]. This process requires: 

1) Encrypting the secret key under itself (or a related key) 

2) Homomorphically evaluating the decryption function 

3) Producing a refreshed ciphertext with reduced noise 

The computational cost of bootstrapping depends on the 

complexity of the decryption circuit and the efficiency of 

homomorphic operations in the underlying scheme. 

C. Major FHE Re-encryption Models 

1) BGV Scheme: The Brakerski-Gentry-Vaikuntanathan 

(BGV) scheme [2] uses modulus switching and key switching 

to manage noise. BGV bootstrapping involves homomorphi- 

cally evaluating the decryption circuit, which includes modular 

arithmetic operations. The scheme supports SIMD (Single In- 

struction Multiple Data) operations through batching, enabling 

parallel processing of multiple plaintexts in a single ciphertext. 

2) CKKS Scheme: The Cheon-Kim-Kim-Song (CKKS) 

scheme [3] is designed for approximate arithmetic on real 

and complex numbers. Unlike exact schemes, CKKS tolerates 

small errors, making it suitable for machine learning and signal 

processing applications. CKKS bootstrapping refreshes both 

the noise and the scaling factor, requiring careful management 

of precision throughout computation. 

3) TFHE Scheme: The Fast Fully Homomorphic Encryp- 

tion over the Torus (TFHE) scheme [5] achieves extremely 

fast bootstrapping (under 0.1 seconds per gate) by operating 

on torus representations and using efficient gate bootstrapping. 

TFHE is particularly efficient for boolean circuits and com- 

parison operations, making it suitable for control flow and 

decision-making applications. 

4) FHEW Scheme: The Fastest Homomorphic Encryption 

in the West (FHEW) scheme [4] introduced the first sub- 

second bootstrapping using accumulator-based techniques. 

FHEW operates on binary gates and uses ring-LWE (Learning 

With Errors) for efficient noise management. While slower 

than TFHE, FHEW provides a simpler construction with clear 

security proofs. 
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• 256-bit security: Maximum security for critical infras- 

tructure 

2) Performance Metrics: We measured the following key 

metrics: 

1) Bootstrapping Time: Wall-clock time to perform one 

re-encryption operation 

2) Throughput: Number of operations possible before 

requiring bootstrapping 

3) Memory Consumption: Peak RAM usage during boot- 

strapping 

4) Ciphertext Size: Storage overhead for encrypted data 

5) Key Size: Storage requirements for cryptographic keys 

6) Noise Growth Rate: Rate of noise accumulation per 

operation 

7) Amortized Cost: Average overhead per operation in- 

Fig. 1. General architecture of FHE-based secure cloud computation showing 
the role of re-encryption in maintaining computational correctness. 

 

D. Related Work 

Several studies have examined FHE performance optimiza- 

tion. Halevi and Shoup [6] developed HElib, implementing 

BGV with various optimizations including smart ciphertext 

management and efficient key switching. Fan and Vercauteren 

[7] proposed the FV scheme with improved noise management 

for practical applications. 

Gentry et al. [8] demonstrated homomorphic AES eval- 

uation, highlighting the practical challenges of deep circuit 

evaluation. Alperin-Sheriff and Peikert [9] improved bootstrap- 

ping efficiency through polynomial error techniques. Chen 

et al. [11] enhanced CKKS bootstrapping for approximate 

computation scenarios. 

Recent work has focused on specialized optimizations: 

Bonte et al. [10] combined NTRU and LWE for faster instan- 

tiation, while various studies have explored hardware acceler- 

ation, algorithmic improvements, and parameter optimization. 

However, comprehensive comparative analysis across multi- 

ple schemes using standardized benchmarks remains limited. 

This paper addresses this gap by providing systematic eval- 

uation of major re-encryption models under realistic cloud 

computing conditions. 

III. METHODOLOGY 

A. Evaluation Framework 

We developed a comprehensive evaluation framework to 

compare FHE re-encryption models across multiple dimen- 

sions. Our methodology ensures fair comparison by standard- 

izing security levels, workload characteristics, and measure- 

ment protocols. 

1) Security Parameters: All schemes were configured to 

provide equivalent security levels based on lattice estimator 

tools. We evaluated three security levels: 

• 128-bit security: Standard security level for most appli- 

cations 

• 192-bit security: Enhanced security for sensitive appli- 

cations 

cluding bootstrapping 

B. Experimental Setup 

1) Implementation: We used the following open-source FHE 

libraries: 

• Microsoft SEAL [14]: For BGV and CKKS schemes 

• PALISADE [15]: For cross-scheme validation 

• TFHE-rs: For TFHE implementation 

• FHEW library: For FHEW implementation 

2) Hardware Configuration: Experiments were conducted on a 

standardized testbed: 

• CPU: Intel Xeon Gold 6248R (3.0 GHz, 24 cores) 

• RAM: 256 GB DDR4-2933 

• OS: Ubuntu 20.04 LTS 

• Compiler: GCC 9.3.0 with -O3 optimization 

All experiments were run single-threaded to isolate scheme- 

specific performance characteristics. Each measurement was repeated 

100 times, and we report median values with 95% confidence 

intervals. 

C. Benchmark Workloads 

We designed benchmark workloads representing common cloud 

computing operations: 

1) Arithmetic Operations: 

• Addition chains: Sequences of 1000 additions 

• Multiplication chains: Sequences of 10, 20, and 30 

multiplications 

• Mixed operations: Realistic computation patterns com- bining 

additions and multiplications 

2) Comparison and Logic: 

• Equality testing: Encrypted comparison operations 

• Maximum/minimum: Finding extrema in encrypted 

datasets 

• Sorting: Encrypted sorting algorithms 

3) Machine Learning Primitives: 

• Dot products: Vector operations for neural networks 

• Activation functions: Polynomial approximations of ReLU, 

sigmoid 

• Matrix operations: Encrypted matrix multiplication 

  

 

 

  
Decrypt 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 5 

Article Received: 25 March 2023 Revised: 12 April 2023 Accepted: 30 May 2023 

___________________________________________________________________________________________________________________ 

 

    612 
IJRITCC | May 2023, Available @ http://www.ijritcc.org 

  

TABLE I 

FHE SCHEME CONFIGURATIONS FOR 128-BIT SECURITY 
 

Scheme Ring Dim Modulus Noise Key Size 
 

 

BGV 16384 438 bits 3.2 128 MB 

TABLE II 

BOOTSTRAPPING PERFORMANCE COMPARISON (128-BIT SECURITY) 

 

Scheme  Bootstrap Memory Throughput  Depth 
Time (ms)  (MB)  (ops/s) Before BS 

CKKS 16384 438 bits 3.2 128 MB  BGV 1250 2048 12.8 25 
TFHE 1024 32 bits 2.0 24 MB  CKKS 1180 2048 13.5 22 
FHEW 2048 64 bits 2.5 48 MB  TFHE 13 128 76.9 1 

      FHEW 142 256 7.0 1 

 

TABLE III 
ARITHMETIC WORKLOAD PERFORMANCE (SECONDS) 

 

Workload BGV CKKS TFHE FHEW 

1000 Additions 0.42 0.38 2.1 3.8 
10 Multiplications 1.2 1.1 8.4 12.6 
20 Multiplications 2.8 2.6 16.8 25.2 
Polynomial (deg 8) 3.5 3.2 22.4 34.1 

Matrix Mult (32×32) 12.4 11.8 156.2 248.7 
 

   

 

 

 

 

 
Fig. 2. Evaluation framework showing the relationship between workload 
characteristics, scheme properties, and performance metrics. 

 

 

D. Comparative Analysis Methodology 

For each scheme and workload combination, we measured: 

1) Baseline performance: Operations without bootstrap- 

ping 

2) Bootstrapping overhead: Time and memory cost of re- 

encryption 

3) Multiplicative depth: Maximum operations before 

bootstrapping required 

4) Total execution time: End-to-end workload completion 

including all bootstrapping operations 

We computed normalized performance scores to enable 

cross-scheme comparison: 

 
 

 

compared to TFHE and FHEW which bootstrap after each 

gate. This fundamental difference affects the amortized cost 

per operation, as shown in Figure 4. 

B. Workload-Specific Performance 

1) Arithmetic-Intensive Workloads: For arithmetic-heavy 

computations (polynomial evaluation, matrix operations), 

BGV and CKKS demonstrate superior performance due to 

their batching capabilities and high multiplicative depth. Table 

III shows execution times for representative arithmetic work- 

loads. 

CKKS shows a 8-12% performance advantage over BGV 

for approximate arithmetic due to its optimized rescaling 

operations. For deep polynomial evaluation (degree 8), CKKS 

completes computation in 3.2 seconds compared to BGV’s 3.5 

seconds, TFHE’s 22.4 seconds, and FHEW’s 34.1 seconds. 

2) Logic and Comparison Operations: TFHE excels at 

boolean operations and comparisons, as shown in Table IV. 

Its gate-by-gate bootstrapping model and efficient torus arith- 

metic provide substantial advantages for control-flow intensive 

applications. 

Score 
 

scheme = 
Throughputscheme 

Costscheme 
(2) 

For 32-bit integer comparison, TFHE requires 416 ms 

compared to BGV’s 1420 ms and FHEW’s 4544 ms. This 
3.4× advantage over BGV and 10.9× advantage over FHEW 

Circuit Depth Precision Throughput 

Storage Batching ML Primitives 

Memory Noise Growth Logic 

Time Bootstrapping Arithmetic 

Performance 
Metrics 

Scheme 
Properties 

Workload 
Characteristics 
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where Cost includes computational time, memory, 

and stor- age overhead weighted by application-specific 

priorities. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Bootstrapping Performance 

Table II presents bootstrapping performance across 

schemes at 128-bit security. TFHE demonstrates the 

fastest bootstrap- ping time at 13 ms per gate, 

representing a 10× improve- ment over FHEW and 

100× improvement over BGV/CKKS. However, this 

advantage must be contextualized within each scheme’s 

operational model. 

BGV and CKKS support significantly 

greater multiplica- tive depth (22-25 

operations) before requiring bootstrapping, 

makes TFHE the preferred choice for applications 

requiring frequent encrypted comparisons. 

3) Machine Learning Workloads: Table V presents 

per- formance for common machine learning primitives. 

CKKS demonstrates clear advantages for neural network 

inference due to its native support for approximate 

arithmetic and efficient SIMD operations. 

CKKS completes a fully-connected layer 

transformation (128→64 neurons) in 28.6 seconds, 

representing a 34% im- provement over BGV and 8.7× 
improvement over TFHE. This performance advantage 
stems from CKKS’s efficient handling of approximate 
arithmetic and its optimized bootstrapping for 

maintaining precision. 

 

TABLE IV 
LOGIC AND COMPARISON PERFORMANCE (MILLISECONDS) 

Impact of Security Level on Bootstrapping Performance 

3.5 
 

 

3.0 
 

 

2.5 
 

 

2.0 

 

TABLE V 

MACHINE LEARNING PRIMITIVE PERFORMANCE (SECONDS) 

 

1.5 

1.0 
 

128 192 256 

Security Level (bits) 

 
Fig. 3. Impact of security level on bootstrapping performance across FHE 
schemes. All schemes show super-linear performance degradation with in- 
creased security. 

 

C. Security Level Impact 

Figure 3 illustrates the performance impact of increasing 

security levels from 128-bit to 256-bit. Bootstrapping time 

increases super-linearly with security level due to larger pa- 

rameter sizes and increased computational complexity. 

At 256-bit security, BGV bootstrapping time increases to 

4.2 seconds (3.4× slowdown), while TFHE increases to 48 

ms (3.7× slowdown). This relatively consistent scaling factor 

across schemes suggests that security-performance trade-offs 

are inherent to the underlying lattice problems rather than 

scheme-specific design choices. 

D. Memory and Storage Overhead 

Table VI compares memory consumption and 

storage re- quirements across schemes. BGV and 

CKKS require substan- tially more memory for 

bootstrapping operations due to their larger 

parameter sizes and complex key-switching 

operations. TFHE’s compact representation (8 KB 

ciphertext, 96 MB evaluation key) makes it attractive for 

resource-constrained environments  and  applications  with  

limited  bandwidth. 

BGV/CKKS ciphertexts are 32× larger, which significantly 

impacts network transfer costs in cloud scenarios. 

E. Amortized Cost Analysis 

Figure 4 presents amortized cost per operation for different 

workload depths. For shallow circuits (depth ¡ 5), TFHE 

provides the best amortized performance. For deeper circuits 

(depth ¿ 15), BGV and CKKS become more efficient due to 

their ability to defer bootstrapping. 

The crossover point occurs at approximately depth 8-10, 

where the accumulated cost of TFHE’s frequent bootstrapping 

exceeds the amortized cost of BGV/CKKS’s less frequent but 

more expensive bootstrapping operations. 

 

 

BGV 
CKKS 

TFHE 

FHEW 
N

o
rm

a
liz

e
d
 B

o
o
ts

tr
ap

p
in

g
 T

im
e
 

Operation BGV CKKS TFHE FHEW 

AND gate 45 48 13 142 

XOR gate 42 46 13 138 
Comparison (32-bit) 1420 1580 416 4544 
Max of 8 values 2840 3160 832 9088 

Sorting (16 values) 18200 20400 5248 58112 

 

Operation BGV CKKS TFHE FHEW 

Dot product (1024) 2.8 1.9 18.4 28.6 

ReLU approx (deg 7) 4.2 3.1 24.8 38.2 
Sigmoid approx 5.6 4.2 32.4 49.8 
Conv layer (8×8) 24.6 18.2 142.8 224.4 

FC layer (128→64) 38.4 28.6 248.2 386.8 
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V. DISCUSSION 

A. Scheme Selection Guidelines 

Our experimental results reveal that no single 

FHE re- encryption model dominates across all 

metrics and workloads. 

TABLE VI 

MEMORY AND STORAGE OVERHEAD COMPARISON 
 

Scheme Peak RAM Ciphertext Public Key Eval Key 

(MB)  Size (KB)   

BGV 2048 256 64 1024 

CKKS 2048 256 64 1024 
TFHE 128 8 12 96 

FHEW 256 16 24 192 

 

Instead, optimal scheme selection depends on 

application- specific requirements: 

1) BGV: Best for Exact Arithmetic: BGV is 

optimal for applications requiring: 

• Exact integer arithmetic without approximation errors 

• Deep arithmetic circuits (multiplicative depth ¿ 15) 

• SIMD parallelism through batching 

• Moderate memory and storage resources 

Example applications include encrypted 

database queries, secure voting systems, and 

privacy-preserving statistical anal- ysis where 

exact results are mandatory. 

2) CKKS: Best for Approximate Computation: 

CKKS ex- cels in scenarios requiring: 

• Approximate arithmetic on real/complex numbers 

• Machine learning inference and training 

• Signal processing and numerical analysis 

• Tolerance for small computational errors 

CKKS is the preferred choice for encrypted 

neural network inference, privacy-preserving data 

analytics, and scientific computing where 

approximate results are acceptable. 

3) TFHE: Best for Logic and Control Flow: 

TFHE is optimal for: 

• Boolean circuits and logic operations 

• Frequent comparison and branching operations 

• Low-latency gate-level operations 

• Resource-constrained environments

 (low

 mem- ory/storage) 
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C. Practical Deployment Considerations 

1) Cloud Architecture Integration: Deploying FHE 

in cloud environments requires careful architectural 

design: 

• Client-side encryption: Data owners encrypt 

ocally, minimizing trust requirements 

• Server-side computation: Cloud providers 

perform ho- momorphic operations without 

accessing plaintext 

• Key management: Secure distribution 

and storage of evaluation keys 

• Result verification: Mechanisms to 

ensure computa- tional integrity 

Network bandwidth becomes a critical 

bottleneck due to large ciphertext sizes. For 

BGV/CKKS, transferring 1 GB of plaintext 

data requires approximately 32 GB of ciphertext 

4) parallelization. Processing 1024 values in 

parallel reduces per-value cost by approximately 

800×, making these schemes highly efficient for 

batch pro- cessing scenarios common in cloud 

computing. 

 

transmission, necessitating compression 

techniques and effi- cient data transfer protocols. 

2) Cost-Benefit Analysis: The computational 

overhead of FHE must be justified by security 

requirements. Our analysis suggests FHE is cost-

effective when: 

• Data sensitivity justifies 10-100× computational overhead 

• Regulatory compliance mandates encryption 

during pro- cessing 

• Multiple parties require computation on 

jointly-held sen- sitive data 

• Long-term data confidentiality is critical 

(quantum- resistant security) 

For applications with lower security 

requirements, alterna- tive approaches such as 

secure multi-party computation or trusted 

execution environments may offer better 

performance- security trade-offs. 

D. Limitations and Future Work 

1) Current Limitations: Our study has several limitations: 

• Single-threaded evaluation: Real 

deployments would leverage multi-core 

parallelism 

• Synthetic workloads: Real applications 

may exhibit different performance 

characteristics 

• Library-specific optimizations: 

Implementation quality varies across libraries 

• Limited hardware diversity: Testing on 

additional ar- chitectures (ARM, GPU) would 

provide broader insights 

2) Future Research Directions: Several 

promising research directions emerge from our findings: 

1) Hardware acceleration: FPGA and ASIC implementa- 

tions could reduce bootstrapping time by 10-100× 

2) Algorithmic improvements: Novel bootstrapping tech- 

niques may further reduce computational overhead 

3) Automated scheme selection: Machine learning models 

could predict optimal FHE scheme based on workload 

characteristics 

4) Compiler optimizations: Smart compilers could auto- 

matically optimize circuit depth and minimize bootstrap- ping 

frequency 

5) Quantum-resistant analysis: Formal verification of post-

quantum security properties 

E. Impact on Cloud Computing Paradigm 

FHE represents a paradigm shift in cloud security, enabling 

”privacy-by-design” architectures where data confidentiality is 

cryptographically guaranteed rather than relying on trust. Our 

results demonstrate that while FHE incurs significant computational 

overhead, recent advances in re-encryption ef- ficiency are bringing 

practical deployment within reach for many applications. 

The 40% reduction in bootstrapping overhead achieved through 

optimized techniques, combined with continued algo- rithmic 

improvements and hardware acceleration, suggests that FHE will 

become increasingly viable for mainstream cloud computing within 

the next 5-10 years. Early adopters in health- care, finance, and 

government sectors are already deploying FHE for specific high-

value, security-critical workloads. 

I. CONCLUSION 

This paper presented a comprehensive comparative study of fully 

homomorphic encryption re-encryption models for secure cloud 

computation. Through systematic evaluation of BGV, CKKS, 

TFHE, and FHEW schemes across diverse workloads and security 

levels, we identified key performance characteristics and practical 

trade-offs that inform scheme selection for real-world applications. 

Our experimental results demonstrate that FHE re- encryption 

performance varies dramatically based on workload characteristics. 

TFHE achieves the fastest bootstrapping (13 ms per gate) and 

excels at logic operations, making it optimal for control-flow 

intensive applications. CKKS provides supe- rior performance for 

machine learning workloads, completing neural network operations 

34% faster than BGV and 8.7× faster than TFHE. BGV offers the 

best balance for exact arithmetic with deep circuits, supporting 

multiplicative depth of 25 operations before requiring 

bootstrapping. 

The security-performance analysis revealed that increasing security 

from 128-bit to 256-bit levels incurs a consistent 3.4-3.7× 

performance penalty across all schemes, suggesting that this trade-
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off is fundamental to lattice-based cryptography rather 

than scheme-specific. Memory and storage overhead 

varies significantly, with TFHE requiring 32× less 

cipher- text storage than BGV/CKKS, an important 

consideration for bandwidth-constrained cloud 

environments. 

Our amortized cost analysis identified circuit 

depth as the critical factor in scheme selection, 

with crossover points at depth 8-10 where 

BGV/CKKS become more efficient than TFHE 

despite slower individual bootstrapping 

operations. This insight enables practitioners to 

select appropriate schemes based on application-

specific computational patterns. 

The practical deployment guidelines derived 

from our study provide actionable 

recommendations for integrating FHE into cloud 

architectures. Hybrid approaches combining 

multiple schemes can achieve 25-40% 

performance improvements by leveraging 

complementary strengths. Lazy bootstrapping 

and batching strategies offer additional 

optimization opportunities, reducing 

bootstrapping frequency by 15-30% and per-

value costs by up to 800× respectively. 

While FHE currently incurs 10-100× 

computational over- head compared to plaintext 

operations, our results demonstrate that optimized 

re-encryption techniques can reduce this gap 

significantly. The 40% reduction in bootstrapping 

overhead achieved through recent optimizations, 

combined with ongoing algorithmic improvements 

and hardware acceleration efforts, positions FHE 

as an increasingly practical solution for privacy- 

critical cloud computing applications. 

Future work should focus on hardware 

acceleration, au- tomated scheme selection based 

on workload profiling, and compiler optimizations 

to further reduce the performance gap between 

encrypted and plaintext computation. As these 

technologies mature, FHE will enable a new 

generation of cloud services that provide 

cryptographic guarantees of data confidentiality 

throughout the entire computational lifecycle, 

fundamentally transforming the security landscape 

of cloud computing. 

The comparative framework and empirical 

findings pre- sented in this paper provide 

researchers and practitioners with the knowledge 

needed to effectively deploy FHE in real- world 

cloud environments, balancing security 

requirements with performance constraints to 

enable truly private cloud computation. 
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