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Abstract—In the era of advanced Industrial Internet of Things (IIoT) cyber-attacks, the need for improved detection models is crucial. 

This research presents an enhanced MobileNets model specifically designed for advanced IIoT cyber-attack detection. To achieve higher 
efficiency and accuracy, an adaptive recursive feature elimination (ARFE) strategy is proposed for effective feature selection. Through 

iterative elimination of less relevant features, the predictive performance of the model is optimized. To ensure robustness and 

generalizability, the proposed approach is trained and validated on six diverse, real-world IIoT datasets: UNSW-NB15, CICIDS2017, 

RPL-NIDDS17, N_BaIoT, NSL-KDD, and BoT-IoT. The evaluation of the proposed model on these datasets demonstrates its 
effectiveness in detecting cyber-attacks in various IIoT environments. The findings of this research contribute to the advancement of 

cyber-attack detection techniques in the context of IIoT, paving the way for enhanced security in industrial systems. 
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I.  INTRODUCTION  

The advent of the IIoT has revolutionized numerous 
sectors including manufacturing, healthcare, logistics, and 
many more. By enabling a seamless communication between 
devices, IIoT has facilitated the automation of various 
processes, leading to improved operational efficiency, 
productivity, and economic benefits [1][2][3]. However, the 
integration of IIoT devices into critical systems has also 
exposed these systems to a broad spectrum of cyber threats 
and data breaches [4][5][6]. The cybersecurity landscape has 
seen a surge in cyber threats and data breaches across various 
industries and business sectors. This has engendered a 
pressing need for robust security measures to protect the 
integrity and confidentiality of data in the IIoT ecosystem 
[7][8]. The situation is further exacerbated by the inherent 
vulnerabilities of IIoT devices, such as their limited 
processing capabilities and storage, which make them an 
attractive target for adversaries [9][10]. 

Traditionally, Artificial Intelligence (AI) and Deep 
Learning (DL) have been employed to develop sophisticated 
models for detecting and mitigating cyber threats 
[11][12][13]. While these models have shown promising 
results in various domains, their implementation in resource-
constrained IIoT devices poses significant challenges [14]. 
The high computational complexity and storage requirements 
of these models make them unsuitable for direct deployment 
on IIoT devices [15]. The increasing complexity and variety 
of cyber-attacks, coupled with the constraints of IIoT devices, 
underscore the need for efficient and lightweight security 
solutions. Traditional security measures often fail to detect 

advanced cyber threats due to their inability to adapt to the 
dynamic nature of these attacks. Moreover, these measures are 
not designed to operate within the resource limitations of IIoT 
devices. Therefore, there is a pressing need for a solution that 
not only effectively detects a broad spectrum of cyber threats 
but also fits within the resource constraints of IIoT devices. 

Feature selection is of paramount importance in this 
research for a few reasons. Firstly, not all features extracted 
from the dataset are equally important for the task of cyber-
attack detection. Some features may contribute little to the 
model's predictive performance and could even lead to 
overfitting if included in the model. Therefore, by selecting 
only the most relevant features, we can improve the model's 
generalizability and robustness. Secondly, by reducing the 
dimensionality of the data through feature selection, we can 
also alleviate the computational burden on the model. This is 
particularly important for deployment on resource-
constrained IIoT devices. With fewer features to process, the 
model can make quicker predictions, which is essential for 
timely detection and mitigation of cyber-attacks. Lastly, 
feature selection provides us with insights into the 
characteristics of cyber-attacks. By identifying the features 
that are most important for cyber-attack detection, we gain a 
better understanding of what distinguishes normal activities 
from malicious ones in the IIoT context. This can aid in the 
development of more effective security measures. 

In this research, we propose a novel approach that 
leverages the power of MobileNets, a type of lightweight deep 
learning model, and Adaptive Recursive Feature Elimination 
(ARFE) for efficient and advanced detection of IIoT cyber-
attacks. MobileNets, designed for mobile and embedded 
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vision applications, are computationally efficient and thus 
suitable for deployment directly on IIoT devices. They 
achieve this efficiency through the use of depthwise separable 
convolutions that significantly reduce the model size and 
complexity without compromising on the performance. Our 
proposed approach uses an improved version of MobileNets 
for cyber-attack detection. The model is trained and validated 
on six diverse, real-world IIoT datasets: unsw-nb15, 
CICIDS2017, RPL-NIDDS17, N_BaIoT, NSL-KDD, and 
BoT-IoT. These datasets encompass a wide variety of cyber-
attack scenarios, ensuring our model's ability to generalize 
across different contexts. To further enhance the model's 
performance, we adopt an Adaptive Recursive Feature 
Elimination (ARFE) strategy for feature selection. Feature 
selection is a critical step in machine learning that helps to 
improve the model's performance, reduce overfitting, and 
speed up training. ARFE is an iterative method that removes 
less important features based on their contribution to the 
model's predictive performance. This adaptive approach 
allows us to optimize the model's performance dynamically. 

The contributions of this research are multi-faceted and 
span several aspects of Industrial Internet of Things (IIoT) 
security. They are as follows: 

1. Innovative Application of MobileNets: This research 
presents the novel application of an improved MobileNets 
model for efficient and advanced detection of IIoT cyber-
attacks. While MobileNets have been utilized in various 
domains, their deployment in the context of IIoT security 
represents a significant contribution to the field. 

2. Adaptive Recursive Feature Elimination (ARFE): 
We introduce the use of ARFE, an adaptive feature selection 
strategy, to enhance the efficiency and performance of our 
model. This unique application of ARFE represents a 
significant advancement in the field of feature selection in 
machine learning, particularly for IIoT cyber-attack detection. 

3. Broad Applicability across Diverse Cyber-Attack 
Scenarios: By training and validating our model on six 
diverse, real-world IIoT datasets (unsw-nb15, CICIDS2017, 
RPL-NIDDS17, N_BaIoT, NSL-KDD, and BoT-IoT), we 
ensure its broad applicability across a wide variety of cyber-
attack scenarios. This represents a significant contribution to 
the generalizability of security solutions in the real-world IIoT 
environment. 

4. Efficient Cyber-Attack Detection within Resource 
Constraints: Our research addresses the critical challenge of 
implementing effective security measures within the resource 
constraints of IIoT devices. The proposed solution, leveraging 
the power of lightweight deep learning models and adaptive 
feature selection, is efficient, resource-friendly, and suitable 
for deployment directly on IIoT devices. 

The research paper is structured into five main sections. 
Section 2 provides a survey of related work, review and 
analyze existing literature on cyber-attacks and their detection 
in IIoT systems. In Section 3, present proposed attack 
detection framework and attack prediction model. The 
proposed methodology includes an improved MobileNets 
model for advanced detection of IIoT cyber-attacks and an 
Adaptive Recursive Feature Elimination (ARFE) strategy for 
feature selection to enhance the model's efficiency and 
accuracy. Section 4 discusses the empirical assessment and 
results of the proposed approach. Finally, Section 5 concludes 
the research paper by summarizing the main findings, 

discussing the limitations of the proposed approach, and 
suggesting possible directions for future research.  

II. REVIEW 

In recent years, researchers have made considerable 
strides in leveraging advanced techniques, such as Artificial 
Intelligence (AI) and Deep Learning (DL), to build robust 
models for cyber-attack detection and prevention. These 
techniques offer promising results due to their ability to learn 
complex patterns and adapt to new attack types, which are 
common in dynamic IIoT environments. This literature 
review will provide a critical analysis of several relevant 
research studies, focusing on their methodologies, findings, 
and limitations. 

In a pertinent study by Alqahtani et al [16]., a novel 
approach to IoT botnet attack detection was explored. This 
methodology utilized a Fisher-score for feature selection and 
a genetic-based extreme gradient boosting (GXGBoost) to 
detect botnet incursions. The Fisher-score, a filter-based 
feature selection tool, and GXGBoost, a classifier rooted in 
deep learning principles, were employed for analysis. The 
model was trained and assessed using the N-BaIoT Dataset, 
providing a valuable foundation for botnet detection research. 

Guosheng Zhao and his team [17] ventured into the realm 
of lightweight IIoT attack detection, incorporating cloud and 
fog computing into their model. They repurposed a two-
dimensional ConvNeXt-based computer vision model to 
function in a one-dimensional context suitable for IIoT 
security. To streamline the ConvNeXt model, Shu:eNet V2 
was incorporated. Data processing was facilitated through 
label encoding and a max-min normalization procedure, with 
the BoT-IoT and TON-IoT datasets serving as the training 
and evaluation tools. 

Latif et al [18]. devised a Lightweight Random Neural 
Network model aimed at identifying common network 
intrusions in IIoT, including malicious operations, denial of 
service (DoS), spying, malicious control, and data type 
probing. The DS2OS dataset was utilized to train and 
evaluate this innovative approach to IIoT attack detection. 

In a study by Al-Abassi et al [19]., a Deep Learning-
Based Attack Detection system for IIoT networks was 
introduced. This innovative model aimed to create balanced 
representations from imbalanced datasets, using a Decision 
Tree (DT) and Deep Neural Network (DNN) to identify 
potential attacks. The model was trained and validated with 
Gas Pipeline (GP) and Secure Water Treatment (SWaT) 
datasets, extending the scope of deep learning applications in 
IIoT security. 

Mohy-Eddine et al [20]. proposed an Ensemble Learning-
Based attack detection model for IIoT. This methodology 
featured a unique feature selection process, combining 
Pearson’s Correlation Coefficient with the Isolation Forest 
method for outlier removal and optimal feature selection. The 
Random Forest algorithm was employed to classify potential 
attacks, with the NF-UNSW-NB15-v2 and Bot-IoT datasets 
used for model training. 

Khan et al [21]. presented a Lightweight Deep Learning 
model for IoT networks, employing three distinct deep 
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learning models to predict IoT network attacks: Long Short-
Term Memory, and Bi-directional LSTM Recurrent Neural 
Network. These models were trained and evaluated using the 
MalwareTextDB dataset, contributing significantly to the 
development of lightweight deep learning models. 

In the field of Intelligent Internet of Vehicles, Nie et al 
[22]. introduced a Convolutional Neural Network (CNN) 
based approach. They designed a deep learning architecture 
based on CNN to extract link load features and identify 
intrusions targeting Roadside Units (RSUs). This architecture 
combined a traditional CNN and a fundamental error term 
considering backpropagation algorithm convergence, with a 
probabilistic representation providing convergence analysis. 

Almaiah [23] offered a lightweight Hybrid Deep 
Learning-based model for the Industrial Internet of Medical 
Things. This model consisted of a two-layer security structure 
integrating blockchain for user and device authentication, and 
deep learning to predict potential attacks. The Variational 
AutoEncoder (VAE) technique and a Bidirectional Long 
Short-Term Memory intrusion detection model were 
employed for privacy and security respectively. Model 
training was conducted using the ToN-IoT datasets and IoT-
Botnet, expanding the application of hybrid models to 
medical IIoT scenarios. 

A review of the current literature reveals several research 
gaps. Despite the significant strides made in IoT and IIoT 
attack detection, a few challenges and opportunities for future 
research still exist: 

1. Many current models, including those developed by 
Alqahtani et al. and Zhao et al., tend to be designed for 
specific datasets or attack types, limiting their 
effectiveness when applied to new types of attacks or in 
different IoT environments. 

2. Some models, like the one proposed by Latif et al., use 
complex computations that can be computationally 
expensive and challenging to implement in real-time 
systems. 

3. The research conducted by Al-Abassi et al. highlighted 
the prevalent issue of imbalanced datasets in IoT security. 
This imbalance could lead to biased models that might 
underperform in real-world applications. 

4. Some models, such as Almaiah's work, propose a hybrid 
approach to address multiple security issues. However, 
these approaches often lack a comprehensive perspective 
that combines all relevant security factors in a unified 
model. 

III. PROPOSED METHODOLOGY 

First, This study develops four crucial modules for 
detecting IIoT cyber-attacks efficiently and effectively. The 
modules include pre-processing, feature extraction, feature 
selection, and classification. The pre-processing phase refines 
the raw data to create a clean, reliable dataset that will be used 
to train the model.  

 
Figure 1. Overall process flow of the proposed attack detection system. 

 

The normalization process ensures that all features are on 
a similar scale, improving the overall stability and 
performance of the model. The model is also designed to 
detect cyber threats accurately by identifying outliers within 
the data. Once the data is pre-processed, feature extraction is 
performed using a modified lightweight MobileNet model. 
The next step is to select features. This is a critical step for 
ensuring the model's efficiency and performance. An 
approach called Adaptive Recursive Feature Elimination 

(ARFE) is proposed for this purpose. This iterative method 
works by continually evaluating the importance of each 
feature to the model's predictive performance and removing 
those deemed less significant. ARFE allows the model to be 
optimized dynamically, enhancing its performance while still 
fitting within the resource constraints of IIoT devices, by 
focusing on the most important features. Finally, the selected 
features are fed into the classification model. 
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A. Data pre-processing 

The first module of the approach is the pre-processing 
phase, where the raw data is prepared for further analysis. This 
stage is crucial, as the quality and format of the data directly 
impact the performance of the subsequent stages, and 
ultimately the effectiveness of the cyber-attack detection. The 
pre-processing phase involves two main steps: data 
normalization and outlier removal. 

Data normalization is necessary to bring all features onto 
a similar scale. This is particularly important when dealing 
with data that encompasses a wide range of values, as is often 
the case with IIoT datasets. The normalization process adjusts 
the values in the dataset to a common scale, without distorting 
the differences in the ranges of values or losing information. 
There are various methods to normalize data, but a commonly 
used method is min-max normalization, which transforms the 
data to fit within a specific range, usually 0 to 1. The equation 
for min-max normalization is as follows: 

𝑋𝑛𝑜𝑟𝑚 =
(𝑋 − 𝑋𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥− 𝑋𝑚𝑖𝑛)
   (1) 

where X represents the original data points, 𝑋𝑛𝑜𝑟𝑚  is the 
normalized data, and 𝑋𝑚𝑖𝑛  and 𝑋𝑚𝑎𝑥  are the minimum and 
maximum values in the original data, respectively. 

Next, we move on to the process of outlier removal. 
Outliers are data points that are significantly different from the 
others in the dataset [25][26]. They can be caused by 
variability in the data or errors during data collection, and their 
presence can often lead to misleading representations and 
consequently, poor model performance. The identification and 
handling of outliers are typically performed through statistical 
methods. One common method is the Z-score method, where 
data points are transformed into a standard score that 
represents how many standard deviations they are from the 
mean. The equation for calculating the Z-score is: 

𝑍 =
(𝑋 − 𝜇)

𝜎
     (2) 

where X is a data point, μ is the mean of the dataset, and σ 
is the standard deviation. Data points with a Z-score greater 
than a certain threshold, in this research 3, are considered 
outliers and are removed or adjusted as appropriate. Through 
data normalization and outlier removal, we ensure that our 
model is trained on a dataset that is clean, reliable, and 
representative of the true nature of cyber-attacks in the IIoT 
domain.  

B. Lightweight mobile net model 

The second module of our approach is feature extraction, 
which involves using a modified lightweight MobileNet 
model. MobileNet, originally designed for mobile and 
embedded applications [27][28], is an ideal model for this 
research due to its computational efficiency. It uses depthwise 
separable convolutions that significantly reduce model size 
and computational demands without compromising 
performance. For our research, we have modified the 
MobileNet architecture to better fit the characteristics of IIoT 
cyber-attack detection. We have tailored the model's depth 
and width to strike a balance between computational 

efficiency and predictive accuracy. Following table details the 
modified MobileNet architecture: 

In order to adapt the original MobileNet model to the 
specific requirements of our research on cyber-attack 
detection in the IIoT ecosystem, we have made several key 
modifications to the architecture. The modifications were 
made with the aim of balancing computational efficiency, 
which is a key consideration for deployment on resource-
constrained IIoT devices, with the need for high predictive 
accuracy. Firstly, we have adjusted the depth and width of the 
model. The depth of a model refers to the number of layers in 
the model, while the width refers to the number of neurons in 
each layer. The depth and width of the model were tailored to 
the complexity and variety of the cyber-attacks we aim to 
detect. By increasing the depth, the model is able to learn more 
complex features that can distinguish between different types 
of cyber-attacks. However, increasing the depth and width 
also increases the computational demands of the model. 
Therefore, we carefully adjusted these parameters to ensure 
that the model remains efficient for deployment on IIoT 
devices. 

Secondly, we have adjusted the filter sizes and strides of 
the convolutional layers. The filter size determines the size of 
the 'window' that the model uses to scan the input data, while 
the stride determines the step size that the model takes when 
moving the filter across the input. By adjusting these 
parameters, we can control the granularity at which the model 
extracts features from the input data. Larger filter sizes and 
strides enable the model to capture more global, abstract 
features, while smaller filter sizes and strides allow the model 
to capture more local, detailed features. Thirdly, we have 
added additional Depthwise Separable Convolution layers. 
These layers are a key feature of the MobileNet architecture, 
as they significantly reduce the computational complexity of 
the model compared to standard convolutional layers, without 
significantly compromising the model's performance. By 
adding more of these layers, the model is able to learn a richer 
set of features from the input data, enhancing its ability to 
detect a wide variety of cyber-attacks. Finally, we have 
adjusted the number of neurons in the final fully connected 
layer to match the number of cyber-attack classes in our 
dataset. This ensures that the model's output has the 
appropriate dimensionality for the classification task. 

Feature selection 

Feature selection is of utmost importance in this research 
for a variety of reasons. Primarily, it is due to the limitations 
of IIoT devices, which often have restricted processing 
capabilities and storage. Feature selection allows us to focus 
on the most significant aspects of the data, eliminating 
unnecessary features and thus reducing the computational 
demands on these resource-constrained devices [29]. This is 
particularly crucial when using advanced machine learning 
models like MobileNets, which, despite being designed for 
efficiency, still need careful management of resources for 
optimal performance. Also, in the context of cyber threat 
detection, the type and nature of attacks can be incredibly 
diverse, resulting in a high-dimensional and complex dataset. 
Feature selection aids in simplifying this complexity, 
enhancing the interpretability of the model, and making it 
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easier to identify the key indicators of a cyber-attack. By 
focusing on the most relevant features, the model is more 
likely to generalize well across different types of attacks. 
Algorithm 1 explain the proposed Adaptive Recursive Feature 
Elimination (ARFE).  

The Improved Adaptive Recursive Feature Elimination 

(iARFE) algorithm initiates by defining four key 

hyperparameters: 𝑘max , the maximum initial number of 

features; 𝜃 , the minimum number of features required for 

termination; 𝜖 , the minimum performance improvement to 

continue; and 𝑁 , the number of multiple runs to average 

results. In the initialization phase, 𝑁 models are trained on 

random subsets of 𝑘max features, and their performances are 

calculated. A feature selection loop then runs 𝑁  times, 

eliminating the least important feature iteratively until the 

number of features is less than 𝜃  or the performance 

improvement is below 𝜖 . Feature importance is computed 

each time, typically through mutual information or model-

based metrics. After each run, performance is compared to 

decide if the model should proceed with fewer features or 

adaptively halve the feature set. The results from all 𝑁 runs 

are aggregated to form the final optimal feature set. 

It incorporates various improvements to enhance the 

feature selection process, such as an adaptive elimination 

strategy, performance-based convergence criteria, and 

multiple runs with aggregation. Following sections explains 

the specific novelties and improvements of the ARFE 

algorithm over existing methods like RFE, Linear 

Discriminant Analysis (LDA), Correlation-Based Feature 

Selection, and Principal Component Analysis (PCA). 

Adaptive Elimination Strategy 

One of the most innovative aspects of ARFE is its 

adaptive elimination strategy. In conventional RFE, one 

feature is eliminated in each iteration, typically based on the 

least importance as determined by a base classifier. 

Mathematically, this can be represented as 

𝑆new = 𝑆old − {Least Important Feature}   (3) 

In contrast, ARFE adapts the feature elimination rate 

based on model performance. Specifically, if the performance 

𝑝′  of the new model is greater than or equal to the 

performance 𝑝0 of the original model, the subset is updated 

as 

𝑆new
′ = 𝑆old − {Least Important Feature}  (4) 

Otherwise, the algorithm retains the current subset. The 

number of features 𝑘 for the next iteration is adaptively set 

based on the following equation: 

𝑘 = {

|𝑆new′|, if 𝑝′ ≥ 𝑝0

⌊
𝑘

2
⌋ , otherwise

   (5) 

 

 

Table 1. Layer details of the proposed lightweight mobile net model. 

Layer Type Filter Size Stride Depth 

Convolution 3x3 2 32 

Depthwise-Separable-Convolution 3x3 1 64 

Depthwise-Separable-Convolution 3x3 2 128 

Depthwise-Separable-Convolution 3x3 1 128 

Depthwise-Separable-Convolution 3x3 2 256 

Depthwise-Separable-Convolution 3x3 1 256 

Depthwise-Separable-Convolution 3x3 2 512 

Depthwise-Separable-Convolution (x5) 3x3 1 512 

Depthwise-Separable-Convolution 3x3 2 1024 

Depthwise-Separable-Convolution 3x3 1 1024 

Average Pooling Global - - 

Fully Connected (Logits) - - Number of Classes 

Softmax - - - 
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Figure 2. Layer details of the improved mobile net model 

for IIoT attack detection. 

 

This adaptivity allows ARFE to converge faster to the 

optimal feature set compared to RFE. 

Performance-based Convergence 

Traditional feature selection methods often have a fixed 

number of iteration steps or rely on domain knowledge for 

convergence. Typically, the stopping criterion is 𝑘 ≤ 𝜃 , 

where 𝜃 is a threshold for the minimum number of features. 

ARFE introduces an additional performance-based 

stopping criterion, 𝛥𝑝, the absolute change in performance 

between iterations. The algorithm will stop if either 𝑘 ≤ 𝜃 or 

𝛥𝑝 < 𝜖, where 𝜖 is a small positive number. This ensures that 

the algorithm not only finds an optimal set of features but also 

verifies its effectiveness based on predictive performance. 

Multiple Runs with Aggregation 

Traditional feature selection methods are often 

deterministic and single-run. The feature set 𝑆∗  is usually 

identical to the final subset 𝑆 after the algorithm converges. 

ARFE runs multiple iterations (denoted as 𝑁) of the feature 

selection process and aggregates the results. Mathematically, 

this can be described as 

𝑆∗ =
1

𝑁
∑ 𝑆(𝑖)   (6)

𝑁

𝑖=1

 

This reduces the risk of settling on a suboptimal feature set 

and increases the robustness of the selected features. 

Improved Feature Importance Assessment 

Methods like LDA and Correlation-Based Feature 

Selection often rely on linear relationships or assumptions 

about the data. For instance, LDA aims to maximize a 

function 𝐽(class)  based on class separability, while 

correlation-based methods use Correlation(𝑋, 𝑌)  to rank 

features. 

ARFE introduces the flexibility to use more advanced 

feature importance assessment methods like mutual 

information or ensemble-based importances. The importance 

is captured in a function 𝐹(𝑆, 𝑦) , allowing for the 

incorporation of non-linear relationships between features 

and targets. 

The adaptability of the ARFE algorithm, along with its 

performance-based convergence and multi-run aggregation, 

makes it more versatile and robust compared to existing 

algorithms like RFE, LDA, Correlation-Based Feature 

Selection, and PCA.  

3.4 Classification  

The output from the feature extraction stage, which 
comprises of a subset of optimal features S*, is fed into the 
classification model. Let's denote this classification model as 
C. The model C is trained on the training dataset 𝐷𝑡𝑟𝑎𝑖𝑛  
which includes only the features in S*. The objective of the 
classification model C is to learn a mapping function f that 
maps the input features x in S* to their corresponding labels 
y. Mathematically, this can be expressed as: 

𝑦 =  𝑓(𝑥)   (7) 

where x ∈ S*. During the training phase, the classifier 
model C learns the parameters of the function f by minimizing 
a loss function L(y, f(x)). The loss function quantifies the 
difference between the predicted labels f(x) and the true labels 
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y for all instances in the training dataset 𝐷𝑡𝑟𝑎𝑖𝑛 . 
Mathematically, this can be written as: 

𝑎𝑟𝑔𝑚𝑖𝑛 𝐿(𝑦, 𝑓(𝑥))     (8) 

Depending on the specific classifier used, the form of the 
function f and the loss function L will differ. For example, if 
we use a logistic regression classifier, f will be the logistic 
function and L will be the binary cross-entropy loss. After 
training, the classifier C can predict the label y' for a new 
instance x' using the learned function f. 

𝑦′ =  𝑓(𝑥′)    (9) 

The performance of the classifier is then evaluated on a 
separate validation dataset 𝐷𝑣𝑎𝑙, using an appropriate metric 
such as accuracy, precision, recall, or F1 score. This ensures 
that the model generalizes well to unseen data and is not 
overfitting to the training data. 

IV.  RESULTS 

A. Hardware and software details  

The computational experiments were performed on a 
machine equipped with an Intel Core i7 processor, operating 
at a speed of 3.4 GHz. The system also had 16GB of RAM, 
ensuring sufficient memory allocation for the operations. 
Furthermore, the machine was equipped with an NVIDIA 
GeForce RTX 2080 Ti GPU.  

The software infrastructure for this research was primarily 
based on Python programming language (version 3.7), a 
popular choice due to its wide range of scientific computing 
and machine learning libraries. The deep learning models 
were implemented using the TensorFlow (version 2.6.0) and 
Keras (version 2.6.0) libraries, which are well-suited for 
designing and training neural network models. For data 
preprocessing and analysis, libraries such as NumPy, pandas 
and Scikit-learn were used. The matplotlib and Seaborn 
libraries were used for data visualization and to plot the results 
of the experiments. All the experiments were run on a 
Windows 10 operating system.  

B. Data set details  

In this study, we utilized most popular six different types 
IoT attack detection datasets to train our proposed lightweight 
MobileNet model.  

1. UNSW-NB15: This dataset is a result of a 
comprehensive Network Intrusion Detection System 
(NIDS) evaluation built by the Cyber Range Lab of 
the Australian Centre for Cyber Security (ACCS) 
[30]. It contains a mix of contemporary real-world 
events with synthetic background traffic. The dataset 
includes a diverse range of intrusions simulated in a 
military network environment, offering a true 
evaluation in detecting network anomalies. 

2. CICIDS2017: This is a comprehensive dataset for 
Intrusion Detection Systems (IDS), provided by the 
Canadian Institute for Cybersecurity (CIC) [31]. The 
dataset includes several different attack types, such 
as Brute Force, Heartbleed, Botnet, DoS, DDoS, and 
Infiltration. It is considered a benchmark for 

evaluating the performance of intrusion detection 
methods. 

3. RPL-NIDDS17: This dataset, created by the 
Georgia Tech Research Institute (GTRI), is designed 
for evaluating the performance of intrusion detection 
systems in IoT network environments [32]. It 
provides a realistic representation of normal network 
traffic in such environments, as well as multiple 
types of network attacks. 

4. N_BaIoT: This dataset is created specifically for 
detecting IoT attacks [33]. It consists of network 
traffic from 9 commercial IoT devices under both 
benign and malicious conditions. The malicious 
traffic was generated by real malware such as Mirai 
and BASHLITE. 

5. NSL-KDD: The NSL-KDD dataset is an improved 
version of the widely used KDD Cup 1999 intrusion 
detection dataset [34]. It contains a large number of 
network traffic records, each labeled as either normal 
or an attack. The attacks in the NSL-KDD dataset fall 
into four main categories: DoS, R2L, U2R, and 
probing. 

6. BoT-IoT: The Bot-IoT dataset is a combination of 
both IoT and non-IoT traffic [35]. The dataset was 
generated at the UNSW Canberra Cyber Range Lab 
and contains ten types of attacks (including DDoS, 
DoS, OS and Service Vulnerabilities, etc.) and 
normal data. 

Each of these datasets provides a unique perspective and 
offers a different type of challenge in identifying network 
intrusions, making them ideal for a comprehensive evaluation 
of our proposed method. In this research, the partitioning of 
the datasets was conducted in a manner to ensure that the 
model was exposed to a diverse range of data points. This aids 
in enhancing the model's capability to generalize well to 
unseen data. 

The partitioning of the datasets is as follows: 

This dataset was divided into 60% for training, 20% for 
validation, and the remaining 20% for testing. This ensures a 
large enough training set for the model to learn various attack 
patterns, with ample data reserved for validation and testing. 
The goal is to maintain a balance, ensuring that the model has 
enough data to learn from (training set), tune its parameters 
(validation set), and finally, to evaluate its performance on 
unseen data (testing set). This partitioning strategy helps to 
prevent overfitting and underfitting, thereby helping the 
model to generalize well. 

C. Accuracy analysis  

For each of the datasets used in the research - UNSW-
NB15, CICIDS2017, RPL-NIDDS17, N_BaIoT, NSL-KDD, 
and BoT-IoT - we trained our MobileNet model and then used 
the test partition of each dataset to compute the accuracy. In 
our experimental analysis, we compared our proposed method 
with five state-of-the-art methods from Mnahi Alqahtani et al, 
Guosheng Zhao et al, SHAHID LATIF et al, 
ABDULRAHMAN AL-ABASSI et al, and Abdur Rehman 
Khan et al. Additionally, we benchmarked our method against 
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popular deep learning and neural network models such as the 
Artificial Neural Network (ANN), Deep Neural Network 
(DNN), Random Neural Network (RNN), Recurrent Neural 
Network (RNN), and Long Short-Term Memory (LSTM). 
Our performance evaluation was based on six key metrics: 
Accuracy, Precision, Recall, F1-score, False Alarm Rate 
(FAR), and Area Under the Receiver Operating Characteristic 
Curve (AUC). These metrics, derived from well-established 
statistical formulas, are described below: 

Accuracy: This metric gives us a holistic view of the 
overall performance of our model by measuring the proportion 
of true results (both true positives and true negatives) in the 
total number of cases examined. It is calculated using the 
following formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (10) 

Here, True-Positives (TP) are the correctly identified 
cyber-attacks, True-Negatives (TN) represent the normal 
instances accurately classified, False-Positives (FP) are the 
normal instances incorrectly classified as attacks, and False-
Negatives (FN) denote the actual attacks that were incorrectly 
classified as normal instances.  

Precision: This is a measure of the exactness or quality of 
our model. It calculates the proportion of true positive cyber-
attack identifications out of all positive identifications. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (11) 

Recall:  Also known as Sensitivity, Recall calculates the 
proportion of actual positive cases (attacks) that are correctly 
identified. The formula is: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (12) 

F1-Score: F1-Score balances the trade-off between 
Precision and Recall and is especially useful when dealing 
with uneven class distribution, as is common in cyber-attack 
detection. The formula is: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
     (13) 

FAR is the proportion of normal instances that are 
incorrectly identified as attacks. A low FAR indicates that our 
model avoids raising unnecessary alarms by falsely 
identifying normal activities as malicious. The formula is: 

𝐹𝐴𝑅 =
𝐹𝑃

𝑇𝑁+𝐹𝑃
     (14) 

  

Figure 3. Accuracy Comparison of MobileNet-ARFE 

with Other Methods and Models on the UNSW-NB15 

Dataset. 

Figure 4. Accuracy Comparison of MobileNet-ARFE 

with Other Methods and Models on the CICIDS2017 

Dataset. 

  

Figure 5. Performance Comparison of MobileNet-ARFE 

with Other Models on RPL-NIDDS17 Dataset. 

Figure 6. Evaluation of MobileNet-ARFE and Other 

Methods Based on N_BaIoT Dataset 
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Figure 7. Performance Evaluation of MobileNet-ARFE 

and Other Techniques on NSL-KDD Dataset. 

Figure 8. Comparison of MobileNet-ARFE with Other 

Approaches on BoT-IoT Dataset. 

The comprehensive analysis carried out in this study 
brings forth the impressive performance metrics of our 
proposed MobileNet-ARFE model across six diverse datasets. 
Starting with the UNSW-NB15 dataset illustrated in Table 1, 
the MobileNet-ARFE model demonstrates a stellar accuracy 
of 96.2%, significantly higher than other methods. The closest 
competitor, the method by Zhao et al., only achieved an 
accuracy of 92.7%. The proposed model also outshines in 
other metrics including precision, recall, F1-score, and AUC. 
As we proceed to the CICIDS2017 dataset in Table 2, the 
MobileNet-ARFE continues to excel with an accuracy of 
96.2%, while the closest rival model, RNN, achieves an 
accuracy of only 89.8%. The proposed model consistently 
manifests improvements in precision, recall, F1-score, and 
AUC. Table 3 exhibits the performance of the MobileNet-
ARFE model on the RPL-NIDDS17 dataset. Here, our model 
scores an extraordinary accuracy of 96.5%, far ahead of the 
next-best model, RNN, which stands at 89.8%. Other metrics 
also clearly indicate the dominance of the MobileNet-ARFE 
model. Table 4 presents the results for the N_BaIoT dataset. 
Our proposed model again takes the lead with an accuracy of 
93.7%, leaving behind the closest competitor, Zhao et al., at 
88.3%. This supremacy is consistent in all metrics - precision, 
recall, F1-score, and AUC. Taking into account the NSL-
KDD dataset in Table 5, the MobileNet-ARFE model 
achieves an impressive accuracy of 92.9%, dwarfing the 
88.5% accuracy scored by the second-best method by AL-
ABASSI et al. Again, in terms of precision, recall, F1-score, 
and AUC, the proposed model stands unbeaten. Finally, Table 
6, showcasing the results on the BoT-IoT dataset, exhibits the 
proposed MobileNet-ARFE model attaining an exceptional 
96.3% accuracy. The model substantially outperforms the 
second-best model, Zhao et al., which manages to reach only 
90.7% accuracy. As seen before, the MobileNet-ARFE model 
excels in terms of precision, recall, F1-score, and AUC. 

D. False alarm analysis  

The figure 9 presents the comparison of False Alarm Rates 
(FAR) between our proposed MobileNet-ARFE model and 
various existing methods applied to six different datasets 
(UNSW-NB15, CICIDS2017, RPL-NIDDS17, N_BaIoT, 

NSL-KDD, BoT-IoT). False Alarm Rate is a critical metric in 
cyber-attack detection as it denotes the percentage of normal 
activities mistakenly classified as attacks. Thus, a lower FAR 
is indicative of a model's ability to accurately distinguish 
between legitimate and malicious activities, thereby reducing 
unnecessary alerts and ensuring resource efficiency. The 
proposed MobileNet-ARFE model exhibits the lowest FAR 
across all datasets, underscoring its superior performance over 
the other models. On the UNSW-NB15 and CICIDS2017 
datasets, the model achieves an impressive FAR of 3.8%, 
significantly lower than the closest competing models. When 
applied to the RPL-NIDDS17 dataset, the MobileNet-ARFE 
model outperforms other methods with a FAR of just 3.5%. 
For the N_BaIoT dataset, our model shows a FAR of 6.3%, 
still markedly better compared to the other models, 
demonstrating its robustness in different IIoT environments. 
When evaluated on the NSL-KDD dataset, the MobileNet-
ARFE model continues to show lower FAR (7.1%) than the 
rest, proving its ability to handle diverse data distributions. 
Lastly, on the BoT-IoT dataset, the model once again prevails, 
achieving an exceptional FAR of 3.7%. Across all these 
datasets, the MobileNet-ARFE model consistently exhibits 
superior performance, demonstrating its robust and reliable 
detection capabilities. The significant reduction in FAR 
compared to existing methods indicates the model's 
effectiveness in minimizing false alerts, thus enhancing the 
overall security and operational efficiency of IIoT systems. 

 

Figure 9. FAR between the Proposed MobileNet-ARFE 

Model and Existing Methods Across Multiple Datasets. 
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Hence, the comparative analysis unequivocally establishes 
that our proposed MobileNet-ARFE model outshines all the 
other methods and models across all the datasets under 
consideration. The consistent improvement in accuracy, 
precision, recall, and F1-score, and the marked decrease in 
FAR attest to the robustness and reliability of the proposed 
model, thus validating its effectiveness in the detection and 
prediction of cyber-attacks on IIoT systems. 

4.5 Training time and prediction time analysis 

 

Figure 10. Comparative Analysis of Training Time across 

Different Methods for Cyber Attack Detection in Industrial 

IoT. 

The above figure 10 show a comparative analysis of the 
training time across various methods for cyberattack detection 
in the Industrial IoT (IIoT) sector. The training time is 
represented in minutes for six training datasets. Upon 
examining the training time of different methods, it becomes 
evident that our proposed method, the MobileNet-ARFE 
model, significantly outperforms all other models in terms of 
training efficiency. Regardless of the dataset, the MobileNet-
ARFE model consistently records the lowest training times. 
For instance, on the UNSW-NB15 dataset, the training time 
for the MobileNet-ARFE model is 55 minutes, which is at 
least 20 minutes quicker than any other model, with the closest 
being the ANN model at 75 minutes. 

Other traditional methods, including those proposed by 
Alqahtani et al., Zhao et al., LATIFAT et al., AL-ABASSI et 
al., and Khan et al., show higher training times ranging from 
74 minutes to 95 minutes. Similarly, popular deep learning 
and neural network models such as the Artificial Neural 
Network (ANN), Deep Neural Network (DNN), Random 
Neural Network (RNN), Recurrent Neural Network (RNN), 
and Long Short-Term Memory (LSTM) also exhibit 
comparatively high training times, with values ranging from 
68 minutes to 95 minutes across the different datasets. The 
high training efficiency of the proposed MobileNet-ARFE 
model represents a significant advantage in the context of IIoT 
cyber attack detection. Given the dynamic and resource-
constrained nature of IIoT environments, models that can be 
trained quickly and efficiently are of great value. Thus, the 
lower training time of the MobileNet-ARFE model 
contributes to its practical utility and feasibility in real-world 
IIoT security scenarios. 

This study assesses the prediction time of twelve different 
types of cyberattacks across various datasets: UNSW-NB15, 
CICIDS2017, RPL-NIDDS17, N_BaIoT, NSL-KDD, and 
BoT-IoT. The attacks analyzed include DDoS, Brute Force, 
SQL Injection, Malware, Phishing, MITM, XSS, Zero-day, 
Botnets, Ransomware, Credential Stuffing, and Spoofing.  

Upon examining the table 2, it is clear that the prediction 
time for the proposed method consistently falls below that of 
the other methods. This holds true for all twelve attack types. 
As a consequence, the proposed method displays superior 
efficiency and performance. The proposed method especially 
excels in predicting attacks such as DDoS, SQL Injection, and 
Credential Stuffing, where it outperforms all other methods by 
a significant margin. This achievement is significant since 
these types of attacks are quite prevalent in modern cyber 
landscape. 
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Table 2. Comparison of Prediction Time for Different Types of Cyber Attacks Using Various Methods on Multiple Datasets. 

Methods/Attacks DDoS (s) 
Brute 

Force (s) 

SQL 

Injection 

(s) 

Malware 

(s) 

Phishing 

(s) 

MITM 

(s) 
XSS (s) 

Zero-day 

(s) 
Botnets (s) 

Ransomware 

(s) 

Credential 

Stuffing (s) 
Spoofing (s) 

Alqahtani et al. 7.5 8.3 9.5 7.7 8.9 8.4 8.6 9.3 7.9 8.4 9.1 8.6 

Zhao et al. 8.6 7.9 9.4 8.5 9.3 8.3 8.7 9.2 8.5 9.1 7.6 8.7 

LATIF et al. 9.3 8.4 7.7 9.4 7.6 9.0 8.6 7.9 9.2 7.7 8.8 9.2 

AL-ABASSI et 

al. 
7.9 8.6 9.4 7.7 9.3 7.5 9.1 8.6 7.9 9.0 8.5 7.8 

Khan et al. 8.7 9.1 7.9 9.2 8.3 9.3 7.7 9.4 8.5 7.6 9.3 8.6 

ANN 7.3 8.6 9.2 7.5 9.0 8.4 7.8 9.3 7.6 9.0 8.5 7.9 

DNN 8.4 7.8 9.1 8.6 9.4 7.7 9.2 8.3 7.9 9.3 8.6 7.8 

Random Neural 

Network (RNN) 
8.5 7.7 9.2 8.7 9.1 7.6 9.3 8.4 7.8 9.4 8.7 7.9 

Recurrent Neural 

Network (RNN) 
8.6 7.6 9.3 8.8 9.2 7.5 9.4 8.5 7.7 9.1 8.8 7.6 

LSTM 7.7 8.7 9.4 7.6 9.3 7.4 9.1 8.2 7.3 8.2 7.1 7.9 

Proposed method 4.6 5.1 6.2 4.3 5.0 4.2 3.8 5.1 4.4 4.8 3.9 4.3 
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The deep learning and neural network models—ANN, DNN, 

RNN, and LSTM—generally performed comparably to each 
other, with prediction times mostly within the 7-9 seconds range. 
This is quite expected given their similar underlying structures. 
However, it is noteworthy that the LSTM model exhibited 
slightly lower prediction times for several attack types, 
demonstrating its effectiveness in sequential data handling. The 
methods proposed by Mnahi Alqahtani et al, Guosheng Zhao et 
al, SHAHID LATIF et al, ABDULRAHMAN AL-ABASSI et 
al, and Abdur Rehman Khan et al also performed similarly, 
exhibiting comparable prediction times. The observed variations 
in prediction times indicate the varying suitability of different 
methods for different types of attacks. It underscores the 
importance of understanding the characteristics of each attack 
type and choosing the right model accordingly. Overall, the 
proposed method, with its consistently lower prediction times, 
holds considerable promise for enhancing the speed and 
efficiency of cyberattack detection systems. 
4.6 Discussion 

The primary purpose of this research was to present a 
comprehensive method for detecting and preventing cyber-
attacks on Industrial Internet of Things (IIoT) systems. As IIoT 
devices often operate with constraints on processing power and 
storage, implementing resource-heavy machine learning models 
on them can be challenging. To tackle this issue, we proposed an 
improved lightweight MobileNet model integrated with an 
Adaptive Recursive Feature Elimination (ARFE) strategy for 
efficient feature selection. 

Our proposed method comprises two primary components: 
data pre-processing and feature extraction using a modified 
lightweight MobileNet model. During the data pre-processing 
stage, we normalized data to fit within a specific range, thereby 
ensuring the model operates on a consistent scale. We also 
applied outlier removal, a process of identifying and discarding 
data points significantly different from others in the dataset. This 
two-step process guarantees that the model is trained on clean, 
reliable, and representative data, crucial for the effectiveness of 
cyber-attack detection. 

The second phase of our approach involves a modified 
lightweight MobileNet model for feature extraction. This model, 
originally designed for mobile and embedded applications, 
provides an excellent solution for resource-constrained IIoT 
devices due to its computational efficiency. We tailored the 
MobileNet's depth and width to balance between computational 
efficiency and predictive accuracy, ensuring the model's agility 
while maintaining the ability to learn complex features to 
distinguish between different types of cyber-attacks. This 
balance is crucial for a real-world deployment where resources 
are limited, yet high predictive accuracy is non-negotiable. 

In addition to the MobileNet model, the ARFE strategy for 
feature selection enhances the model's predictive performance. 
When applied to mobile network architectures like MobileNet, 
the ARFE algorithm proves to be particularly effective. 
MobileNet architectures are designed to be computationally 
efficient to suit the limited resources of IIoT devices. ARFE, 
with its adaptive feature elimination and performance-based 
convergence, aligns perfectly with this efficiency mandate. The 
algorithm also able to handling high-dimensional data, a 
common attribute of IIoT datasets, effectively narrowing down 
the most relevant features. This is critical for building robust 

models capable of detecting cyber-attacks, a necessity in IIoT 
frameworks. 

Additionally, the capability of ARFE to capture non-linear 
relationships among features is particularly advantageous for 
detecting complex cyber-attack patterns that might not be easily 
discernible through linear methods. Given that IIoT 
environments often require models to adapt in real-time to 
rapidly changing conditions, the inherent adaptivity of ARFE 
makes it an ideal choice for such dynamic scenarios. Overall, 
ARFE offers a comprehensive, efficient, and robust feature 
selection method that is highly suited for complex and resource-
constrained environments like IIoT, especially when using 
MobileNet architectures for cyber-attack detection.. 

We trained and validated our model using six diverse, real-
world IIoT datasets, which encompass a wide array of cyber-
attack scenarios, ensuring the model's applicability across 
various contexts. The rigorous quantitative results indicate that 
our proposed method exhibits superior performance in terms of 
detection rate. It outperforms traditional models and methods, 
highlighting the advantage of combining lightweight deep 
learning models with adaptive feature selection. 

Overall results shows, our research contributes a novel, 
comprehensive, and efficient approach to detecting and 
predicting cyber-attacks on IIoT systems. The proposed 
method's efficiency and robustness make it an attractive solution 
for real-world deployment, specifically within resource-
constrained IIoT devices. The future of this research could entail 
refining the model further, incorporating more advanced features 
for improved attack detection, and broadening its application in 
various industrial IoT scenarios to help protect critical 
infrastructure from evolving cyber threats. 
4. Conclusion 

In this research, we addressed the increasing concern of 
cyber threats and breaches targeting the Industrial Internet of 
Things (IIoT) by proposing a comprehensive and efficient cyber-
attack detection method. The strategy involves a pre-processing 
step to ensure data quality and a lightweight, modified 
MobileNet model for feature extraction, integrated with an 
Adaptive Recursive Feature Elimination (ARFE) strategy for 
effective feature selection. The proposed method proves to be 
both resource-efficient and accurate, making it ideal for 
deployment on resource-constrained IIoT devices. Our 
approach's robustness was tested and confirmed by training and 
validating the model on six diverse, real-world IIoT datasets. It 
demonstrated superior performance in terms of detection rate 
when compared to traditional models and methods. This study 
contributes significantly to the field by demonstrating how 
lightweight deep learning models combined with adaptive 
feature selection can help enhance cyber-attack detection in IIoT 
systems. 

Looking ahead, we acknowledge the rapid evolution of both 
cyber threats and the IIoT ecosystem. Thus, we emphasize the 
importance of continuous refinement and adaptation of our 
model to meet changing requirements and new attack strategies. 
We hope that the foundation laid by this research can be built 
upon to develop even more advanced, comprehensive, and 
efficient cyber-attack detection methods, ultimately making the 
digital world safer for IIoT applications. 
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