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Abstract—In the era of advanced Industrial Internet of Things (IloT) cyber-attacks, the need for improved detection models is crucial.
This research presents an enhanced MobileNets model specifically designed for advanced IloT cyber-attack detection. To achieve higher
efficiency and accuracy, an adaptive recursive feature elimination (ARFE) strategy is proposed for effective feature selection. Through
iterative elimination of less relevant features, the predictive performance of the model is optimized. To ensure robustness and
generalizability, the proposed approach is trained and validated on six diverse, real-world IloT datasets: UNSW-NBI15, CICIDS2017,
RPL-NIDDS17, N_BaloT, NSL-KDD, and BoT-IoT. The evaluation of the proposed model on these datasets demonstrates its
effectiveness in detecting cyber-attacks in various IIoT environments. The findings of this research contribute to the advancement of
cyber-attack detection techniques in the context of IIoT, paving the way for enhanced security in industrial systems.
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I. INTRODUCTION

The advent of the IIoT has revolutionized numerous
sectors including manufacturing, healthcare, logistics, and
many more. By enabling a seamless communication between
devices, IIoT has facilitated the automation of various
processes, leading to improved operational efficiency,
productivity, and economic benefits [1][2][3]. However, the
integration of IIoT devices into critical systems has also
exposed these systems to a broad spectrum of cyber threats
and data breaches [4][5][6]. The cybersecurity landscape has
seen a surge in cyber threats and data breaches across various
industries and business sectors. This has engendered a
pressing need for robust security measures to protect the
integrity and confidentiality of data in the IIoT ecosystem
[71[8]. The situation is further exacerbated by the inherent
vulnerabilities of IIoT devices, such as their limited
processing capabilities and storage, which make them an
attractive target for adversaries [9][10].

Traditionally, Artificial Intelligence (AI) and Deep
Learning (DL) have been employed to develop sophisticated
models for detecting and mitigating cyber threats
[11][12][13]. While these models have shown promising
results in various domains, their implementation in resource-
constrained IIoT devices poses significant challenges [14].
The high computational complexity and storage requirements
of these models make them unsuitable for direct deployment
on IIoT devices [15]. The increasing complexity and variety
of cyber-attacks, coupled with the constraints of IIoT devices,
underscore the need for efficient and lightweight security
solutions. Traditional security measures often fail to detect
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advanced cyber threats due to their inability to adapt to the
dynamic nature of these attacks. Moreover, these measures are
not designed to operate within the resource limitations of IloT
devices. Therefore, there is a pressing need for a solution that
not only effectively detects a broad spectrum of cyber threats
but also fits within the resource constraints of IIoT devices.

Feature selection is of paramount importance in this
research for a few reasons. Firstly, not all features extracted
from the dataset are equally important for the task of cyber-
attack detection. Some features may contribute little to the
model's predictive performance and could even lead to
overfitting if included in the model. Therefore, by selecting
only the most relevant features, we can improve the model's
generalizability and robustness. Secondly, by reducing the
dimensionality of the data through feature selection, we can
also alleviate the computational burden on the model. This is
particularly important for deployment on resource-
constrained IIoT devices. With fewer features to process, the
model can make quicker predictions, which is essential for
timely detection and mitigation of cyber-attacks. Lastly,
feature selection provides us with insights into the
characteristics of cyber-attacks. By identifying the features
that are most important for cyber-attack detection, we gain a
better understanding of what distinguishes normal activities
from malicious ones in the IIoT context. This can aid in the
development of more effective security measures.

In this research, we propose a novel approach that
leverages the power of MobileNets, a type of lightweight deep
learning model, and Adaptive Recursive Feature Elimination
(ARFE) for efficient and advanced detection of IIoT cyber-
attacks. MobileNets, designed for mobile and embedded
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vision applications, are computationally efficient and thus
suitable for deployment directly on IloT devices. They
achieve this efficiency through the use of depthwise separable
convolutions that significantly reduce the model size and
complexity without compromising on the performance. Our
proposed approach uses an improved version of MobileNets
for cyber-attack detection. The model is trained and validated
on six diverse, real-world IIoT datasets: unsw-nbl5,
CICIDS2017, RPL-NIDDS17, N_BaloT, NSL-KDD, and
BoT-IoT. These datasets encompass a wide variety of cyber-
attack scenarios, ensuring our model's ability to generalize
across different contexts. To further enhance the model's
performance, we adopt an Adaptive Recursive Feature
Elimination (ARFE) strategy for feature selection. Feature
selection is a critical step in machine learning that helps to
improve the model's performance, reduce overfitting, and
speed up training. ARFE is an iterative method that removes
less important features based on their contribution to the
model's predictive performance. This adaptive approach
allows us to optimize the model's performance dynamically.

The contributions of this research are multi-faceted and
span several aspects of Industrial Internet of Things (IloT)
security. They are as follows:

1. Innovative Application of MobileNets: This research
presents the novel application of an improved MobileNets
model for efficient and advanced detection of IloT cyber-
attacks. While MobileNets have been utilized in various
domains, their deployment in the context of IloT security
represents a significant contribution to the field.

2. Adaptive Recursive Feature Elimination (ARFE):
We introduce the use of ARFE, an adaptive feature selection
strategy, to enhance the efficiency and performance of our
model. This unique application of ARFE represents a
significant advancement in the field of feature selection in
machine learning, particularly for IIoT cyber-attack detection.

3. Broad Applicability across Diverse Cyber-Attack
Scenarios: By training and validating our model on six
diverse, real-world IIoT datasets (unsw-nb15, CICIDS2017,
RPL-NIDDS17, N_BaloT, NSL-KDD, and BoT-1oT), we
ensure its broad applicability across a wide variety of cyber-
attack scenarios. This represents a significant contribution to
the generalizability of security solutions in the real-world IIoT
environment.

4. Efficient Cyber-Attack Detection within Resource
Constraints: Our research addresses the critical challenge of
implementing effective security measures within the resource
constraints of I[IoT devices. The proposed solution, leveraging
the power of lightweight deep learning models and adaptive
feature selection, is efficient, resource-friendly, and suitable
for deployment directly on IIoT devices.

The research paper is structured into five main sections.
Section 2 provides a survey of related work, review and
analyze existing literature on cyber-attacks and their detection
in IIoT systems. In Section 3, present proposed attack
detection framework and attack prediction model. The
proposed methodology includes an improved MobileNets
model for advanced detection of IIoT cyber-attacks and an
Adaptive Recursive Feature Elimination (ARFE) strategy for
feature selection to enhance the model's efficiency and
accuracy. Section 4 discusses the empirical assessment and
results of the proposed approach. Finally, Section 5 concludes
the research paper by summarizing the main findings,
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discussing the limitations of the proposed approach, and
suggesting possible directions for future research.

II. REVIEW

In recent years, researchers have made considerable
strides in leveraging advanced techniques, such as Artificial
Intelligence (AI) and Deep Learning (DL), to build robust
models for cyber-attack detection and prevention. These
techniques offer promising results due to their ability to learn
complex patterns and adapt to new attack types, which are
common in dynamic IloT environments. This literature
review will provide a critical analysis of several relevant
research studies, focusing on their methodologies, findings,
and limitations.

In a pertinent study by Algahtani et al [16]., a novel
approach to IoT botnet attack detection was explored. This
methodology utilized a Fisher-score for feature selection and
a genetic-based extreme gradient boosting (GXGBoost) to
detect botnet incursions. The Fisher-score, a filter-based
feature selection tool, and GXGBoost, a classifier rooted in
deep learning principles, were employed for analysis. The
model was trained and assessed using the N-BaloT Dataset,
providing a valuable foundation for botnet detection research.

Guosheng Zhao and his team [17] ventured into the realm
of lightweight IIoT attack detection, incorporating cloud and
fog computing into their model. They repurposed a two-
dimensional ConvNeXt-based computer vision model to
function in a one-dimensional context suitable for IloT
security. To streamline the ConvNeXt model, Shu:eNet V2
was incorporated. Data processing was facilitated through
label encoding and a max-min normalization procedure, with
the BoT-IoT and TON-IoT datasets serving as the training
and evaluation tools.

Latif et al [18]. devised a Lightweight Random Neural
Network model aimed at identifying common network
intrusions in IIoT, including malicious operations, denial of
service (DoS), spying, malicious control, and data type
probing. The DS20S dataset was utilized to train and
evaluate this innovative approach to IIoT attack detection.

In a study by Al-Abassi et al [19]., a Deep Learning-
Based Attack Detection system for IIoT networks was
introduced. This innovative model aimed to create balanced
representations from imbalanced datasets, using a Decision
Tree (DT) and Deep Neural Network (DNN) to identify
potential attacks. The model was trained and validated with
Gas Pipeline (GP) and Secure Water Treatment (SWaT)
datasets, extending the scope of deep learning applications in
IIoT security.

Mohy-Eddine et al [20]. proposed an Ensemble Learning-
Based attack detection model for IIoT. This methodology
featured a unique feature selection process, combining
Pearson’s Correlation Coefficient with the Isolation Forest
method for outlier removal and optimal feature selection. The
Random Forest algorithm was employed to classify potential
attacks, with the NF-UNSW-NB15-v2 and Bot-IoT datasets
used for model training.

Khan et al [21]. presented a Lightweight Deep Learning
model for IoT networks, employing three distinct deep
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learning models to predict loT network attacks: Long Short-
Term Memory, and Bi-directional LSTM Recurrent Neural
Network. These models were trained and evaluated using the
MalwareTextDB dataset, contributing significantly to the
development of lightweight deep learning models.

In the field of Intelligent Internet of Vehicles, Nie et al
[22]. introduced a Convolutional Neural Network (CNN)
based approach. They designed a deep learning architecture
based on CNN to extract link load features and identify
intrusions targeting Roadside Units (RSUs). This architecture
combined a traditional CNN and a fundamental error term
considering backpropagation algorithm convergence, with a
probabilistic representation providing convergence analysis.

Almaiah [23] offered a lightweight Hybrid Deep
Learning-based model for the Industrial Internet of Medical
Things. This model consisted of a two-layer security structure
integrating blockchain for user and device authentication, and
deep learning to predict potential attacks. The Variational
AutoEncoder (VAE) technique and a Bidirectional Long
Short-Term Memory intrusion detection model were
employed for privacy and security respectively. Model
training was conducted using the ToN-IoT datasets and [oT-
Botnet, expanding the application of hybrid models to
medical IIoT scenarios.

A review of the current literature reveals several research
gaps. Despite the significant strides made in IoT and IIoT
attack detection, a few challenges and opportunities for future
research still exist:
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1. Many current models, including those developed by
Alqahtani et al. and Zhao et al., tend to be designed for
specific datasets or attack types, limiting their
effectiveness when applied to new types of attacks or in
different IoT environments.

2. Some models, like the one proposed by Latif et al., use
complex computations that can be computationally
expensive and challenging to implement in real-time
systems.

3. The research conducted by Al-Abassi et al. highlighted
the prevalent issue of imbalanced datasets in IoT security.
This imbalance could lead to biased models that might
underperform in real-world applications.

4. Some models, such as Almaiah's work, propose a hybrid
approach to address multiple security issues. However,
these approaches often lack a comprehensive perspective
that combines all relevant security factors in a unified
model.

III. PROPOSED METHODOLOGY

First, This study develops four crucial modules for
detecting IloT cyber-attacks efficiently and effectively. The
modules include pre-processing, feature extraction, feature
selection, and classification. The pre-processing phase refines
the raw data to create a clean, reliable dataset that will be used
to train the model.

Mobile-Net based feature extraction

Feature sclection

Adaptive Recursive
Feature Elimination
(ARFE)

Classification

Normal Altack

Figure 1. Overall process flow of the proposed attack detection system.

The normalization process ensures that all features are on
a similar scale, improving the overall stability and
performance of the model. The model is also designed to
detect cyber threats accurately by identifying outliers within
the data. Once the data is pre-processed, feature extraction is
performed using a modified lightweight MobileNet model.
The next step is to select features. This is a critical step for
ensuring the model's efficiency and performance. An
approach called Adaptive Recursive Feature Elimination

IJRITCC | December 2023, Available @ http://www.ijritcc.org

(ARFE) is proposed for this purpose. This iterative method
works by continually evaluating the importance of each
feature to the model's predictive performance and removing
those deemed less significant. ARFE allows the model to be
optimized dynamically, enhancing its performance while still
fitting within the resource constraints of IloT devices, by
focusing on the most important features. Finally, the selected
features are fed into the classification model.
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A. Data pre-processing

The first module of the approach is the pre-processing
phase, where the raw data is prepared for further analysis. This
stage is crucial, as the quality and format of the data directly
impact the performance of the subsequent stages, and
ultimately the effectiveness of the cyber-attack detection. The
pre-processing phase involves two main steps: data
normalization and outlier removal.

Data normalization is necessary to bring all features onto
a similar scale. This is particularly important when dealing
with data that encompasses a wide range of values, as is often
the case with IIoT datasets. The normalization process adjusts
the values in the dataset to a common scale, without distorting
the differences in the ranges of values or losing information.
There are various methods to normalize data, but a commonly
used method is min-max normalization, which transforms the
data to fit within a specific range, usually 0 to 1. The equation
for min-max normalization is as follows:
4 (X H Xmin) 1)

X, =
norm
(Xmax— Xmin)

where X represents the original data points, X, 1 the
normalized data, and X,,;, and X,,,, are the minimum and
maximum values in the original data, respectively.

Next, we move on to the process of outlier removal.
Outliers are data points that are significantly different from the
others in the dataset [25][26]. They can be caused by
variability in the data or errors during data collection, and their
presence can often lead to misleading representations and
consequently, poor model performance. The identification and
handling of outliers are typically performed through statistical
methods. One common method is the Z-score method, where
data points are transformed into a standard score that
represents how many standard deviations they are from the
mean. The equation for calculating the Z-score is:

-
=& o

where X is a data point, p is the mean of the dataset, and ¢
is the standard deviation. Data points with a Z-score greater
than a certain threshold, in this research 3, are considered
outliers and are removed or adjusted as appropriate. Through
data normalization and outlier removal, we ensure that our
model is trained on a dataset that is clean, reliable, and
representative of the true nature of cyber-attacks in the 1loT
domain.

B. Lightweight mobile net model

The second module of our approach is feature extraction,
which involves using a modified lightweight MobileNet
model. MobileNet, originally designed for mobile and
embedded applications [27][28], is an ideal model for this
research due to its computational efficiency. It uses depthwise
separable convolutions that significantly reduce model size
and computational demands without compromising
performance. For our research, we have modified the
MobileNet architecture to better fit the characteristics of IloT
cyber-attack detection. We have tailored the model's depth
and width to strike a balance between computational
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efficiency and predictive accuracy. Following table details the
modified MobileNet architecture:

In order to adapt the original MobileNet model to the
specific requirements of our research on cyber-attack
detection in the IloT ecosystem, we have made several key
modifications to the architecture. The modifications were
made with the aim of balancing computational efficiency,
which is a key consideration for deployment on resource-
constrained IIoT devices, with the need for high predictive
accuracy. Firstly, we have adjusted the depth and width of the
model. The depth of a model refers to the number of layers in
the model, while the width refers to the number of neurons in
each layer. The depth and width of the model were tailored to
the complexity and variety of the cyber-attacks we aim to
detect. By increasing the depth, the model is able to learn more
complex features that can distinguish between different types
of cyber-attacks. However, increasing the depth and width
also increases the computational demands of the model.
Therefore, we carefully adjusted these parameters to ensure
that the model remains efficient for deployment on IloT
devices.

Secondly, we have adjusted the filter sizes and strides of
the convolutional layers. The filter size determines the size of
the 'window' that the model uses to scan the input data, while
the stride determines the step size that the model takes when
moving the filter across the input. By adjusting these
parameters, we can control the granularity at which the model
extracts features from the input data. Larger filter sizes and
strides enable the model to capture more global, abstract
features, while smaller filter sizes and strides allow the model
to capture more local, detailed features. Thirdly, we have
added additional Depthwise Separable Convolution layers.
These layers are a key feature of the MobileNet architecture,
as they significantly reduce the computational complexity of
the model compared to standard convolutional layers, without
significantly compromising the model's performance. By
adding more of these layers, the model is able to learn a richer
set of features from the input data, enhancing its ability to
detect a wide variety of cyber-attacks. Finally, we have
adjusted the number of neurons in the final fully connected
layer to match the number of cyber-attack classes in our
dataset. This ensures that the model's output has the
appropriate dimensionality for the classification task.

Feature selection

Feature selection is of utmost importance in this research
for a variety of reasons. Primarily, it is due to the limitations
of IIoT devices, which often have restricted processing
capabilities and storage. Feature selection allows us to focus
on the most significant aspects of the data, eliminating
unnecessary features and thus reducing the computational
demands on these resource-constrained devices [29]. This is
particularly crucial when using advanced machine learning
models like MobileNets, which, despite being designed for
efficiency, still need careful management of resources for
optimal performance. Also, in the context of cyber threat
detection, the type and nature of attacks can be incredibly
diverse, resulting in a high-dimensional and complex dataset.
Feature selection aids in simplifying this complexity,
enhancing the interpretability of the model, and making it
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easier to identify the key indicators of a cyber-attack. By
focusing on the most relevant features, the model is more
likely to generalize well across different types of attacks.
Algorithm 1 explain the proposed Adaptive Recursive Feature
Elimination (ARFE).

The Improved Adaptive Recursive Feature Elimination
(1IARFE) algorithm initiates by defining four key
hyperparameters: k.., the maximum initial number of
features; 6, the minimum number of features required for
termination; €, the minimum performance improvement to
continue; and N, the number of multiple runs to average
results. In the initialization phase, N models are trained on
random subsets of k., features, and their performances are
calculated. A feature selection loop then runs N times,
eliminating the least important feature iteratively until the
number of features is less than 6 or the performance
improvement is below €. Feature importance is computed
each time, typically through mutual information or model-
based metrics. After each run, performance is compared to
decide if the model should proceed with fewer features or
adaptively halve the feature set. The results from all N runs
are aggregated to form the final optimal feature set.

It incorporates various improvements to enhance the

algorithm over existing methods like RFE, Linear
Discriminant Analysis (LDA), Correlation-Based Feature
Selection, and Principal Component Analysis (PCA).

Adaptive Elimination Strategy

One of the most innovative aspects of ARFE is its
adaptive elimination strategy. In conventional RFE, one
feature is eliminated in each iteration, typically based on the
least importance as determined by a base -classifier.
Mathematically, this can be represented as

Soew = Soia — {Least Important Feature} (3)

In contrast, ARFE adapts the feature elimination rate
based on model performance. Specifically, if the performance
p' of the new model is greater than or equal to the
performance p, of the original model, the subset is updated
as

S!ew = Soia — {Least Important Feature} (4)

Otherwise, the algorithm retains the current subset. The
number of features k for the next iteration is adaptively set
based on the following equation:

|SHCW,|' lfp, 2 Po

feature selection process, such as an adaptive elimination k=1|k - )
strategy, performance-based convergence criteria, and IEJ ; OTHERpiSE
multiple runs with aggregation. Following sections explains
the specific novelties and improvements of the ARFE
Table 1. Layer details of the proposed lightweight mobile net model.
Layer Type Filter Size Stride Depth
Convolution 3x3 2 32
Depthwise-Separable-Convolution 3x3 1 64
Depthwise-Separable-Convolution 3x3 2 128
Depthwise-Separable-Convolution 3x3 1 128
Depthwise-Separable-Convolution 3x3 2 256
Depthwise-Separable-Convolution 3x3 1 256
Depthwise-Separable-Convolution 3x3 2 512
Depthwise-Separable-Convolution (x5) 3x3 1 512
Depthwise-Separable-Convolution 3x3 2 1024
Depthwise-Separable-Convolution 3x3 1 1024
Average Pooling Global - -
Fully Connected (Logits) - - Number of Classes
Softmax - - -
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Figure 2. Layer details of the improved mobile net model
for IToT attack detection.
Algorithm 1 ARFE-Algorithm
1: Hyperparameters:
2: kmax,0,€, N
3: Initialization:
4: fori=1,..., N do
5: Randomly select kpax features to form S((,j)
6: Train m,(()i) e A(DS((,,))

PP — ‘ S |

7 pf,i) = Performance of m'()i) onV
8: k(i) = kme\x: S“) = S(()])
9: end for

10: Feature Selection Loop:
11: fori=1,....,N do
12 while ¥ > 6 and Ap) > ¢ do

13 F(S8®,y) = Calculate feature importance
14: Rank features in S to form ()

15: if || < k() then

16: k() = 8@

17: end if

18: Train m'®) = A(Dg.))

19: p'() = Performance of m/") on V

20: Ap®) = |p'®) — p((,i')\

21: if p'@ > p") then

22: S = g1() mé” =m/®, p((]” = p'(®)
23: else -

24: k(") = \‘I\TJ

25: end if

26: end while

27: end for

28: Result Aggregation:
29: S* = Aggregate results of multiple runs

This adaptivity allows ARFE to converge faster to the
optimal feature set compared to RFE.

Performance-based Convergence

Traditional feature selection methods often have a fixed
number of iteration steps or rely on domain knowledge for
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convergence. Typically, the stopping criterion is kK < 6,
where 0 is a threshold for the minimum number of features.

ARFE introduces an additional performance-based
stopping criterion, Ap, the absolute change in performance
between iterations. The algorithm will stop if either k < 0 or
Ap < €, where € is a small positive number. This ensures that
the algorithm not only finds an optimal set of features but also
verifies its effectiveness based on predictive performance.

Multiple Runs with Aggregation

Traditional feature selection methods are often
deterministic and single-run. The feature set S* is usually
identical to the final subset S after the algorithm converges.

ARFE runs multiple iterations (denoted as N) of the feature
selection process and aggregates the results. Mathematically,
this can be described as

N
5 = _1_25(0 (6)
N 4
i=1

This reduces the risk of settling on a suboptimal feature set
and increases the robustness of the selected features.

Improved Feature Importance Assessment

Methods like LDA and Correlation-Based Feature
Selection often rely on linear relationships or assumptions
about the data. For instance, LDA aims to maximize a
function J(class) based on class separability, while
correlation-based methods use Correlation(X,Y) to rank
features.

ARFE introduces the flexibility to use more advanced
feature importance assessment methods like mutual
information or ensemble-based importances. The importance
is captured in a function F(S,y) , allowing for the
incorporation of non-linear relationships between features
and targets.

The adaptability of the ARFE algorithm, along with its
performance-based convergence and multi-run aggregation,
makes it more versatile and robust compared to existing
algorithms like RFE, LDA, Correlation-Based Feature
Selection, and PCA.

3.4 Classification

The output from the feature extraction stage, which
comprises of a subset of optimal features S*, is fed into the
classification model. Let's denote this classification model as
C. The model C is trained on the training dataset D;,qip
which includes only the features in S*. The objective of the
classification model C is to learn a mapping function f that
maps the input features x in S* to their corresponding labels
y. Mathematically, this can be expressed as:

y =71 O

where x € S*. During the training phase, the classifier
model C learns the parameters of the function f by minimizing
a loss function L(y, f(x)). The loss function quantifies the
difference between the predicted labels f(x) and the true labels
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y for all instances in the training dataset Dipqin -
Mathematically, this can be written as:

argmin L(y, f(x)) ~ (8)

Depending on the specific classifier used, the form of the
function f and the loss function L will differ. For example, if
we use a logistic regression classifier, f will be the logistic
function and L will be the binary cross-entropy loss. After
training, the classifier C can predict the label y' for a new
instance x' using the learned function f.

y = f&) 9

The performance of the classifier is then evaluated on a
separate validation dataset D,,,;, using an appropriate metric
such as accuracy, precision, recall, or F1 score. This ensures
that the model generalizes well to unseen data and is not
overfitting to the training data.

IV. RESULTS
A. Hardware and software details

The computational experiments were performed on a
machine equipped with an Intel Core i7 processor, operating
at a speed of 3.4 GHz. The system also had 16GB of RAM,
ensuring sufficient memory allocation for the operations.
Furthermore, the machine was equipped with an NVIDIA
GeForce RTX 2080 Ti GPU.

The software infrastructure for this research was primarily
based on Python programming language (version 3.7), a
popular choice due to its wide range of scientific computing
and machine learning libraries. The deep learning models
were implemented using the TensorFlow (version 2.6.0) and
Keras (version 2.6.0) libraries, which are well-suited for
designing and training neural network models. For data
preprocessing and analysis, libraries such as NumPy, pandas
and Scikit-learn were used. The matplotlib and Seaborn
libraries were used for data visualization and to plot the results
of the experiments. All the experiments were run on a
Windows 10 operating system.

B. Data set details

In this study, we utilized most popular six different types
IoT attack detection datasets to train our proposed lightweight
MobileNet model.

1. UNSW-NBI15: This dataset is a result of a
comprehensive Network Intrusion Detection System
(NIDS) evaluation built by the Cyber Range Lab of
the Australian Centre for Cyber Security (ACCS)
[30]. It contains a mix of contemporary real-world
events with synthetic background traffic. The dataset
includes a diverse range of intrusions simulated in a
military network environment, offering a true
evaluation in detecting network anomalies.

2. CICIDS2017: This is a comprehensive dataset for
Intrusion Detection Systems (IDS), provided by the
Canadian Institute for Cybersecurity (CIC) [31]. The
dataset includes several different attack types, such
as Brute Force, Heartbleed, Botnet, DoS, DDoS, and
Infiltration. It is considered a benchmark for
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evaluating the performance of intrusion detection
methods.

3. RPL-NIDDS17: This dataset, created by the
Georgia Tech Research Institute (GTRI), is designed
for evaluating the performance of intrusion detection
systems in IoT network environments [32]. It
provides a realistic representation of normal network
traffic in such environments, as well as multiple
types of network attacks.

4. N_BaloT: This dataset is created specifically for
detecting IoT attacks [33]. It consists of network
traffic from 9 commercial IoT devices under both
benign and malicious conditions. The malicious
traffic was generated by real malware such as Mirai
and BASHLITE.

5. NSL-KDD: The NSL-KDD dataset is an improved
version of the widely used KDD Cup 1999 intrusion
detection dataset [34]. It contains a large number of
network traffic records, each labeled as either normal
or an attack. The attacks in the NSL-KDD dataset fall
into four main categories: DoS, R2L, U2R, and
probing.

6. BoT-IoT: The Bot-IoT dataset is a combination of
both IoT and non-loT traffic [35]. The dataset was
generated at the UNSW Canberra Cyber Range Lab
and contains ten types of attacks (including DDoS,
DoS, OS and Service Vulnerabilities, etc.) and
normal data.

Each of these datasets provides a unique perspective and
offers a different type of challenge in identifying network
intrusions, making them ideal for a comprehensive evaluation
of our proposed method. In this research, the partitioning of
the datasets was conducted in a manner to ensure that the
model was exposed to a diverse range of data points. This aids
in enhancing the model's capability to generalize well to
unseen data.

The partitioning of the datasets is as follows:

This dataset was divided into 60% for training, 20% for
validation, and the remaining 20% for testing. This ensures a
large enough training set for the model to learn various attack
patterns, with ample data reserved for validation and testing.
The goal is to maintain a balance, ensuring that the model has
enough data to learn from (training set), tune its parameters
(validation set), and finally, to evaluate its performance on
unseen data (testing set). This partitioning strategy helps to
prevent overfitting and underfitting, thereby helping the
model to generalize well.

C. Accuracy analysis

For each of the datasets used in the research - UNSW-
NBI15, CICIDS2017, RPL-NIDDS17, N_BaloT, NSL-KDD,
and BoT-IoT - we trained our MobileNet model and then used
the test partition of each dataset to compute the accuracy. In
our experimental analysis, we compared our proposed method
with five state-of-the-art methods from Mnahi Alqahtani et al,
Guosheng Zhao et al, SHAHID LATIF et al,
ABDULRAHMAN AL-ABASSI et al, and Abdur Rehman
Khan et al. Additionally, we benchmarked our method against
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popular deep learning and neural network models such as the
Artificial Neural Network (ANN), Deep Neural Network
(DNN), Random Neural Network (RNN), Recurrent Neural
Network (RNN), and Long Short-Term Memory (LSTM).
Our performance evaluation was based on six key metrics:
Accuracy, Precision, Recall, Fl-score, False Alarm Rate
(FAR), and Area Under the Receiver Operating Characteristic
Curve (AUC). These metrics, derived from well-established
statistical formulas, are described below:

Accuracy: This metric gives us a holistic view of the
overall performance of our model by measuring the proportion
of true results (both true positives and true negatives) in the
total number of cases examined. It is calculated using the
following formula:

TP+TN

Accuracy = ———
TP+TN+FP+FN

(10)

Here, True-Positives (TP) are the correctly identified
cyber-attacks, True-Negatives (TN) represent the normal
instances accurately classified, False-Positives (FP) are the
normal instances incorrectly classified as attacks, and False-
Negatives (FN) denote the actual attacks that were incorrectly
classified as normal instances.

Precision: This is a measure of the exactness or quality of
our model. It calculates the proportion of true positive cyber-
attack identifications out of all positive identifications.

(11)

Recall: Also known as Sensitivity, Recall calculates the
proportion of actual positive cases (attacks) that are correctly
identified. The formula is:

.. T
Precision =
TP+FP

Recall = —=— (12)
TP+FN
F1-Score: F1-Score balances the trade-off between

Precision and Recall and is especially useful when dealing
with uneven class distribution, as is common in cyber-attack
detection. The formula is:

2XPrecisionXRecall

F1— Score = (13)

FAR is the proportion of normal instances that are
incorrectly identified as attacks. A low FAR indicates that our
model avoids raising unnecessary alarms by falsely
identifying normal activities as malicious. The formula is:

Precision+Recall

FP

FAR = (14)
TN+FP
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Figure 3. Accuracy Comparison of MobileNet-ARFE
with Other Methods and Models on the UNSW-NB15

Figure 4. Accuracy Comparison of MobileNet-ARFE
with Other Methods and Models on the CICIDS2017
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Figure 5. Performance Comparison of MobileNet-ARFE
with Other Models on RPL-NIDDS17 Dataset.

Figure 6. Evaluation of MobileNet-ARFE and Other
Methods Based on N_BaloT Dataset
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Figure 7. Performance Evaluation of MobileNet-ARFE
and Other Techniques on NSL-KDD Dataset.

Figure 8. Comparison of MobileNet-ARFE with Other
Approaches on BoT-IoT Dataset.

The comprehensive analysis carried out in this study
brings forth the impressive performance metrics of our
proposed MobileNet-ARFE model across six diverse datasets.
Starting with the UNSW-NB15 dataset illustrated in Table 1,
the MobileNet-ARFE model demonstrates a stellar accuracy
0f 96.2%, significantly higher than other methods. The closest
competitor, the method by Zhao et al., only achieved an
accuracy of 92.7%. The proposed model also outshines in
other metrics including precision, recall, F1-score, and AUC.
As we proceed to the CICIDS2017 dataset in Table 2, the
MobileNet-ARFE continues to excel with an accuracy of
96.2%, while the closest rival model, RNN, achieves an
accuracy of only 89.8%. The proposed model consistently
manifests improvements in precision, recall, F1-score, and
AUC. Table 3 exhibits the performance of the MobileNet-
ARFE model on the RPL-NIDDS17 dataset. Here, our model
scores an extraordinary accuracy of 96.5%, far ahead of the
next-best model, RNN, which stands at 89.8%. Other metrics
also clearly indicate the dominance of the MobileNet-ARFE
model. Table 4 presents the results for the N BaloT dataset.
Our proposed model again takes the lead with an accuracy of
93.7%, leaving behind the closest competitor, Zhao et al., at
88.3%. This supremacy is consistent in all metrics - precision,
recall, Fl-score, and AUC. Taking into account the NSL-
KDD dataset in Table 5, the MobileNet-ARFE model
achieves an impressive accuracy of 92.9%, dwarfing the
88.5% accuracy scored by the second-best method by AL-
ABASSI et al. Again, in terms of precision, recall, F1-score,
and AUC, the proposed model stands unbeaten. Finally, Table
6, showcasing the results on the BoT-IoT dataset, exhibits the
proposed MobileNet-ARFE model attaining an exceptional
96.3% accuracy. The model substantially outperforms the
second-best model, Zhao et al., which manages to reach only
90.7% accuracy. As seen before, the MobileNet-ARFE model
excels in terms of precision, recall, F1-score, and AUC.

D. False alarm analysis

The figure 9 presents the comparison of False Alarm Rates
(FAR) between our proposed MobileNet-ARFE model and
various existing methods applied to six different datasets
(UNSW-NB15, CICIDS2017, RPL-NIDDS17, N _BaloT,
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NSL-KDD, BoT-IoT). False Alarm Rate is a critical metric in
cyber-attack detection as it denotes the percentage of normal
activities mistakenly classified as attacks. Thus, a lower FAR
is indicative of a model's ability to accurately distinguish
between legitimate and malicious activities, thereby reducing
unnecessary alerts and ensuring resource efficiency. The
proposed MobileNet-ARFE model exhibits the lowest FAR
across all datasets, underscoring its superior performance over
the other models. On the UNSW-NBI15 and CICIDS2017
datasets, the model achieves an impressive FAR of 3.8%,
significantly lower than the closest competing models. When
applied to the RPL-NIDDS17 dataset, the MobileNet-ARFE
model outperforms other methods with a FAR of just 3.5%.
For the N_BaloT dataset, our model shows a FAR of 6.3%,
still markedly better compared to the other models,
demonstrating its robustness in different IloT environments.
When evaluated on the NSL-KDD dataset, the MobileNet-
ARFE model continues to show lower FAR (7.1%) than the
rest, proving its ability to handle diverse data distributions.
Lastly, on the BoT-1oT dataset, the model once again prevails,
achieving an exceptional FAR of 3.7%. Across all these
datasets, the MobileNet-ARFE model consistently exhibits
superior performance, demonstrating its robust and reliable
detection capabilities. The significant reduction in FAR
compared to existing methods indicates the model's
effectiveness in minimizing false alerts, thus enhancing the
overall security and operational efficiency of IIoT systems.

FAR Values

¢ FAR- UNSW-NBIS
- CICIDS2017

4 - RPL-NIDDS17
- N_BaloT

ER FAR- NSL-KDD

- BoT-loT

Method
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Figure 9. FAR between the Proposed MobileNet-ARFE
Model and Existing Methods Across Multiple Datasets.
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Hence, the comparative analysis unequivocally establishes
that our proposed MobileNet-ARFE model outshines all the
other methods and models across all the datasets under
consideration. The consistent improvement in accuracy,
precision, recall, and Fl-score, and the marked decrease in
FAR attest to the robustness and reliability of the proposed
model, thus validating its effectiveness in the detection and
prediction of cyber-attacks on IIoT systems.

4.5 Training time and prediction time analysis
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Figure 10. Comparative Analysis of Training Time across
Different Methods for Cyber Attack Detection in Industrial
IoT.

The above figure 10 show a comparative analysis of the
training time across various methods for cyberattack detection
in the Industrial IoT (IIoT) sector. The training time is
represented in minutes for six training datasets. Upon
examining the training time of different methods, it becomes
evident that our proposed method, the MobileNet-ARFE
model, significantly outperforms all other models in terms of
training efficiency. Regardless of the dataset, the MobileNet-
ARFE model consistently records the lowest training times.
For instance, on the UNSW-NB15 dataset, the training time
for the MobileNet-ARFE model is 55 minutes, which is at
least 20 minutes quicker than any other model, with the closest
being the ANN model at 75 minutes.

Other traditional methods, including those proposed by
Alqahtani et al., Zhao et al., LATIFAT et al., AL-ABASSI et
al., and Khan et al., show higher training times ranging from
74 minutes to 95 minutes. Similarly, popular deep learning
and neural network models such as the Artificial Neural
Network (ANN), Deep Neural Network (DNN), Random
Neural Network (RNN), Recurrent Neural Network (RNN),
and Long Short-Term Memory (LSTM) also exhibit
comparatively high training times, with values ranging from
68 minutes to 95 minutes across the different datasets. The
high training efficiency of the proposed MobileNet-ARFE
model represents a significant advantage in the context of [loT
cyber attack detection. Given the dynamic and resource-
constrained nature of IIoT environments, models that can be
trained quickly and efficiently are of great value. Thus, the
lower training time of the MobileNet-ARFE model
contributes to its practical utility and feasibility in real-world
IIoT security scenarios.
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This study assesses the prediction time of twelve different
types of cyberattacks across various datasets: UNSW-NB15,
CICIDS2017, RPL-NIDDS17, N_BaloT, NSL-KDD, and
BoT-IoT. The attacks analyzed include DDoS, Brute Force,
SQL Injection, Malware, Phishing, MITM, XSS, Zero-day,
Botnets, Ransomware, Credential Stuffing, and Spoofing.

Upon examining the table 2, it is clear that the prediction
time for the proposed method consistently falls below that of
the other methods. This holds true for all twelve attack types.
As a consequence, the proposed method displays superior
efficiency and performance. The proposed method especially
excels in predicting attacks such as DDoS, SQL Injection, and
Credential Stuffing, where it outperforms all other methods by
a significant margin. This achievement is significant since
these types of attacks are quite prevalent in modern cyber
landscape.
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Table 2. Comparison of Prediction Time for Different Types of Cyber Attacks Using Various Methods on Multiple Datasets.

SQL
Brute s Malware | Phishing | MITM Zero-day Ransomware Credential
Methods/Attacks | DDoS (s) Forece (s) Ill]((?:)tlon ) ) ) XSS (s) ) Botnets (s) ) Stuffing (s) Spoofing (s)

Algqahtani et al. 7.5 8.3 9.5 Vol 8.9 8.4 8.6 9.3 7.9 8.4 9.1 8.6
Zhao et al. 8.6 7.9 9.4 8.5 9.3 8.3 8.7 9.2 8.5 9.1 7.6 8.7
LATIF et al. 9.3 8.4 7.7 9.4 7.6 9.0 8.6 7.9 9.2 7.7 8.8 9.2
AL_A]szSI ot 7.9 8.6 9.4 7.7 9.3 7.5 9.1 8.6 7.9 9.0 8.5 7.8
Khan et al. 8.7 9.1 7.9 9.2 8.3 9.3 )/ 9.4 8.5 7.6 9.3 8.6
ANN 7.3 8.6 9.2 7.5 9.0 8.4 7.8 9.3 7.6 9.0 8.5 7.9
DNN 8.4 7.8 9.1 8.6 9.4 7.7 9.2 8.3 7.9 9.3 8.6 7.8

Random Neural
Network (RNN) 8.5 7.7 9.2 8.7 9.1 7.6 9.3 8.4 7.8 9.4 8.7 7.9

Recurrent Neural
Network (RNN) 8.6 7.6 9.3 8.8 9.2 s 9.4 8.5 7.7 9.1 8.8 7.6
LSTM 7.7 8.7 9.4 7.6 9.3 7.4 9.1 8.2 7.3 8.2 7.1 7.9
Proposed method 4.6 5.1 6.2 4.3 5.0 4.2 3.8 5.1 4.4 4.8 3.9 43
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The deep learning and neural network models—ANN, DNN,
RNN, and LSTM—generally performed comparably to each
other, with prediction times mostly within the 7-9 seconds range.
This is quite expected given their similar underlying structures.
However, it is noteworthy that the LSTM model exhibited
slightly lower prediction times for several attack types,
demonstrating its effectiveness in sequential data handling. The
methods proposed by Mnahi Algahtani et al, Guosheng Zhao et
al, SHAHID LATIF et a, ABDULRAHMAN AL-ABASSI et
al, and Abdur Rehman Khan et al also performed similarly,
exhibiting comparable prediction times. The observed variations
in prediction times indicate the varying suitability of different
methods for different types of attacks. It underscores the
importance of understanding the characteristics of each attack
type and choosing the right model accordingly. Overall, the
proposed method, with its consistently lower prediction times,
holds considerable promise for enhancing the speed and
efficiency of cyberattack detection systems.

4.6 Discussion

The primary purpose of this research was to present a
comprehensive method for detecting and preventing cyber-
attacks on Industrial Internet of Things (IIoT) systems. As IIoT
devices often operate with constraints on processing power and
storage, implementing resource-heavy machine learning models
on them can be challenging. To tackle this issue, we proposed an
improved lightweight MobileNet model integrated with an
Adaptive Recursive Feature Elimination (ARFE) strategy for
efficient feature selection.

Our proposed method comprises two primary components:
data pre-processing and feature extraction using a modified
lightweight MobileNet model. During the data pre-processing
stage, we normalized data to fit within a specific range, thereby
ensuring the model operates on a consistent scale. We also
applied outlier removal, a process of identifying and discarding
data points significantly different from others in the dataset. This
two-step process guarantees that the model is trained on clean,
reliable, and representative data, crucial for the effectiveness of
cyber-attack detection.

The second phase of our approach involves a modified
lightweight MobileNet model for feature extraction. This model,
originally designed for mobile and embedded applications,
provides an excellent solution for resource-constrained IIoT
devices due to its computational efficiency. We tailored the
MobileNet's depth and width to balance between computational
efficiency and predictive accuracy, ensuring the model's agility
while maintaining the ability to learn complex features to
distinguish between different types of cyber-attacks. This
balance is crucial for a real-world deployment where resources
are limited, yet high predictive accuracy is non-negotiable.

In addition to the MobileNet model, the ARFE strategy for
feature selection enhances the model's predictive performance.
When applied to mobile network architectures like MobileNet,
the ARFE algorithm proves to be particularly effective.
MobileNet architectures are designed to be computationally
efficient to suit the limited resources of IloT devices. ARFE,
with its adaptive feature elimination and performance-based
convergence, aligns perfectly with this efficiency mandate. The
algorithm also able to handling high-dimensional data, a
common attribute of IIoT datasets, effectively narrowing down
the most relevant features. This is critical for building robust
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models capable of detecting cyber-attacks, a necessity in IloT
frameworks.

Additionally, the capability of ARFE to capture non-linear
relationships among features is particularly advantageous for
detecting complex cyber-attack patterns that might not be easily
discernible through linear methods. Given that IloT
environments often require models to adapt in real-time to
rapidly changing conditions, the inherent adaptivity of ARFE
makes it an ideal choice for such dynamic scenarios. Overall,
ARFE offers a comprehensive, efficient, and robust feature
selection method that is highly suited for complex and resource-
constrained environments like IloT, especially when using
MobileNet architectures for cyber-attack detection..

We trained and validated our model using six diverse, real-
world IIoT datasets, which encompass a wide array of cyber-
attack scenarios, ensuring the model's applicability across
various contexts. The rigorous quantitative results indicate that
our proposed method exhibits superior performance in terms of
detection rate. It outperforms traditional models and methods,
highlighting the advantage of combining lightweight deep
learning models with adaptive feature selection.

Overall results shows, our research contributes a novel,
comprehensive, and efficient approach to detecting and
predicting cyber-attacks on IloT systems. The proposed
method's efficiency and robustness make it an attractive solution
for real-world deployment, specifically within resource-
constrained IIoT devices. The future of this research could entail
refining the model further, incorporating more advanced features
for improved attack detection, and broadening its application in
various industrial [oT scenarios to help protect critical
infrastructure from evolving cyber threats.

4. Conclusion

In this research, we addressed the increasing concern of
cyber threats and breaches targeting the Industrial Internet of
Things (IloT) by proposing a comprehensive and efficient cyber-
attack detection method. The strategy involves a pre-processing
step to ensure data quality and a lightweight, modified
MobileNet model for feature extraction, integrated with an
Adaptive Recursive Feature Elimination (ARFE) strategy for
effective feature selection. The proposed method proves to be
both resource-efficient and accurate, making it ideal for
deployment on resource-constrained IloT devices. Our
approach's robustness was tested and confirmed by training and
validating the model on six diverse, real-world IIoT datasets. It
demonstrated superior performance in terms of detection rate
when compared to traditional models and methods. This study
contributes significantly to the field by demonstrating how
lightweight deep learning models combined with adaptive
feature selection can help enhance cyber-attack detection in IToT
systems.

Looking ahead, we acknowledge the rapid evolution of both
cyber threats and the IIoT ecosystem. Thus, we emphasize the
importance of continuous refinement and adaptation of our
model to meet changing requirements and new attack strategies.
We hope that the foundation laid by this research can be built
upon to develop even more advanced, comprehensive, and
efficient cyber-attack detection methods, ultimately making the
digital world safer for IloT applications.
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