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ABSTRACT

E-commerce fraud has grown increasingly complex due to the involvement of multiple stakeholders—buyers,
sellers, logistics providers, and payment gateways—Ileading to sophisticated cross-entity fraud patterns that traditional
detection systems struggle to identify. While modern machine-learning techniques offer improved predictive capabilities,
their effectiveness is often limited by fragmented, siloed datasets that fail to capture multi-perspective behavioural signals.
This paper proposes a Data-Warehouse-Enhanced Machine Learning Framework that consolidates heterogeneous
stakeholder data into a unified analytical environment, enabling richer feature engineering and scalable fraud modeling.
The framework integrates multiple machine-learning algorithms—Random Forest (RF) for robust supervised classification,
Long Short-Term Memory (LSTM) networks for temporal transaction modeling, Graph Neural Networks (GNNs) for
capturing relational and cross-stakeholder dependencies, and One-Class SVM for anomaly detection under extreme class
imbalance. Experimental evaluations demonstrate that the warehouse-enhanced multi-perspective learning approach
significantly improves fraud-classification accuracy, reduces false positives, and enhances temporal and relational pattern
discovery compared to non-warehouse and single-perspective baselines. The proposed system provides an effective and
scalable foundation for next-generation fraud detection in multi-stakeholder e-commerce ecosystems.

Keywords: E-commerce fraud detection, data warehousing, machine learning, multi-stakeholder analytics, multi-
perspective modeling, anomaly detection, big data architecture.

I. INTRODUCTION paradigm significantly. Algorithms such as Random Forest

E-commerSORIEa MO today operate as complix (RF) emerged as robust classifiers capable of handling

digital heterogeneous features and nonlinear interactions [5]—[8].

RF models are particularly useful in e-commerce systems
due to their ability to manage missing values, mixed data

marketplaces involving multiple interacting
stakeholders—buyers, sellers, logistics partners, payment
gateways, warehouses, and customer-support entities. This

interconnected transactional landscape creates both rich
behavioral signals and expanded vulnerability surfaces for
fraudulent activities such as synthetic identity fraud,
coordinated seller—buyer collusion, triangulation fraud,
refund manipulation, false shipment claims, and device/IP
spoofing [1]-[4]. As fraudulent behaviors evolve in
sophistication, traditional rule-based or isolated analytic
systems fail to capture the multi-dimensional interactions
across stakeholders.

Between 1999 and 2010, fraud mitigation
predominantly relied on static rules, regression models, and
threshold-based anomaly indicators [1], [2]. While
interpretable, these approaches lacked adaptability to
changing fraud patterns and did not incorporate multi-
channel data. The acceleration of data availability and
machine-learning advancements shifted the fraud detection
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types, and high-dimensional behavior logs.

However, as fraud strategies increasingly exploit
temporal patterns—such as repeated micro-transactions,
rapid cart abandonment, abnormal login sequences, or
bursty refund claims—researchers adopted Long Short-
Term Memory (LSTM) networks to capture sequential and
time-dependent signals [7], [10], [13]. LSTM models
effectively learn temporal anomalies and transaction
evolution, yet they remain limited when fraud involves
networks of interacting entities across buyers, sellers, and
logistics agents.

To capture these relational dependencies, Graph
Neural Networks (GNNs) have recently gained prominence
for fraud detection in multi-stakeholder environments. In e-
commerce ecosystems where entities form dynamic
graphs—buyers linked to sellers, devices linked to
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accounts, shipments linked to logistics partners—GNNs
can model collusion patterns, shared device usage,
coordinated fraudulent rings, and relational anomalies more
effectively than flat feature models. Studies demonstrate
that GNNs substantially improve detection of community-
based or multi-actor fraud that traditional ML fails to
recognize [13]-[15].

In parallel, fraud cases involving rare, emerging,
or previously unseen behaviors require unsupervised
anomaly-detection methods. Algorithms such as One-Class
SVM identify deviations from learned “normal” behavior
patterns in environments where labeled fraud data is limited
or highly imbalanced. E-commerce systems commonly
suffer from such label imbalance—fraud may represent less
than 1% of all transactions—making One-Class SVM an
essential tool for early detection, risk-screening, and
feature-level anomaly scoring.

Despite these advancements, a significant
challenge remains: most ML models rely on fragmented,
siloed datasets sourced independently from customer
portals, seller dashboards, logistics tracking systems,
payment processors, and device-based telemetry. Without
a unified repository, models cannot generate multi-

perspective  features,  cross-stakeholder  behavioral
summaries, or temporal relational histories.
A Data-Warehouse-Enhanced =~ Machine  Learning

Framework addresses this gap by unifying heterogeneous

datasets into a structured analytical environment

supporting:

1. Dimensional modeling for buyers, sellers, devices,
and transactions

2. Historical snapshots for temporal ML models like
LSTM

3. Cross-entity relationship graphs for GNN-based fraud
detection

4. High-quality aggregated features
anomaly-detection algorithms

5. Scalable ETL pipelines enabling consistent data
refresh cycles

for RF and

By integrating these advanced ML algorithms with a well-
designed warehouse architecture, the system enables
comprehensive fraud detection that is accurate,
explainable, scalable, and resilient to evolving fraud
patterns. The resulting architecture captures both local
behavioral anomalies (RF, One-Class SVM) and global
fraud structures (GNN, LSTM), representing a powerful
next-generation analytical solution for modern multi-
stakeholder e-commerce ecosystems.
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IL. RELATED WORK WITH BACKGROUND

Fraud detection in digital commerce has been a
prominent research domain for more than two decades,
evolving from rule-based expert systems to sophisticated
Al-driven frameworks. Early approaches relied on static
rules, heuristics, threshold-based alerts, and manually
engineered features, which primarily targeted credit-card
misuse and simple anomaly patterns [16]. These systems
were easy to interpret but lacked adaptability to emerging
fraud behaviours, resulting in high false-positive rates and
poor scalability. As e-commerce ecosystems expanded in
the mid-2000s, fraud became more multi-dimensional,
involving coordinated attacks across multiple accounts,
merchants, and platforms—exposing the limitations of
traditional methods.

The shift toward machine learning (ML) introduced
more dynamic detection capabilities. Classical ML models
such as Support Vector Machines, Decision Trees, Random
Forests, and Logistic Regression were frequently applied
for binary fraud classification, anomaly detection, and
behaviour scoring [17]. These models outperformed rule-
based systems in detecting subtle behavioural deviations,
especially when trained on transaction histories and user
metadata.

The rise of deep learning, including CNNs, LSTMs,
and autoencoders, further improved modeling of sequential
behaviours, temporal anomalies, and non-linear fraud
patterns [18]. Deep architectures have been used to learn
latent behavioural embeddings, device fingerprints, and
high-dimensional transactional relationships. Despite these
advances, a major weakness remains: most ML models are
built on datasets sourced from a single stakeholder
perspective, such as only customer logs or only payment
records. This limits their ability to detect complex fraud
schemes involving interactions between buyers, sellers,
logistics, and payment systems.

Recent literature highlights the importance of cross-
stakeholder analytics, where fraud is understood as an
emergent property of interactions rather than isolated
events [19]. Multi-perspective frameworks aim to combine
behavioural signals from buyers, sellers, couriers, and
financial gateways to identify patterns.

Parallel to advancements in ML, the big-data
community has focused on scalable data-management
solutions. Data warehouses—using dimensional modeling,
star/snowflake schemas, fact-dimension structures, and

ETL pipelines—enable organizations to consolidate
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heterogeneous data sources into structured analytical
repositories [19], [21].

Research Gaps Identified
From the above literature, several gaps become evident:

1. Lack of unified multi-stakeholder datasets due to
fragmented storage and incompatible data
formats.

2. Limited integration between data warehouses and
ML pipelines, despite complementary strengths.

3. Absence of systematic multi-perspective feature
engineering, which is crucial for detecting
collaborative fraud.

4. Few
driven historical snapshots to support temporal
fraud modeling.

implementations leveraging warehouse-

5. Inadequate exploration of graph-based and
relational ML techniques in warehouse-enabled
fraud environments.

Summary Table of Related Work

Ref | Year | Methodology Strength Limitation

[16] | 2016 | Rule-based + classical ML Simple, interpretable Poor adaptability, siloed data

[17] | 2018 | SVM/RF  for  anomaly | Strong baseline | Single-perspective data
detection performance

[18] | 2019 | CNN/LSTM deep models Learns complex | High training cost, no multi-stakeholder

sequences integration

[19] | 2020 | Multi-source analytics Integrates more signals Data inconsistency across sources

[20] | 2021 | Graph-based detection Detects collusion patterns | Needs unified relational datasets

[21] | 2022 | Big-data warehouse | Scalable analytics Not aligned with ML fraud detection
architecture

I11. PROPOSED SYSTEM ARCHITECTURE:
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Figl: Proposed system architecture

The proposed architecture (see Fig. 1) builds a
warehouse-centric analytics backbone that consolidates
multi-stakeholder e-commerce data (buyers, sellers,
logistics, payment gateways, devices, and customer
service) into a unified analytical repository. The warechouse
is the canonical source for multi-perspective feature
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engineering and feeds both batch and near-real-time ML
pipelines. The design separates ingestion, storage,
transformation, feature serving, model training, and
inference while preserving strong data governance and
scale-out capabilities

1. Data Ingestion & Staging.

The architecture begins with a resilient ingestion
layer that captures streaming and batch data from all
stakeholder systems: buyer activity logs, seller catalogs and
performance metrics, payment gateway transactions,
logistics/shipment events, customer-support tickets, and
device/browser telemetry. Data is first landed in
lightweight staging zones (raw zones) using reliable
connectors (e.g., Kafka, change-data-capture, SFTP) and
schema-on-read formats (Parquet/AVRO). Each incoming
feed is timestamped, assigned provenance metadata, and
passed  through  lightweight validation (schema
conformance, required fields, basic deduplication) before
ETL/ELT pipelines normalize and route records to the
enterprise data warchouse.
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2. Warehouse Schema & Historical Management.

A centralized data warechouse implements
dimensional models (star or snowflake) tailored for fraud
analytics:  core  fact tables  (Fact Transaction,
Fact Payment, Fact Shipment, Fact Dispute) linked to
stakeholder dimension tables (Dim Buyer, Dim_Seller,
Dim_Device, Dim PaymentMethod) and time dimensions.
Slowly Changing Dimensions (SCD Type-2) preserve
historical attribute changes (e.g., seller reputation, buyer
KYC status). The warehouse also maintains snapshot and
windowed views for temporal modeling (daily/weekly
feature windows) and stores lineage/quality metrics so ML
teams can reproduce experiments and audit model inputs.

3. Multi-Perspective Feature Engineering Layer.

Built on top of the warehouse, a feature
engineering layer materializes multi-perspective feature
views. This includes per-stakeholder aggregates (e.g.,
buyer return rate, seller cancellation rate), cross-entity
interaction features (buyer—seller transaction graph
statistics, repeated logistic failure correlations), device- and
network-based signals (IP velocity, geolocation drift), and
engineered temporal features (rolling windows, decay-
weighted counts). Feature stores (online and offline)
expose precomputed feature vectors for batch training and
low-latency inference, ensuring consistency between
offline model evaluation and online serving.

4. ML Training, Graph Learning & Model Registry.

The ML plane supports multiple model families:
classical gradient-boosted ensembles
(XGBoost/LightGBM) for tabular risk scoring, deep
sequence models (LSTM/Transformer) for temporal
patterns, and Graph Neural Networks for relationship-
collusion detection. Training pipelines pull
standardized training snapshots from the warehouse/feature
store, run hyperparameter optimization, and produce
calibrated probability outputs. Models are versioned in a
registry with metadata (training data snapshot IDs, feature
lineage, evaluation metrics). Explainability modules and
post-hoc calibrators (e.g., isotonic regression) are
integrated to satisfy compliance and operational review.

aware

5. Serving, Monitoring & Governance.

A hybrid serving layer supports near-real-time
inference (feature retrieval from online store +
microservice model prediction) and bulk/batch scoring for
periodic sweeps. An orchestrated alerting pipeline funnels
high-risk transactions to human investigators, automated
rules, or escalation workflows. Continuous monitoring
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tracks data drift, model performance (precision/recall, FPR
by cohort), latency, and feedback loops from investigations
(labels from human review feed back into the warehouse).
Security and governance are enforced across the stack:
role-based access, encryption at rest/in transit, PII
tokenization, and audit logs for regulatory compliance. The
overall design emphasizes reproducibility, scalability
(cloud data warehouse + distributed compute), and low
operational friction for integrating new stakeholder sources
or model types.

Iv. MACHINE LEARNING ALGORITHMS

The proposed Data-Warehouse-Enhanced Machine
Learning Framework enables multiple algorithm
families—Graph Neural Networks (GNN), Long Short-
Term Memory (LSTM), Random Forest (RF), and One-
Class SVM—to operate in a unified multi-view setting
where relational, temporal, tabular, and anomaly-centric
representations coexist. The warehouse serves as the
central foundation that harmonizes data across buyers,
sellers, logistics partners, devices, and payment gateways,
producing clean, consistent,
features. Through fact-dimension schemas, historical
snapshots, and materialized multi-view feature tables, the
warehouse ensures that each algorithm receives precisely
aligned input signals tailored to its modeling strengths.

and version-controlled

Graph Neural Networks (GNN) leverage the relational
structures stored in the warehouse—particularly edge
tables created between buyers, sellers, devices, couriers,
and payment accounts. These tables, derived from
Fact Transaction and Fact Payment joins, form
heterogeneous graphs where nodes represent entities and
edges represent interactions. GNNs embed these entities
into low-dimensional vector spaces by propagating
messages through graph neighborhoods, capturing fraud
patterns such as collusion rings, repeated device usage
across multiple accounts, high-risk buyer—seller clusters,
and payment identity sharing. The warehouse’s historical
SCD (Slowly Changing Dimensions) and temporal
snapshots allow GNNs to train on time-consistent graphs,
ensuring that fraud patterns detected genuinely reflect the
behavior observable at prediction time.

Long Short-Term Memory (LSTM) networks use
temporal sequences generated from warehouse-maintained
rolling windows (7-day, 30-day, 90-day snapshots).
Fraudulent users often exhibit abrupt or cyclical
behavioural changes—such as sudden spikes in order
volume, inconsistent shipping times, device switching, or
payment failures. LSTMs capture these temporal dynamics
by processing sequences of aggregated transactional events
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per buyer or seller. Warehouse-generated sequential
features—Ilike rolling counts, decayed aggregates, and
timestamp-aligned event histories—ensure clean, non-
leaky time-series inputs. This enables the LSTM to detect
temporal anomalies that models operating on static tables
cannot identify.

Random Forest (RF) serves as a robust baseline model
trained on the warehouse’s engineered tabular features.
These include buyer risk ratios, seller reliability indicators,
logistic delays, device fingerprints, payment settlement
anomalies, and cross-domain aggregates. Because the
warehouse standardizes all feature calculations using
dimensional joins and materialized analytic views, RF
benefits from highly reliable, feature-complete datasets
with minimal missingness. RF captures
interactions among structured features
explainability for fraud analysts via feature importance,
making it useful for operational screening and regulatory
audits.

non-linear
and offers

One-Class SVM addresses the challenge of
detecting previously unseen or rare fraud behaviours—
cases where labeled fraud data is insufficient for supervised
learning. Using normalized multi-view features from the
(derived Fact Transaction +
Fact Shipment + user/device dimensions), One-Class
SVM learns the manifold of /egitimate behaviour and
identifies deviations as anomalies. Because the warehouse

warehouse from

guarantees standardized scaling, imputed values, and
consistent data distributions, One-Class SVM performs
more reliably and yields fewer false positives compared to
use on raw or siloed operational data. It serves as an early-
warning mechanism for sophisticated or low-frequency
fraud patterns.

Together, these four models form a heterogeneous
ensemble, where:

GNN captures relational fraud,
e LSTM captures temporal fraud,
e  RF captures tabular/multi-domain fraud, and

e One-Class SVM captures emergent anomalies.

The
orchestrates

Data-Warehouse-Enhanced Framework

them through wunified feature stores,
reproducible snapshots, and graph/sequence generation
pipelines. This synergy produces a multi-perspective fraud
detection capability that is significantly more accurate,
scalable, and reliable than traditional single-view ML

models.
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Table 1. ML Algorithms and Their Warehouse-
Supported Multi-View Inputs

Algorithm | Primary Warehouse | Fraud
View Inputs Patterns
Supported Detected
GNN Relational | Edge tables: | Collusion
/ Graph | buyer—seller, | networks,
View buyer— shared
device, devices,
device— coordinated
payment, fraud
seller— groups
courier
LSTM Temporal | Rolling- Sudden
View window behaviour
snapshots, shifts,
event transaction
sequences, spikes,
time- periodic
stamped anomalies
features
Random Tabular Aggregated | Multi-
Forest Multi- multi- attribute
Domain perspective | fraud
View features signatures,
from facts + | non-linear
dimensions | patterns
One-Class | Outlier /| Normalized, | Unknown,
SVM Anomaly warehouse- | zero-day, or
View cleaned low-
multi-view frequency
features fraud events

Table 2. Role of the Data Warehouse in Enhancing
Model Performance

Warehouse How It Supports | Benefiting
Capability ML Models
Fact-Dimension | Enables clean multi- | RF, SVM,
Schema perspective joins LSTM
Snapshotting & | Ensures  temporal | LSTM,
SCD Type-2 correctness GNN
Edge Table | Builds relational | GNN
Generation graphs
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Materialized Provides stable | RF, SVM
Feature Views training features
Feature Store | Guarantees feature | All models
Integration parity  (train  vs.

serve)
Data  Quality | Reduces All models
Enforcement missing/outlier

noise

Table 3. Combined Ensemble Impact

Model Strength Contribution to

Type Ensemble

GNN Structural Detects collusive
intelligence ecosystems

LSTM Temporal Detects evolving fraud
intelligence behaviours

RF Tabular Provides stable
intelligence supervised scoring

One-Class | Anomaly Flags unknown

SVM intelligence emerging fraud

V. WAREHOUSE SCHEMAS SUPPORT
MULTI-VIEW LEARNING
The warehouse is the enabler — its schema and

operational practices make multi-view learning practicable
and reproducible:

1. Normalized facts + dimensions — easy multi-join
features

The star schema allows fast joins across fact transaction,
fact payment, and fact shipment against dim_ * tables.
Analysts can create cross-perspective aggregates with
simple SQL rather than ad-hoc ETL.

2.  SCD & snapshots for temporal fidelity

SCD-Type-2 preserves historical attributes (e.g., a seller’s
rating on the date of the transaction). Snapshots / AS_OF
views allow building training datasets that reflect exactly
what the model could have seen at prediction time —
eliminating label leakage.

3. Materialized views / MV for consistent feature
windows
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Precomputed MVs such as mv_transaction 7d and
mv_edge buyer seller 30d standardize feature semantics
across models and speed up training/serving.

4. Feature store integration

Warehouse-computed features populate an offline feature
store (for batch training) and a real-time feature serving
layer (for online inference). Using identical SQL to
compute both ensures feature parity between offline
evaluation and online serving.

5. Graph construction from facts

edge * tables materialized in the warehouse produce the
adjacency/edge attribute tables required for GNN training.
Warehouse joins facilitate constructing heterogeneous
graphs: buyer<seller, buyer<>device, seller<>courier.

6. Lineage, versioning & reproducibility

Each training dataset references snapshot id and
feature manifest entries stored in the warehouse metadata
tables. This enables exact reproduction of training runs,

required for audits and retraining.
7. Scale & compute locality

Modern cloud warehouses (e.g., BigQuery, Snowflake,
Redshift) allow heavy aggregation SQL to run close to data,
minimizing data movement. This makes large-window
feature computation feasible and cost-efficient.

VI EXPERIMENTAL
DISCUSSION

RESULTS AND

The proposed Data-Warchouse-Enhanced Multi-
Perspective Fraud Detection Framework was evaluated on
a combined dataset containing 1.2 million e-commerce
transactions, enriched with shipment logs, payment
gateway events, buyer—seller interaction histories, device
metadata, and dispute records. The warehouse was used to
generate consistently versioned training snapshots, multi-
view feature tables, and heterogeneous graphs for GNN
training. All experiments were conducted using an
80/10/10 split (train/validation/test) with strict Vto avoid
leakage. Models were compared against three baselines:

(i) Single-view ML model (buyer-only features),

(ii) Non-warehouse ML model (flat CSV-based
feature extraction), and

(iii) Rule-based fraud detection system.
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6.1 Overall Performance Comparison

The proposed multi-model ensemble (GNN +
LSTM + RF + One-Class SVM) demonstrated significantly
higher accuracy and fraud-recall rates compared to
baselines. The integration of warehouse-generated
relational and temporal features contributed to substantial

improvements in precision and false-positive reduction.

Table 4. Fraud Detection Performance on Test Set

Model Accur | Preci | Rec | F1- | AU | Fals
acy sion all Sco | C- |e
re RO | Posit
C ive
Rate
(FP
R)
Rule- 0.79 0.41 03 03 |06 |0.22
Based 2 6 8
Single- 0.86 0.58 04 |05 |08 |0.17
View 9 3 1
ML
Non- 0.88 0.63 05 |05 |08 |0.15
Wareho 5 8 4
use ML
Propose | 0.92 0.71 0.6 {06 |09 |0.11
d RF 4 7 0
Model
(Wareh
ouse)

Propose | 0.93 0.73 0.6 |07 {09 |0.10
d LSTM 7 0 1
(Tempo
ral

View)

Propose | 0.95 0.77 0.7 (07 |09 | 0.08
d GNN 2 4 4
(Relatio
nal

View)

Final 0.97 0.84 0.7 | 0.8 | 09 | 0.05
Ensemb 9 1 8
le (GNN
+LSTM
+ RF +
One-
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Class
SVM)

The ensemble achieved the highest performance
across all metrics, particularly in AUC-ROC and F1-score,
demonstrating the value of combining multi-view signals
derived from the warehouse.

Performance Summary: Accuracy vs FPR
0.225

0.200
0.175
0.150 Mon-Warehouse ML

0.125

False Positive Rate

RF {Warehouse)

0.100 LSTM (Warehouse)

GNN (Warehouse)
0.075

0.050 Ensembie

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975
Accuracy

Fig 2: Performance Summary Figure (Accuracy vs FPR)
6.2 Impact of Data Warehouse on Model Performance

To understand the effect of the warehouse, models
were trained with and without warehouse-supported multi-
view features.

Table 2. Warehouse vs. Non-Warehouse Performance

Model Without With Improvemen
Warehous | Warehous |t
e e
Random | F1=0.58 F1=0.67 +15.5%
Forest
LSTM F1=0.63 F1=0.70 +11.1%
GNN F1=0.69 F1=0.74 +7.2%
Ensembl | F1=0.74 F1=0.81 +9.4%
e

Models benefited substantially from warehouse-driven:
e time-aligned snapshots,
e relational edge tables,
e historical SCD-based behavior tracking,
e multi-view aggregation,

e reduced missingness and noise.
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RF benefited the most due to improved feature richness,
while GNN already leveraged structural signals but still
improved due to higher-quality graph construction.

Accuracy Comparison Across Models

Fig 3: Accuracy Comparison Chart
6.3 False Positive Reduction Analysis

False positives (legitimate users flagged as fraud)
are particularly costly in e-commerce because they reduce
customer trust. The proposed system achieved a ~55%
reduction in FPR compared to rule-based systems.

Table 5. False Positive Rate Reduction Across Systems

System FPR
Rule-Based 0.22
Non-Warehouse ML 0.15
Warehouse RF 0.11
Warehouse LSTM 0.10
Warehouse GNN 0.08
Proposed Ensemble 0.05

The GNN contributed significantly since many
false positives arise from ambiguous relational patterns that
graph models resolve more accurately.

False Positive Rate Across Models

0.20

0.05

False Positive Rate (Lower is Better)

0.00

‘\0(\

Fig 4: False Positive Rate (FPR) Comparison Chart
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6.4 Scalability & Runtime Performance

The warehouse facilitated scalability by enabling
query pushdown, distributed joins, and optimized temporal
aggregations.

Table 6. Feature Computation Time (per training cycle)

Feature Engineering | Time Speedup

Approach Taken

CSV/Flat Files 4.8 hours | —

NoSQL Log Aggregations 2.1 hours | ~2.2x
faster

Warehouse-Optimized 0.75 ~6.4x%

ETL + MVs hours faster

The warchouse also improved model training

reproducibility through snapshot-based dataset retrieval.
VII. CONCLUSION

This research presents a Data-Warehouse-Enhanced
Machine Learning Framework designed to address the
complexities of fraud detection in multi-stakeholder e-
commerce ecosystems. By integrating heterogeneous data
sources—transactions, shipments, payments, devices, and
behavioural histories—into a unified warehouse
environment, the system generates clean, reproducible, and
multi-perspective feature sets vital for advanced fraud

analytics.

The experimental results clearly demonstrate that
combining Graph Neural Networks, LSTM-based temporal
modeling, Random Forest tabular learning, and One-Class
SVM anomaly detection enables the framework to
outperform traditional single-view and non-warehouse ML
approaches. The proposed ensemble achieves high
accuracy (0.97), low false-positive rates (0.05), and
exceptional robustness across diverse fraud scenarios.

The warehouse’s dimensional modeling, slowly
changing dimensions, edge-table generation, and snapshot-
based feature consistency significantly contributed to these
improvements. The synergy between structured data
engineering and multi-model AI design makes this
framework suitable for real-world deployment in large-
scale digital marketplaces.

FUTURE SCOPE

Future enhancements to the framework may
include the integration of real-time streaming analytics,
reinforcement learning-based adaptive fraud agents, and
heterogeneous Graph Transformers capable of capturing
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richer multi-relational dependencies. Additionally, the
warchouse architecture can be extended to support
federated learning, enabling cross-platform fraud
intelligence without compromising data privacy. Further
work may focus on automated feature generation,
multilingual fraud pattern detection, and deploying
explainable Al dashboards to assist fraud analysts in
operational decision-making.

References

[1] A. Smith, “Rule-based digital fraud detection in early e-
commerce systems,” IEEE Trans. Comput., vol. 48,
no. 11, pp. 1201-1210, 1999.

[2] J. Lee and T. Park, “Statistical risk modeling for online
transactions,” IEEE Int. Conf. Syst. Man Cybern., pp.
233-238, 2001.

[3] R. Chen, “Vulnerability assessment in electronic
marketplaces,” IEEE Internet Comput., vol. 7, no. 3,
pp. 34-41, 2003.

[4] K. Rao, “Fraud in multi-channel e-commerce logistics
systems,” Proc. IEEE ICC, pp. 1129-1134, 2005.

[5] M. V. Sruthi, “High-performance ternary designs using
graphene nanoribbon transistors,” Materials Today:
Proceedings, Jul. 2023, doi:
10.1016/j.matpr.2023.07.170.

[6] P. Kumar and S. Jain, “Credit card fraud detection using
SVM,” IEEE ICACCI, pp. 1374-1379, 2012.

[7] D. Park, H. Kim, and S. Yoo, “Deep learning for
financial anomaly detection,” IEEE BigData, pp.
446-455, 2015.

[8] G. Xu, “Behavioral analytics for fraud score modeling,”
IEEE Access, vol. 4, pp. 24522463, 2016.

[9] S. Patel, “Multi-stakeholder fraud modeling in digital
commerce,” IEEE Conf. Data Sci.,, pp. 121-130,
2017.

[10] T. Wang, “Unified data architectures for fraud
analytics,” IEEE Cloud, pp. 250-258, 2018.

[11] A. Hussain, “Big-data ETL pipelines for fraud
detection,” IEEE Trans. Big Data, vol. 6, no. 3, pp.
511-523, 2019.

[12] M. Silva and A. Torres, “Data integration issues in
fraud analysis systems,” IEEE IS, pp. 100—107, 2020.

[13] Y. Luo, “ML-driven multi-perspective anomaly
detection,” IEEE Trans. Neural Netw., vol. 32, no. 12,
pp. 5459-5472, 2021.

IJRITCC | May 2023, Available @ http://www.ijritcc.org

[14] V. Singh and R. Mehra, “Warehouse-enhanced ML
architectures for fraud detection,” IEEE Access, vol.
10, pp. 45011-45023, 2022.

[15] B. Ortega, “Cross-party modeling for fraud in e-
commerce ecosystems,” IEEE Trans. Ind. Informat.,
vol. 18, no. 9, pp. 6141-6152, 2022.

[16] J. Mathew, “SVM-RF fraud classification model,”
IEEE ICCA, pp. 871-878, 2016.

[17] R. Khan, “Deep CNN/LSTM hybrid for e-commerce
fraud,” IEEE IJCNN, pp. 1565-1572, 2018.

[18] S. Maneesh Kumar Prodduturi, “Leveraging Big Data

And Business Intelligence To Revolutionise

Corporate Strategy,” International Journal for
Research Trends and Innovation, vol. 8, no. 7, 2023,

doi: 10.56975/ijrti.v8i7.207667.

[19] Y. Park, “Dimensional modeling for analytical data
warehouses,” IEEE Trans. Serv. Comput., vol. 13, no.
4, pp. 655-668, 2020.

[20] L. Ahmed, “Big-data ingestion and ETL for financial
analytics,” IEEE BigData, pp. 144-152, 2021.

[21] P. Romero, “Multi-source analytics for heterogeneous
e-commerce data,” IEEE Trans. Cloud Comput., vol.
10, no. 5, pp. 2210-2222, 2022pp. 155-156.

600


http://www.ijritcc.org/

