
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received: 25 January 2023 Revised: 12 February 2023 Accepted: 30 March 2023

788
IJRITCC | March 2023, Available @ http://www.ijritcc.org

Smart Contracts: Architecture, Working

Principles, and Challenges
Ashlesha Gupta

Assistant Professor, J.C. Bose University of Science and Technology, YMCA, Faridabad, Haryana, India

gupta_ashlesha@yahoo.co.in

Abstract

Smart contracts are self-executing programs running on blockchain platforms that automatically enforce the terms of an

agreement without the need for intermediaries. They promise benefits such as trustless execution, transparency, and

efficiency, and have enabled a new wave of decentralized applications in finance, supply chain, and beyond. This

research work provides a comprehensive overview of smart contract architecture, explains their working principles, and

discusses the key challenges and issues they face from a computing perspective. We outline the theoretical foundations of

smart contracts and how they integrate with blockchain architecture. We then detail the life cycle and operation of smart

contracts, from deployment to execution, highlighting concepts like the Ethereum Virtual Machine (EVM) and

transaction gas costs. Furthermore, we examine critical challenges including security vulnerabilities, scalability limits,

privacy concerns, and legal/regulatory hurdles. Recent research efforts to improve smart contract reliability – such as

formal verification, security analysis tools, and design best practices – are also reviewed. The paper is organized into

major sections covering fundamentals, architecture, working principles, challenges, and practical considerations. Our

discussion aims to inform computer science graduates and practitioners about both the promises and the pitfalls of smart

contracts, providing a balanced understanding of their technical underpinnings and the ongoing research directions to

address their limitations.

Keywords: Smart Contracts, Blockchain, Ethereum, Decentralized Applications, Security, Scalability, Smart Contract

Architecture, Privacy, Trustless Execution

1. Introduction

Smart contracts are a significant innovation in

blockchain technology, often described as “self-

executing programs that facilitate trustless transactions

between multiple parties”. In essence, a smart contract

is a piece of code deployed on a blockchain that

automatically enforces the terms of an agreement when

predetermined conditions are met. All parties have a

shared, tamper-proof view of the contract’s state,

eliminating the need for a trusted third-party

intermediary. This concept was first proposed in the

1990s by Nick Szabo, who envisioned digital contracts

that could be executed by code. However, it was the

advent of modern blockchains that made smart contracts

practically realizable. In particular, the launch of

Ethereum in 2015 introduced a programmable

blockchain supporting Turing-complete smart contracts,

marking the transition of blockchain technology into an

era of “programmable finance” [1][2].

Blockchain platforms like Ethereum, Hyperledger

Fabric, and others provide the infrastructure for smart

contracts by ensuring a distributed ledger and consensus

mechanism to record contract execution results. Unlike

Bitcoin’s limited scripting, these platforms allow

complex, user-defined logic in contracts [3]. Figure 1

conceptually illustrates how two parties can interact via

a blockchain-based smart contract without mutual trust:

each party submits transactions to the contract, and the

blockchain network executes the contract code

deterministically on all nodes, updating the ledger state

when conditions are fulfilled. This decentralized

execution guarantees that the outcome is transparent

and agreed upon by all blockchain nodes [4][5].

http://www.ijritcc.org/
mailto:gupta_ashlesha@yahoo.co.in

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received: 25 January 2023 Revised: 12 February 2023 Accepted: 30 March 2023

789
IJRITCC | March 2023, Available @ http://www.ijritcc.org

Figure 1: Conceptual diagram of a blockchain smart

contract between two participants.

In Figure 1, each participant (A and B) interacts with a

smart contract deployed on a blockchain network. The

contract’s code (stored on the distributed ledger)

automatically enforces the agreed rules. Both parties

submit transactions to invoke contract functions, and the

network’s nodes execute the contract in a trustless

manner. The blockchain ledger (illustrated by the chain

of blocks) records all contract states and transactions,

ensuring tamper-proof and transparent outcomes [6][7].

Smart contracts offer several theoretical and practical

benefits. They enable trustless execution of agreements

– all parties can trust the code and the underlying

cryptographic consensus of the blockchain rather than

trusting each other or an intermediary. This can reduce

transaction risk and costs, as contracts can transfer

assets or verify conditions automatically without escrow

agents or legal oversight, thereby saving on

administrative fees. Smart contracts also improve

process efficiency, executing transactions in near real-

time once conditions are satisfied, which minimizes

delays compared to traditional contract enforcement.

For example, in supply chain payments, a smart contract

can release funds instantly when a delivery is

confirmed, instead of waiting for manual processing.

Additionally, the results are transparent and verifiable –

all contract interactions are recorded on the blockchain,

creating an audit trail that enhances accountability

[8][9][10].

Given these advantages, smart contracts have rapidly

gained adoption across various domains. Ethereum’s

ecosystem, in particular, has seen an explosion of

decentralized applications (DApps) in areas such as

decentralized finance (DeFi), games, digital collectibles,

and more. By 2022, millions of contracts had been

deployed on Ethereum and other platforms, signifying

the growing reliance on code-based agreements. Figure

2 shows the cumulative number of smart contracts

deployed on Ethereum over time, illustrating an

exponential growth trend. The count grew from

essentially zero in 2015 to tens of millions by 2022,

demonstrating how this technology moved from concept

to widespread implementation in just a few years. This

growth is fueled by the thriving developer community

and the compelling use-cases that smart contracts

enable – from automated financial instruments (e.g.

lending, trading, insurance) to supply chain tracking and

digital identity management [11][12][13].

Figure 2: Cumulative Contracts Deployed Over Time

on Ethereum.

2. Smart Contract Fundamentals

2.1 Concept and Characteristics of Smart Contracts

In simple terms, a smart contract is a program that

automatically executes specific actions when predefined

conditions are satisfied, with the outcomes enforced by

code. The core idea blends principles from computer

science and law: the contract’s “clauses” are written in

code, and once deployed, the contract will self-enforce

those clauses exactly as coded, without discretion.

Because smart contracts run on a blockchain, they

inherit key properties from the underlying distributed

ledger:

 Immutability: Once a smart contract is

deployed to the blockchain, its code typically

cannot be altered. The code and state are

tamper-proof due to the cryptographic integrity

of the ledger. This gives participants

confidence that the contract’s rules won’t

change arbitrarily. However, immutability also

means bugs or inefficiencies in code are

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received: 25 January 2023 Revised: 12 February 2023 Accepted: 30 March 2023

790
IJRITCC | March 2023, Available @ http://www.ijritcc.org

difficult to fix, presenting a challenge for long-

lived contracts [15].

 Distributed Consensus: Smart contract

execution results are agreed upon by all or a

subset of blockchain nodes (via the consensus

protocol). Every validating node runs the

contract code on their local copy of the

blockchain state, ensuring that outcomes are

replicated and verified across the network.

This removes reliance on a single authority –

the network collectively guarantees correct

execution as long as the consensus mechanism

and majority of nodes are honest [16].

 Deterministic Execution: To achieve

consensus, smart contract functions must

produce the same result on every node given

the same state and input transaction. Contracts

are therefore executed in a controlled,

deterministic environment (such as Ethereum’s

virtual machine). Non-deterministic operations

(e.g., relying on wall-clock time or random

numbers without a protocol) are avoided or

explicitly handled so that all nodes stay in sync

[17].

 Transparency: On public blockchains, smart

contract code and its execution history are

visible to all participants. All transactions

invoking the contract, and any state changes

(logs, events, etc.), are recorded on-chain. This

transparency can increase trust and auditability

of processes but also exposes sensitive logic

and data, which may conflict with privacy

requirements. Some platforms and contract

designs address this via cryptographic

techniques [18][19].

 Self-Enforcement: Once deployed, a smart

contract will automatically execute when

triggered by an appropriate transaction or

event, and it will enforce the outcome exactly

as encoded. This means that if the contract

code says a payment will be made on a certain

date upon condition X, then as soon as X is

verified, the payment will occur – there is no

need (and often no ability) for human

intervention to stop it. This self-enforcing

nature can eliminate ambiguity and the need

for litigation in contract execution. However, it

also means that errors or unforeseen scenarios

can lead to undesirable outcomes that are hard

to reverse (unlike a traditional legal contract

which might be renegotiated or not enforced

by mutual consent) [20][21].

The combination of these characteristics enables

trustless interactions: participants can trust the

contract’s code and the blockchain’s enforcement rather

than each other. For example, consider an insurance

payout contract for crop failure. The farmer and insurer

encode the logic (if rainfall is below a threshold by date

Y, pay out $Z to the farmer) into a smart contract.

Neither party can cheat – the contract will automatically

check an authoritative weather data feed and execute the

payment if conditions are met. The farmer doesn’t need

to trust the insurer to willingly pay, and the insurer

doesn’t fear fraudulent claims; enforcement is automatic

and objective [22].

2.2 Relationship with Blockchain Architecture

Smart contracts do not exist in isolation – they are an

application-layer construct that relies on the underlying

blockchain architecture for security and execution. A

blockchain system can be viewed in a layered

architecture, typically including layers such as the

network layer, consensus layer, and an application layer

where smart contracts operate. Figure 1 already showed

the abstract role of contracts on a blockchain. Here we

elaborate how contracts fit into blockchain architecture

[23]:

 Blockchain Nodes and Virtual Machine:

Each full node in the blockchain network

maintains a copy of the ledger and executes

smart contract code within a virtual machine

(VM) environment. For instance, Ethereum

introduced the Ethereum Virtual Machine

(EVM), which is a runtime environment that

executes contract bytecode in a sandboxed

manner. Every node runs an EVM

implementation to perform contract

computations in lockstep. The VM ensures

determinism and isolates the contract

execution from directly affecting the node’s

operating system. It also implements a gas

mechanism to meter resource usage [24].

 Transactions and State: A smart contract is

deployed via a special transaction that

publishes the contract’s code to the blockchain,

assigning it a unique address. Thereafter, users

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received: 25 January 2023 Revised: 12 February 2023 Accepted: 30 March 2023

791
IJRITCC | March 2023, Available @ http://www.ijritcc.org

interact with the contract by sending

transactions to that address, which trigger

specific functions in the code. These

transactions, like any blockchain transaction,

are propagated through the peer-to-peer

network and included in blocks by

miners/validators. When a block containing a

contract call is confirmed, each node executes

the contract code for that call and updates the

contract’s state accordingly. The blockchain’s

state (which, in Ethereum, includes account

balances and contract storage) thus evolves as

contract functions execute [25].

 Data Storage: Smart contracts can maintain

persistent state in the form of key-value

storage on the blockchain (e.g., Ethereum’s

contracts have a Merkle-patricia storage trie).

This is akin to a database that the contract can

read and write. For example, a token contract

stores balances for each account in its state

variables. This on-chain state is replicated and

stored by all full nodes, and updates to it are

only made through the execution of

transactions in blocks. The state storage is part

of the blockchain’s overall ledger and benefits

from the same tamper-resistance [26].

Table 1: Comparison of Major Blockchain Platforms

for Smart Contracts

 Six-Layer Perspective: Some research works

describe blockchain-enabled smart contracts

using a multi-layer architecture model. For

instance, Wang et al. propose a six-layer

architecture: (1) data layer – which includes

the distributed ledger and cryptographic

structures, (2) network layer – handling P2P

communication among nodes, (3) consensus

layer – ensuring agreement on ledger state, (4)

incentive layer – e.g., mining rewards (mostly

relevant for public chains), (5) contract layer –

where smart contract logic resides, and (6)

application layer – end-user applications that

interact with contracts. In this view, the smart

contract layer is built atop the lower layers

(data, network, consensus) that provide

security and reliability. The application layer

then uses contracts to deliver functionality to

users (such as a decentralized voting system or

an automated supply chain payment system)

[27].

Platform

Type &

Access

Consens

us

Mechan

ism

Smart

Contract

Language/

VM

Approx.

Through

put (TPS)

Ethereu

m [28]

Public,

permission

less –

open

network

where

anyone

can

deploy/use

contracts.

Proof of

Stake

(since

2022;

formerly

Proof of

Work) –

achieves

consensu

s via

staking

validator

s in

Ethereu

m 2.0.

Solidity

(high-

level),

compiled

to EVM

bytecode;

runs on the

Ethereum

Virtual

Machine

on every

node.

~15 TPS

on

mainnet

L1

(scalable

via Layer-

2

solutions;

higher

with

Ethereum

2.0

sharding

in future).

Hyperled

ger

Fabric

[29]

Private,

permission

ed –

consortiu

m network

with

vetted

members.

Crash

Fault

Tolerant

or BFT

ordering

(e.g.

Raft,

Kafka) –

no

mining,

uses an

order-

execute

architect

ure.

Chaincode

in general-

purpose

languages

(Go, Java,

etc.),

executed in

Docker

containers

on

endorsing

peers (no

universal

VM).

1000+

TPS

(depends

on

configurat

ion) –

higher

throughpu

t by

parallel

execution

and

omission

of global

mining.

Solana

[30]

Public,

permission

less –

open

network

with

incentivize

d

validators.

Proof of

Stake

with

Proof of

History

(Tower

BFT) – a

high-

frequenc

y BFT

Rust and

C/C++ for

programs,

compiled

to

Berkeley

Packet

Filter

(BPF)

bytecode;

2000–

3000+

TPS in

practice

(theoretica

lly up to

~50k

TPS) –

optimized

for high

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received: 25 January 2023 Revised: 12 February 2023 Accepted: 30 March 2023

792
IJRITCC | March 2023, Available @ http://www.ijritcc.org

Platform

Type &

Access

Consens

us

Mechan

ism

Smart

Contract

Language/

VM

Approx.

Through

put (TPS)

 consensu

s

leveragi

ng

timestam

p

ordering.

runs on

Solana’s

BPF-based

VM.

throughpu

t and low

latency.

Table 1 depicts the Blockchain platforms for smart

contracts differ in architecture. Ethereum pioneered

public smart contracts with a fully decentralized but

relatively slower model, using the EVM to run Solidity

code on every node. Hyperledger Fabric shows an

alternative for permissioned networks, foregoing a

built-in cryptocurrency and allowing higher

performance via restricted participation and a modular

execution model. Solana represents a newer public

chain emphasizing scalability, using a unique consensus

and VM. These differences affect how smart contracts

are written (e.g., language), how they execute and scale,

and suitable use cases. All these platforms, however,

share the common idea of code-based contract logic that

is enforced by the blockchain’s consensus across

participants [31].

3. Architecture of Smart Contracts

While Section 2 introduced the foundational concepts,

here we delve deeper into the architecture and

components that make up a smart contract system. We

use the term architecture to mean the structural design

of the smart contract environment – including how

contracts are represented on the blockchain, how they

interface with the execution engine, and how different

blockchain designs structure smart contract support

[32][33].

3.1 On-Chain Structure and Execution Environment

A deployed smart contract on Ethereum (or similar

platforms) is identified by an address – effectively, a

unique location in the blockchain’s state space. At that

address, the blockchain stores the contract’s compiled

bytecode and its persistent storage state (if any). The

contract’s functions can be invoked by sending a

transaction to its address with an appropriate function

selector and parameters (in Ethereum’s ABI encoding).

When such a transaction is processed by a miner or

validator, it triggers the execution of the contract’s code

in the blockchain’s execution environment [34].

For Ethereum and many other platforms, this

environment is the Ethereum Virtual Machine (EVM).

The EVM is a stack-based virtual machine that

processes the contract’s bytecode instruction by

instruction. It has access to the transaction’s input data,

the contract’s storage, and some contextual information

(block timestamp, sender address, etc.). Importantly, the

EVM is designed to be completely deterministic and

sandboxed. It cannot perform certain operations like

generating random numbers (without a predefined

source) or making network calls – this ensures that

contract execution yields the same result on all nodes

and does not depend on off-chain data unless provided

through transactions or predefined system calls [35].

3.1.1 Ethereum Virtual Machine (EVM) Example

To make the discussion concrete, consider the Ethereum

Virtual Machine. Ethereum’s design was the first to

integrate a general-purpose VM into a blockchain. The

EVM is a stack machine with a word size of 256 bits

(convenient for cryptographic operations). It has a few

areas of memory: stack (for operations), memory

(volatile byte-array for each execution, not persisted),

and storage (persistent key-value store, persisted

between calls). When a contract function is called, the

EVM initializes with the function’s input data and the

contract’s storage (state). As it runs the bytecode, it

might push and pop values from the stack, do

arithmetic, load from storage, etc., according to the

instructions [36][37].

For example, a simple Solidity function like function

add(uint x, uint y) public returns(uint){ return x+y; }

would compile to EVM bytecode that (in pseudocode)

does: push x, push y, ADD, and then return the result.

The EVM would consume gas for the addition and the

return. If this function is called via a transaction, the

resulting state (just the return value in this case, which

might be logged) is recorded in the transaction receipt.

More complex functions that modify state would

produce opcodes like SSTORE (to store a value in

persistent storage) which have higher gas costs [38].

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received: 25 January 2023 Revised: 12 February 2023 Accepted: 30 March 2023

793
IJRITCC | March 2023, Available @ http://www.ijritcc.org

3.1.2 Alternative Architectures

Not all smart contract platforms follow Ethereum’s

account-based model with a single global VM. For

instance, UTXO-based smart contracts: Some

blockchains (like Bitcoin and earlier versions of

Cardano) use a UTXO model where contracts are

realized through locking/unlocking scripts on UTXOs

(unspent transaction outputs). Bitcoin’s Script is

intentionally not Turing-complete and is used for very

specific contracts (multi-signature, timelocks, etc.).

Newer developments like BitML and Miniscript attempt

to extend Bitcoin’s contract expressiveness, but they are

outside the scope of general Turing-complete contracts

[39].

Another design is layer-2 contracts: protocols built atop

a base blockchain to extend capabilities, such as state

channels and sidechains. These are not exactly smart

contract architectures themselves, but they influence

how contracts are designed (e.g., a state channel might

use a smart contract on layer1 as an adjudicator but

execute many transactions off-chain for scalability)

[40].

3.2 Off-Chain Interactions and Oracles

A limitation of smart contracts is that blockchains are

closed environments – they do not inherently have

access to external, real-world information (often termed

the “oracle problem”). Most smart contracts need some

connection to off-chain data to be truly useful (for

example, a crop insurance contract needs weather data,

a betting contract needs the outcome of a sports match,

etc.). The architecture of a complete smart contract

solution often includes oracle mechanisms to bridge on-

chain and off-chain worlds [41].

An oracle is a trusted data feed or mechanism by which

off-chain data can be fed into a contract.

Architecturally, this might be implemented as a special

type of transaction sent by designated oracle providers

(e.g., an off-chain service signs a message with the

temperature reading and submits it to the contract). The

contract then parses and uses that data. Many oracle

systems exist: some are centralized services, others are

decentralized networks of feeders (like Chainlink or

Band Protocol) that use their own consensus or

economic incentives to provide reliable data. From the

contract’s perspective, the oracle is simply another

caller providing input [42].

4. Working Principles of Smart Contracts

Smart contracts follow a well-defined life cycle:

creation (deployment), operation (function calls and

state transitions), and potentially termination. In this

section, we break down the working principles into

those stages and explain how a contract progresses from

code to an active agreement and what happens during

execution. We also cover important runtime concepts

such as transaction processing, gas management, and

how contracts handle execution flow and errors [43].

4.1 Life Cycle of a Smart Contract

4.1.1 Creation and Deployment Phase

The life of a smart contract begins with its deployment

to the blockchain. A contract is typically written in a

high-level language (e.g., Solidity), then compiled to

the platform’s bytecode. To deploy, a user (often the

developer or an entity initiating the contract) sends a

contract creation transaction. In Ethereum, this is a

transaction with no to address, containing the contract’s

bytecode in the data field. The transaction must also

include enough gas to cover the deployment cost (which

depends on bytecode size and any constructor

execution) [44][45].

When this creation transaction is processed by

miners/validators, the bytecode is executed once –

running the contract’s constructor (initialization code).

The constructor can set up initial state or require certain

conditions. Its execution produces the final runtime

bytecode that will be stored (Solidity concatenates

constructor code and runtime code; the constructor’s

output is the runtime code). If the creation succeeds

(doesn’t run out of gas and doesn’t revert), a new

contract address is generated (usually derived from the

creator’s address and their nonce in Ethereum) and the

runtime bytecode is stored at that address. The contract

now exists on-chain, and its initial state is set (storage

variables initialized) [46].

4.1.2 Invocation and Execution

After deployment, the contract enters the operation

phase where it can be invoked repeatedly over its

lifetime. Users (or other contracts) call the contract by

issuing transactions. Each call is handled as a

transaction that modifies state or produces some output,

under the rules of the blockchain.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received: 25 January 2023 Revised: 12 February 2023 Accepted: 30 March 2023

794
IJRITCC | March 2023, Available @ http://www.ijritcc.org

A contract invocation transaction will include: the

contract’s address as the to, the function selector and

parameters encoded in the data payload (for

Ethereum/ABI), and some gas and fee like any

transaction. When a miner/validator includes this

transaction in a block, all nodes execute the contract’s

code to process the call.

During execution, the contract may: perform

calculations, read or write its persistent storage, emit

events (logs), send cryptocurrency (e.g., Ether) to other

addresses, or call other contracts. All of these actions

happen within the scope of the transaction. A key

principle is atomicity: if any part of the execution fails

(e.g., an assertion in code fails or a sub-call runs out of

gas), the entire transaction is typically reverted,

meaning the blockchain state is unchanged except for

the used gas (which is still consumed). This is akin to a

database transaction rollback on error. Atomicity

greatly simplifies reasoning – a contract can make

multiple updates and either all happen or none do, so

there are no partial side-effects on-chain from a failed

call [47].

4.1.3 Termination and Upgrade

Smart contracts are usually designed to live indefinitely

on the blockchain. However, there are mechanisms to

terminate a contract if needed. In Ethereum, a contract’s

code can include a SELFDESTRUCT (previously

SUICIDE) opcode. If executed, this opcode removes the

contract’s bytecode from the state (making the address

no longer have associated code) and sends any

remaining Ether in the contract to a designated target

address. This effectively kills the contract – it cannot be

called thereafter (calls will hit an empty account).

Typically, a contract might include a self-destruct

function guarded by some condition (e.g., only owner

can trigger it, or it can trigger after a certain date). Self-

destruction can be used to reclaim storage (refunding

some gas to the destructor as incentive) or to migrate to

a new contract version.

4.2 Transaction Processing and Gas Management

The operation of smart contracts is tightly linked to how

transactions are processed on the blockchain. Each

contract call is encapsulated in a transaction, which

must be mined/validated in a block. The order of

transactions is significant – if two users try to call the

same contract, the one whose transaction is mined first

will execute first and potentially affect the contract’s

state before the second executes. Miners have some

control over ordering (they could choose transactions,

and on Ethereum users can pay higher gas fees to

prioritize their transactions). This has led to phenomena

like transaction front-running, where an observer might

try to preempt someone else’s contract call by getting

their transaction mined earlier (a concern especially in

DeFi contracts). Contract designers sometimes

incorporate mechanisms (like commit-reveal schemes

or fairness protocols) to mitigate the impact of ordering

on sensitive operations.

Gas management is a fundamental aspect of how smart

contracts work. As mentioned, each transaction

specifies a gas limit and gas price. The EVM (or other

VM) deducts gas for each operation. If the gas runs out,

the execution is reverted (the state is rolled back), but

the gas paid is still consumed from the sender’s account

(to compensate miners for the work done up to failure).

This means if a contract enters an infinite loop or a very

heavy computation without enough gas, it will simply

fail and waste gas. Thus, contracts must be designed to

be gas-efficient and predictable in their gas usage,

especially because on public chains gas costs equate to

real money [48].

4.3 Interaction with External Systems

As hinted in the architecture discussion, smart contracts

often need to interact with systems or data outside the

blockchain, which poses some unique working

principles:

Oracles: When a contract requires off-chain data, it

typically follows a pattern: one transaction is made to

request the data (perhaps calling a function that emits an

event or sets a state indicating a request), then an off-

chain oracle observes this and in a subsequent

transaction provides the data by calling a callback

function. During the period between request and

response, the contract might be in a waiting state. For

instance, a contract might have a function

requestPrice(asset) and an oracle calls back

fulfillPrice(asset, price) to supply the info. The working

principle here is asynchronous operation – the contract

must handle that the response comes later (maybe

enforce that it comes before a timeout, etc.). This

asynchronous, multi-transaction workflow is different

from regular function calls and requires careful design

to avoid inconsistencies (e.g., what if the oracle never

responds? Many contracts include a fallback or the

ability to cancel after some time).

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received: 25 January 2023 Revised: 12 February 2023 Accepted: 30 March 2023

795
IJRITCC | March 2023, Available @ http://www.ijritcc.org

Events and Off-chain Monitoring: A lot of the “action”

in DApp user experience happens off-chain by

monitoring on-chain events. For example, a

decentralized exchange contract might emit an event

when an order is filled. Off-chain services (like the

front-end or analytics) catch that to update user

interfaces. From a working perspective, contracts

should emit meaningful events as part of their execution

so that external systems can react. This does not affect

the contract’s own logic but is crucial for the ecosystem

around it.

Permission and Roles: Smart contract operation often

involves different roles (owner, participants, or even

automated bots). Many contracts implement an owner

role (using patterns like Ownable in OpenZeppelin) that

allows certain privileged operations (like pausing the

contract, upgrading logic via proxy, or triggering

emergency withdrawals). These are essentially

backdoors built for practicality and security, and they

must be transparently documented since they partially

break the trustless ideal (users need to trust that owners

won’t abuse privileges). For instance, a contract might

have a pause() function callable only by owner to halt

contract activity if a vulnerability is discovered – this

introduces a centralized element for safety [49].

Execution Order and Reentrancy: One subtle working

principle in Ethereum is that within a single transaction,

the order of execution is depth-first: if Contract A calls

Contract B, which calls Contract C, the EVM will

execute C then return to B then back to A. All of this is

still one transaction. A notorious issue is reentrancy,

where Contract C (or B) might call back into A (the

original caller) before A’s execution is finished. This

can happen if A, after calling B, hasn’t updated some

state yet but B’s code invokes A again (perhaps via a

fallback function). A classic example is a contract that

sends money to a user and then updates their balance

after the call. A malicious recipient contract can re-enter

the function via its fallback and drain funds before the

balance is updated. The working principle to avoid this

is to complete all internal state changes before calling

external contracts (the checks-effects-interactions

pattern). Additionally, using reentrancy locks (a mutex

in contract storage that prevents re-entry) is a common

practice.

Error Handling: When a contract calls another, if the

callee reverts (throws an error), the caller by default

also immediately reverts the entire transaction (unless

the caller used low-level calls and manually handled the

failure). Modern Solidity use of call, delegatecall

returns a success flag that should be checked. Many

historical bugs came from not checking return values of

sends or calls – e.g., address.send() returns false on

failure, and if code ignored it, it might consider a

payment done when it actually failed. Today, best

practice is to use transfer (which throws on failure) or

handle the bool from call. This highlights that the

working flow of contract execution can branch on

whether sub-calls succeed or not, and developers must

handle all possible outcomes to maintain consistency.

To illustrate a typical sequence of operations in a

working scenario, consider a token smart contract (like

ERC-20 token on Ethereum). Its life cycle: it’s

deployed by a creator (deployment phase). Thereafter,

any user can call transfer(to, amount) to send tokens.

The working of transfer is: check that msg.sender has ≥

amount balance, subtract amount from sender’s balance,

add to recipient’s balance, emit a Transfer event, and

return true. If any check fails, it reverts (so balances

remain unchanged). This is straightforward. Now

consider a more complex contract like a decentralized

exchange contract: A user might call

withdrawLiquidity() to remove their funds. The contract

might call an external token contract’s transfer to give

the user their tokens back. If that token’s transfer

function calls into some other contract (or malicious

token with a callback), the exchange contract must be

written to handle reentrancy properly (likely by

updating the user’s liquidity balance to 0 before calling

external transfer). This shows multiple contracts

interacting and the importance of ordering and

atomicity [50].

5. Challenges and Issues of Smart Contracts

While smart contracts enable powerful new

applications, they also face numerous challenges that

must be understood and addressed. These challenges

span technical issues, such as security vulnerabilities

and scalability limits, as well as broader concerns like

privacy and legal enforceability. In this section, we

outline the major categories of challenges and provide

details on each, along with references to recent research

that seeks to mitigate these problems.

5.1 Security Vulnerabilities and Reliability

Security is arguably the foremost challenge for smart

contracts. Once deployed, contracts often hold or

manage valuable assets (cryptocurrency, tokens, etc.),

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received: 25 January 2023 Revised: 12 February 2023 Accepted: 30 March 2023

796
IJRITCC | March 2023, Available @ http://www.ijritcc.org

making them attractive targets for attackers.

Unfortunately, smart contracts have exhibited a wide

range of vulnerabilities – from simple coding bugs to

more subtle logical flaws – that have been exploited in

the wild. The immutable, autonomous nature of

contracts means that a security failure can have

irreversible and damaging consequences (funds stolen

or locked permanently). Some common vulnerability

types include:

 Reentrancy: As introduced earlier, this occurs when

a contract calls an external contract, and that

external call in turn invokes back into the calling

contract (before the first invocation finishes). If the

calling contract isn’t designed to handle reentrant

calls, an attacker can exploit this to perform actions

multiple times that should only happen once. The

DAO attack is the classic example – the contract

sent Ether before updating the sender’s balance,

allowing the malicious recipient to call back

repeatedly and drain funds. Reentrancy remains a

critical threat; tools and design patterns exist to

detect/prevent it (e.g., checks-effects-interactions

pattern, reentrancy guard locks), but developers

must apply them consistently.

 Arithmetic Bugs (Overflows/Underflows): Early

Solidity versions did not automatically check for

overflow in arithmetic operations. If a contract did

not use a library to check, an attacker could

overflow a uint (wrap it around) to bypass balance

checks, etc. For example, a token contract might

think an account has a huge balance because it

underflowed from 0 to 2^256-1. Solidity since v0.8

has built-in overflow checks by default, mitigating

this issue. But contracts compiled with older

compilers or those intentionally turning off checks

may still be vulnerable.

 Access Control Flaws: Many contracts have

functions that should be restricted (e.g., only owner

can call). If these restrictions are mis-implemented

or forgotten, attackers can directly call admin

functions. In some cases, developers used tx.origin

for authentication (checking if tx.origin == owner,

as opposed to msg.sender). This is insecure because

a contract can be tricked into calling another

contract on behalf of a user. Best practice is to use

msg.sender and proper modifiers for access control.

Nonetheless, insecure or missing access controls

have caused significant losses (for example,

forgetting to restrict a function that drains funds).

Recent studies found access control issues to be a

major category of smart contract vulnerabilities.

 Unhandled Exceptions and Reverts: If a contract

calls another and doesn’t handle failure, it could

behave erroneously. For instance, prior to Solidity

0.4.13, the recommended way to send Ether was

send() which returns false on failure rather than

throwing. Many contracts did not check this return

value, leading to situations where Ether wasn’t

actually sent but the contract still assumed it was

(potentially causing inconsistent state). Nowadays,

transfer() is used which throws on failure, or

explicitly handling the bool from send()/call.

Failure to properly handle these can lead to funds

stuck or other logic issues.

 Denial of Service (DoS): An attacker can

sometimes block contract functionality. For

example, a known DoS with (Unexpected) revert

happened in Ethereum’s early days: a contract with

a loop paying out rewards could be halted if one of

the recipients always reverted (making the whole

payout fail). Another example is DoS with block

gas limit – if a contract accumulates too much data

in arrays, certain functions may run out of gas

consistently when trying to process all data (e.g., a

poorly designed raffle that can never pick a winner

because iterating over all entries exceeds gas).

Attackers can exploit these by deliberately bloating

data. Contracts must be designed to handle

dynamic data sizes gracefully or set practical limits.

 Logic Bugs and Flawed Assumptions: Some

vulnerabilities are not low-level issues but higher-

level logic mistakes – e.g., using an outdated price

feed, or assuming certain order of events. A

contract might assume that a particular call will

only be made after some state is set, but a clever

user might call functions out of the expected

sequence. These are program-specific, and harder

to generalize, but they underscore the need for

thorough testing and formal verification where

possible. One famous logic bug was in the Parity

multisig wallet (2017) – an initialization function

was publicly accessible due to a library contract

mix-up, allowing an attacker to reset ownership and

then selfdestruct the wallet, effectively freezing

millions of Ether. In this case the vulnerability was

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received: 25 January 2023 Revised: 12 February 2023 Accepted: 30 March 2023

797
IJRITCC | March 2023, Available @ http://www.ijritcc.org

an unprotected function and an unintended

sequence of calls (initializing after deployment).

The impact of these vulnerabilities is evident in the

amount of cryptocurrency lost or locked. According to a

2020 study, over 3000 Ether were directly stolen in

major attacks by that time, and much more has been lost

since in DeFi hacks. As smart contracts have grown

more complex (particularly in DeFi), attackers have also

become more sophisticated, sometimes chaining

multiple exploits and interacting through flash loans to

exploit contract logic under unusual conditions.

Figure 3 illustrates an analysis of top smart contract

vulnerability categories by the total value of

cryptocurrency lost (data from 2024 incident reports). It

shows that access control vulnerabilities (e.g., leaked

private keys, faulty ownership checks) accounted for by

far the largest losses, indicating how critical proper

authentication is. Other categories like reentrancy and

arithmetic issues, while numerous in occurrences,

resulted in comparatively smaller aggregate losses. This

may be because after the DAO, developers became

more aware of reentrancy, whereas access control issues

can still happen through simple human error (and often

allow an attacker to take everything in one go).

Nonetheless, all these vulnerability types remain a

concern. The figure underscores that focusing only on

one type (like reentrancy) is not enough – security must

be comprehensive.

Figure 3: Major Smart Contract Vulnerability

Categories by Total Losses (2024).

To tackle security challenges, the community has

responded with a variety of approaches:

 Static Analysis and Security Tools: Numerous

tools exist to scan contract code for known

vulnerability patterns. Examples include

Oyente, Mythril, Slither, Securify, and many

more. These can automatically detect common

issues like reentrancy, unchecked send, integer

overflow (if using old Solidity), etc. A

comprehensive survey by Zheng et al. catalogs

many such tools and their coverage. However,

static analysis can yield false

positives/negatives, so results need expert

review.

 Formal Verification: Some critical contracts

(like those securing billions in value) employ

formal methods to prove certain properties. For

example, the Algorand and Tezos communities

have looked into formally verifying contract

logic. Ethereum’s Solidity language has seen

frameworks like Dafny or Why3 used to verify

algorithms off-chain, and projects like CertiK

and Runtime Verification have attempted to

apply model checking to smart contracts. One

challenge is the complexity – formal

verification is time-consuming and requires

expertise, and specifying the desired properties

is non-trivial. Nonetheless, research like Singh

et al. [3] emphasizes formalizing smart

contracts to address vulnerabilities. Verified

compilers and VMs (like the Flint language or

Scilla) are also avenues being explored.

 Security Design Patterns: The community has

distilled best practices into patterns: e.g.,

checks-effects-interactions, withdrawal pattern

(where users withdraw their funds instead of

contract pushing funds to them, to avoid

reentrancy issues), circuit breakers/pausable

contracts (where an owner can pause the

contract if something fishy is detected,

stopping further damage), and rate limiting

(limiting how much can be moved per

transaction/time to mitigate hacks). A

systematic review by Azimi et al. [7] analyzed

dozens of security-oriented design patterns and

found that current patterns only address a

fraction of known vulnerability types. This

suggests new patterns may be needed, but also

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received: 25 January 2023 Revised: 12 February 2023 Accepted: 30 March 2023

798
IJRITCC | March 2023, Available @ http://www.ijritcc.org

that developers should consistently apply the

known ones.

 Audit and Community Review: Professional

audits by security firms are now standard for

any significant smart contract deployment.

These audits combine manual code review

with tool-assisted analysis. While not

infallible, audits have caught many issues

before deployment. Moreover, some projects

run bug bounty programs to incentivize

independent researchers to find bugs (with

rewards often in tens or hundreds of thousands

of dollars, which is still cheaper than a

successful exploit). The open-source nature of

smart contracts enables community oversight –

when source code is public (as is

recommended), many eyes can examine it. For

instance, the discovery of the Parity bug and

others was often by community members or

researchers.

 Run-time Monitoring and Upgradability: Some

contracts build in monitoring – e.g., watching

for suspicious behavior (like an extremely

large withdrawal) and automatically pausing if

detected. Additionally, although immutability

is core to blockchain, many teams opt for

upgradeable contracts (via proxy pattern as

discussed) so that if a severe bug is found, they

can deploy a fix. This introduces trust trade-

offs (users must trust the dev team not to abuse

upgrades), but for certain contexts like DeFi

platforms, it is seen as a practical necessity, at

least initially. Over time, truly immutable

contracts (when well-audited) are preferable as

they remove even the owner/upgrade risk.

5.2 Scalability and Performance Limitations

Another major challenge for smart contracts (and

blockchains in general) is scalability. Public

blockchains have limited throughput and high latency

compared to centralized systems, which directly affects

smart contract applications. For example, Ethereum’s

base layer can process on the order of ~15 transactions

per second and each block comes roughly every 12–15

seconds. This is several orders of magnitude below

mainstream centralized payment networks or databases.

As a result, popular smart contract dApps often face

congestion: during the CryptoKitties game craze in

2017, Ethereum network became clogged, delaying

transactions and driving fees up. More recently, DeFi

booms and NFT drops have caused similar spikes [51].

The performance limitations manifest in several ways:

 Throughput (TPS): Limited transactions per second

means if an application requires a high volume of

interactions, it will either not be feasible or become

extremely costly. For instance, a decentralized

exchange processing thousands of trades per

second on-chain is impossible on current Ethereum.

Each trade is a transaction that competes with

others for inclusion in blocks. When Uniswap and

other DEXs became popular, Ethereum blocks

often filled up completely, leading to users having

to pay very high gas fees to prioritize their

transactions. This constrains the types of

applications – high-frequency trading, real-time

gaming, or IoT microtransactions are impractical

on current main chains.

 Gas and Computation Limits: There is a block gas

limit (Ethereum’s is around 30 million gas as of

2022 after the London hardfork adjustments). This

effectively caps how complex a single transaction

(or block full of transactions) can be. If a smart

contract function requires too much computation

(and thus gas), it cannot be executed because it

would exceed the block gas limit or be

prohibitively expensive. This forces developers to

break tasks into smaller parts or optimize heavily.

Some computations are outright infeasible on-chain

(like large-scale data analysis or machine learning

algorithms) unless done in a very limited way.

Scalability in terms of computation often requires

moving work off-chain (layer 2 solutions or hybrid

approaches).

 State Growth and I/O: As contracts create more

state (e.g., growing arrays, mappings with many

entries), reading or iterating through state can

become slow and costly. The gas cost for storage

access is high (to disincentivize bloat). If a contract

tries to loop through a large array in one

transaction, it can easily run out of gas. This has led

to design patterns like pagination (process data in

chunks over multiple calls) and avoiding

unbounded loops on-chain. Still, applications that

naturally have large data sets (social networks, etc.)

struggle to implement purely on-chain solutions.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received: 25 January 2023 Revised: 12 February 2023 Accepted: 30 March 2023

799
IJRITCC | March 2023, Available @ http://www.ijritcc.org

 Latency and User Experience: A typical transaction

might take on the order of tens of seconds to be

confirmed (depending on block times and how

much fee was paid). For many interactive

applications, this is a poor user experience. Imagine

a decentralized game where each move takes 15

seconds to finalize – it’s not appealing. While some

applications accept this (turn-based games, for

example, or financial trades where a slight delay is

tolerable), others need more real-time feedback.

Layer 2 solutions or off-chain techniques (like state

channels) are often used to give users instantaneous

responses while eventually settling on-chain.

5.3 Privacy and Confidentiality

Privacy is another significant challenge for smart

contracts. By design, public blockchains are transparent:

all transactions and contract state are visible to anyone.

While this transparency provides auditability, it is a

double-edged sword for applications that require

confidentiality. In many use cases (financial contracts,

voting systems, healthcare data management, etc.), the

details of contracts or user data should be kept private

among authorized parties. However, on Ethereum and

similar platforms, storing or computing on sensitive

data means that data is exposed to the world (unless

encrypted, and even then, operations on encrypted data

are limited).

Key privacy issues include:

 Contract State and Logic Disclosure: The code of a

smart contract is usually visible (especially if

verified on explorers). Even if not, the bytecode

can be analyzed. This means any secret business

logic or algorithm cannot rely on being hidden on-

chain. Moreover, all state variables are public (in

Ethereum you can query storage by address even if

not exposed by an ABI). For example, if a contract

is holding a secret bid in an auction, that value

could be read from the state (unless some

commitment scheme is used). In traditional

contexts, business logic or data might be

proprietary or confidential, but on-chain it’s not.

 Transaction Traceability: All interactions with

contracts are traceable back to user accounts

(pseudonymous addresses). Techniques exist to

cluster addresses or identify patterns, so user

behavior and relationships may be inferred. For

instance, in a supposedly anonymous voting

contract, one could potentially link votes to certain

users by analyzing timing or transaction patterns.

 Data Privacy: If a smart contract processes

personal data (like identity information, medical

records, etc.), putting that directly on a public

blockchain would violate privacy in a serious way.

Regulatory frameworks like GDPR are

fundamentally at odds with immutable, transparent

storage of personal data. Solutions often involve

storing only hashes on-chain and keeping actual

data off-chain with access control – but then the

trustless aspect is reduced.

5.4 Legal and Regulatory Challenges

Smart contracts straddle a line between code and law.

While the phrase "code is law" is popular in the

blockchain community, the reality is that legal systems

and governments may not recognize or accommodate

agreements purely encoded on blockchain without

additional legal framework. This creates a number of

challenges:

 Enforceability and Legal Recognition: Traditional

contracts are legal documents that can be enforced

in courts. A smart contract, however, is just code

executing automatically. If a dispute arises (for

example, if a bug causes an unfair outcome, or if

someone claims they agreed under duress or by

mistake), it's unclear how a court would treat the

situation. Some jurisdictions have passed laws

recognizing smart contracts (e.g., several US states

have legislation that says a contract cannot be

denied legal effect solely because it's a smart

contract). But the interpretation is tricky – the

contract terms might not be in natural language,

making it hard for a judge to interpret parties' intent

beyond "the code did X." There’s a gap between

the legally enforceable intent and the literal code

execution. In cases like the DAO hack, the hacker

infamously claimed that the smart contract code

permitted his actions (so it was "legal" by the

contract's terms), whereas others saw it as theft.

This philosophical conflict highlights the challenge:

do we consider the code as the final arbiter, or is

there an implicit higher-level agreement the code

was supposed to implement?

 Immutability vs. Legal Requirements: Laws like

GDPR give individuals rights to delete personal

data. But blockchain is immutable (and replicates

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received: 25 January 2023 Revised: 12 February 2023 Accepted: 30 March 2023

800
IJRITCC | March 2023, Available @ http://www.ijritcc.org

data globally). If personal data is in a smart

contract, you can't just delete it. This conflict

means either avoid putting such data on-chain or

use encryption and off-chain storage. Another

issue: if a court orders to stop or reverse a

transaction (say it was fraudulent), how can that be

done on a decentralized chain? It’s practically

irreversible unless the community does a hard fork

(which is extremely rare and contentious, as seen

after the DAO hack fork of Ethereum vs Ethereum

Classic divergence).

 Jurisdiction and Conflict of Laws: Smart contracts

often involve pseudonymous parties across

different jurisdictions. Which country's law applies

if something goes wrong? Even identifying the

parties can be hard if they only use addresses.

There may also be regulatory questions: for

example, are certain DeFi smart contracts

essentially unregulated securities exchanges?

Regulators like the SEC in the US have been

looking closely at decentralized platforms to see if

they violate financial laws. Operating purely via

code doesn't exempt from regulatory scope – those

who deploy or benefit from the contracts could be

targeted by enforcement.

 Embedding Legal Contracts into Code: One

approach to reconcile legal and smart contracts is to

have hybrid contracts: a natural language

agreement that references a smart contract or even

incorporates it by reference. For instance, an ISDA

(International Swaps and Derivatives Association)

contract could include a clause that parties will use

a certain smart contract for payments or

calculations. The legal contract would govern

overall, while the smart contract handles execution.

If something went wrong, the legal contract could

override (like an oracle failure or exploit could be

handled by an off-chain settlement determined by

an arbiter). Projects in the "smart legal contracts"

space (like Accord Project) explore such hybrids.

There’s also the concept of Ricardian contracts –

human-readable contracts that also have a unique

identifier and can be processed by software.

 Regulatory Compliance Built-in: Smart contracts

might need to incorporate rules to comply with law.

For example, a security token contract might

enforce that only KYC/whitelisted addresses can

hold the token, to comply with securities

regulations. Or a gambling dApp might geoblock

certain regions by checking IP (if accessed through

a front-end) or require a proof of location. These

measures, however, are often circumventable

(because on-chain, you can't truly enforce

geography, users can use VPNs or just interact

directly with contracts). Nonetheless, attempts are

made to integrate compliance (like adding

pause/blacklist functions for regulatory reasons –

e.g., USDC stablecoin’s contract has blacklisting

ability to comply with law enforcement requests).

 Taxation and Reporting: If smart contracts handle

economic activity, how to ensure proper reporting

for tax? The anonymity and disintermediation

complicates the typical channels regulators use

(banks, centralized exchanges). Some jurisdictions

are forcing intermediaries (like requiring exchanges

to KYC and report transactions). If a significant

portion of commerce happened via smart contracts,

governments might attempt to require that contracts

have built-in backdoors or reporting – which goes

against decentralization ethos and likely not

feasible technically unless they force it at

endpoints.

5.5 Other Challenges and Outlook

Beyond the major categories above, there are several

additional challenges and considerations with smart

contracts:

 Development Complexity and Skill Shortage:

Writing secure and efficient smart contracts is

difficult and requires specialized knowledge.

The pool of developers who deeply understand

blockchain programming (Solidity/Vyper,

EVM, etc.) and security is relatively small.

This skill shortage can lead to mistakes or slow

down adoption. As mentioned in Section 5.1,

even experienced developers have gotten

things wrong due to the unusual paradigms

(like all variables being public, transaction

ordering issues, etc.). The industry is

responding with better educational resources,

frameworks, and higher-level languages, but

the learning curve remains a challenge. The

rapid change in blockchain tech (with new

layer 2s, new programming models) also

means constant learning.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received: 25 January 2023 Revised: 12 February 2023 Accepted: 30 March 2023

801
IJRITCC | March 2023, Available @ http://www.ijritcc.org

 User Experience: Interacting with smart

contracts directly can be cumbersome for

users. Managing private keys, paying gas fees,

dealing with long addresses, etc., is not user-

friendly. Mistakes like sending funds to the

wrong contract or losing keys are unforgiving.

For mainstream adoption, much better UX

(likely abstracting the blockchain bits away) is

needed. Projects try to improve this via smart

contract wallets (with social recovery), user-

friendly ENS names instead of addresses,

meta-transactions (where someone else pays

gas for the user), etc. But striking a balance

between ease-of-use and decentralization is

tricky.

 Upgrade and Maintenance: As discussed,

smart contracts are hard to patch once

deployed. While proxy patterns allow

upgrades, they introduce trust in the

upgradability (the owner could deploy

malicious new logic). Some contracts adopt a

time-delay for upgrades (so users can see code

of new version and exit if they don’t like it).

Others avoid upgrades entirely for security

(e.g., Uniswap V2 is immutable – they just

deployed V3 as a whole new set of contracts

when improving). Maintenance and

governance of smart contracts (especially those

that are parts of protocols) remain challenging

– they operate 24/7 globally, and flaws can’t

be hidden behind a firewall or fixed with a

quick hotpatch without users noticing. This is

both a challenge and, in a way, a strength

(forces more rigorous testing, but still things

slip).

 Interoperability: There are many blockchain

platforms, and smart contracts on one typically

can’t directly interact with another. Cross-

chain bridges (often themselves implemented

via smart contracts + off-chain relays) exist,

but have been notorious targets for hacks

(many hundreds of millions stolen from

vulnerable bridges in 2021-2022). Achieving

secure interoperability is still a work in

progress. If a contract on Chain A could

reliably trigger one on Chain B through some

standardized protocol, it would open up

possibilities (like using Bitcoin within

Ethereum DeFi seamlessly, or doing atomic

swaps across chains). Projects like Cosmos and

Polkadot focus on interoperability but within

their own ecosystems. General interoperability

still faces technical and trust challenges.

 Energy and Environmental Concerns: This is

more about underlying consensus (proof-of-

work vs proof-of-stake) than smart contracts

per se, but in as much as Ethereum until 2022

was PoW, the usage of its smart contracts had

an indirect environmental cost. With the merge

to PoS, Ethereum’s energy usage dropped by

>99%. So, this challenge has been largely

addressed for Ethereum, though other PoW

chains with contracts (like Bitcoin eventually

with layers, or others) might still consider it. In

any event, energy usage is less of a narrative

issue for smart contracts now, but it was a

barrier for some adoption (certain enterprises

didn’t want to use PoW networks due to ESG

concerns).

 Ethical and Societal Implications: Code-driven

contracts raise interesting questions. For

example, if an algorithm auto-liquidates a

user's collateral at an unfavorable moment due

to a glitch, there's no empathy or discretionary

judgment that a human might exercise. Also,

who is accountable? The developer, the DAO

governing a protocol, or no one (since "code

did it")? This "responsibility gap" could be an

issue, especially with AI and smart contracts

possibly merging in the future (autonomous

agents transacting). Societally, what if people

start relying on unstoppable code for things

that maybe should have human oversight (like

inheritance distribution – if a bug gave all to

one child and none to another, would that

stand?).

6. Conclusion

Smart contracts represent a fundamental paradigm shift

toward trustless automation of agreements, enabling

direct transaction execution without intermediaries. This

review comprehensively explores the smart contract

landscape, detailing its fundamental architecture—

including its embedded role within blockchain systems

and components like the EVM—and its complete

working principles. The paper provides an in-depth

discussion of the myriad challenges facing widespread

adoption, which include dominant concerns like critical

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received: 25 January 2023 Revised: 12 February 2023 Accepted: 30 March 2023

802
IJRITCC | March 2023, Available @ http://www.ijritcc.org

security vulnerabilities (e.g., reentrancy exploits)

necessitating enhanced verification tools; scalability

limitations driving Layer 2 solutions; privacy issues

stemming from inherent blockchain transparency; and

pervasive legal and regulatory ambiguity concerning

enforceability. Despite these hurdles, we analyze the

accelerating integration of smart contracts across critical

domains like Decentralized Finance (DeFi) and supply

chain management, also noting the positive

computational impact on software engineering and

distributed computing. In conclusion, while smart

contracts offer a powerful tool for efficiency and

innovation, realizing their full potential depends on

successfully navigating these architectural, technical,

and social challenges through coordinated,

interdisciplinary collaboration.

References:

[1] Casino, F., Dasaklis, T. K., & Patsakis, C. (2019).

A Systematic Literature Review of Blockchain-

Based Applications: Current Status, Classification

and Open Issues. Telematics and Informatics, 36,

55–81. DOI: 10.1016/j.tele.2018.11.006.

[2] Harz, D., & Boman, M. (2019). The Road to Smart

Contracts Hell – Conceptual and Practical

Complexities of Ethereum’s Smart Contracts. IEEE

Security & Privacy, 17(2), 7–11. DOI:

10.1109/MSEC.2019.2893738.

[3] Singh, A., Parizi, R. M., Zhang, Q., Choo, K.-K.

R., & Dehghantanha, A. (2020). Blockchain Smart

Contracts Formalization: Approaches and

Challenges to Address Vulnerabilities. Computers

& Security, 88, 101654. DOI:

10.1016/j.cose.2019.101654.

[4] Khan, S. N., Loukil, F., Ghedira-Guegan, C.,

Benkhelifa, E., & Bani-Hani, A. (2021).

Blockchain Smart Contracts: Applications,

Challenges, and Future Trends. Peer-to-Peer

Networking and Applications, 14(5), 2901–2925.

DOI: 10.1007/s12083-021-01002-0.

[5] Di Angelo, M., & Salzer, G. (2019). A Survey of

Tools for Analyzing Ethereum Smart Contracts. In

Proceedings of the IEEE International Conference

on Decentralized Applications and Infrastructures

(DAPPCON) (pp. 69–78). DOI:

10.1109/DAPPCON.2019.00015.

[6] Durieux, T., Ferreira, J. F., Abreu, R., & Cruz, P.

(2020). Empirical Review of Automated Analysis

Tools on 47,587 Ethereum Smart Contracts. In

Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering (ICSE) (pp.

542–553). DOI: 10.1145/3377811.3380364.

[7] Azimi, S., Golzari, A., Ivaki, N., & Laranjeiro, N.

(2025). A Systematic Review on Smart Contracts

Security Design Patterns. Empirical Software

Engineering, 30(95). DOI: 10.1007/s10664-025-

10646-w.

[8] Garg, P., Dixit, A., & Sethi, P. (2022). Ml-fresh:

novel routing protocol in opportunistic networks

using machine learning. Computer Systems Science

& Engineering, Forthcoming. Tech Science Press.

[9] Yadav, P. S., Khan, S., Singh, Y. V., Garg, P., &

Singh, R. S. (2022). A Lightweight Deep Learning-

Based Approach for Jazz Music Generation in

MIDI Format. Computational Intelligence and

Neuroscience, 2022.

[10] Soni, E., Nagpal, A., Garg, P., & Pinheiro, P. R.

(2022). Assessment of Compressed and

Decompressed ECG Databases for Telecardiology

Applying a Convolution Neural

Network. Electronics, 11(17), 2708.

[11] Pustokhina, I. V., Pustokhin, D. A., Lydia, E. L.,

Garg, P., Kadian, A., & Shankar, K. (2021).

Hyperparameter search based convolution neural

network with Bi-LSTM model for intrusion

detection system in multimedia big data

environment. Multimedia Tools and Applications,

1-18.

[12] Khanna, A., Rani, P., Garg, P., Singh, P. K., &

Khamparia, A. (2021). An Enhanced Crow Search

Inspired Feature Selection Technique for Intrusion

Detection Based Wireless Network

System. Wireless Personal Communications, 1-18.

[13] Garg, P., Dixit, A., Sethi, P., & Pinheiro, P. R.

(2020). Impact of node density on the qos

parameters of routing protocols in opportunistic

networks for smart spaces. Mobile Information

Systems, 2020.

[14] Beniwal, S., Saini, U., Garg, P., & Joon, R. K.

(2021). Improving performance during camera

surveillance by integration of edge detection in IoT

system. International Journal of E-Health and

Medical Communications (IJEHMC), 12(5), 84-96.

[15] Garg, P., Dixit, A., & Sethi, P. (2019). Wireless

sensor networks: an insight review. International

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received: 25 January 2023 Revised: 12 February 2023 Accepted: 30 March 2023

803
IJRITCC | March 2023, Available @ http://www.ijritcc.org

Journal of Advanced Science and

Technology, 28(15), 612-627.

[16] Sharma, N., & Garg, P. (2022). Ant colony based

optimization model for QoS-Based task scheduling

in cloud computing environment. Measurement:

Sensors, 100531.

[17] Kumar, P., Kumar, R., & Garg, P. (2020). Hybrid

Crowd Cloud Routing Protocol For Wireless

Sensor Networks.

[18] Dixit, A., Garg, P., Sethi, P., & Singh, Y. (2020,

April). TVCCCS: Television Viewer’s Channel

Cost Calculation System On Per Second Usage.

In IOP Conference Series: Materials Science and

Engineering (Vol. 804, No. 1, p. 012046). IOP

Publishing.

[19] Dixit, A., Garg, P., Sethi, P., & Singh, Y. (2020,

April). TVCCCS: Television Viewer’s Channel

Cost Calculation System On Per Second Usage.

In IOP Conference Series: Materials Science and

Engineering (Vol. 804, No. 1, p. 012046). IOP

Publishing.

[20] Sethi, P., Garg, P., Dixit, A., & Singh, Y. (2020,

April). Smart number cruncher–a voice based

calculator. In IOP Conference Series: Materials

Science and Engineering (Vol. 804, No. 1, p.

012041). IOP Publishing.

[21] S. Rai, V. Choubey, Suryansh and P. Garg, "A

Systematic Review of Encryption and Keylogging

for Computer System Security," 2022 Fifth

International Conference on Computational

Intelligence and Communication Technologies

(CCICT), 2022, pp. 157-163, doi:

10.1109/CCiCT56684.2022.00039.

[22] L. Saraswat, L. Mohanty, P. Garg and S. Lamba,

"Plant Disease Identification Using Plant Images,"

2022 Fifth International Conference on

Computational Intelligence and Communication

Technologies (CCICT), 2022, pp. 79-82, doi:

10.1109/CCiCT56684.2022.00026.

[23] L. Mohanty, L. Saraswat, P. Garg and S. Lamba,

"Recommender Systems in E-Commerce," 2022

Fifth International Conference on Computational

Intelligence and Communication Technologies

(CCICT), 2022, pp. 114-119, doi:

10.1109/CCiCT56684.2022.00032.

[24] C. Maggo and P. Garg, "From linguistic features to

their extractions: Understanding the semantics of a

concept," 2022 Fifth International Conference on

Computational Intelligence and Communication

Technologies (CCICT), 2022, pp. 427-431, doi:

10.1109/CCiCT56684.2022.00082.

[25] N. Puri, P. Saggar, A. Kaur and P. Garg,

"Application of ensemble Machine Learning

models for phishing detection on web networks,"

2022 Fifth International Conference on

Computational Intelligence and Communication

Technologies (CCICT), 2022, pp. 296-303, doi:

10.1109/CCiCT56684.2022.00062.

[26] R. Sharma, S. Gupta and P. Garg, "Model for

Predicting Cardiac Health using Deep Learning

Classifier," 2022 Fifth International Conference on

Computational Intelligence and Communication

Technologies (CCICT), 2022, pp. 25-30, doi:

10.1109/CCiCT56684.2022.00017.

[27] Varshney, S. Lamba and P. Garg, "A

Comprehensive Survey on Event Analysis Using

Deep Learning," 2022 Fifth International

Conference on Computational Intelligence and

Communication Technologies (CCICT), 2022, pp.

146-150, doi: 10.1109/CCiCT56684.2022.00037.

[28] Dixit, A., Sethi, P., Garg, P., & Pruthi, J. (2022,

December). Speech Difficulties and Clarification:

A Systematic Review. In 2022 11th International

Conference on System Modeling & Advancement in

Research Trends (SMART) (pp. 52-56). IEEE.

[29] Chaudhary, A., & Garg, P. (2014). Detecting and

diagnosing a disease by patient monitoring

system. International Journal of Mechanical

Engineering And Information Technology, 2(6),

493-499.

[30] Malik, K., Raheja, N., & Garg, P. (2011). Enhanced

FP-growth algorithm. International Journal of

Computational Engineering and Management, 12,

54-56.

[31] Garg, P., Dixit, A., & Sethi, P. (2021, May). Link

Prediction Techniques for Opportunistic Networks

using Machine Learning. In Proceedings of the

International Conference on Innovative Computing

& Communication (ICICC).

[32] Garg, P., Dixit, A., & Sethi, P. (2021, April).

Opportunistic networks: Protocols, applications &

simulation trends. In Proceedings of the

International Conference on Innovative Computing

& Communication (ICICC).

[33] Garg, P., Dixit, A., & Sethi, P. (2021). Performance

comparison of fresh and spray & wait protocol

through one simulator. IT in Industry, 9(2).

[34] Malik, M., Singh, Y., Garg, P., & Gupta, S. (2020).

Deep Learning in Healthcare system. International

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received: 25 January 2023 Revised: 12 February 2023 Accepted: 30 March 2023

804
IJRITCC | March 2023, Available @ http://www.ijritcc.org

Journal of Grid and Distributed Computing, 13(2),

469-468.

[35] Gupta, M., Garg, P., Gupta, S., & Joon, R. (2020).

A Novel Approach for Malicious Node Detection

in Cluster-Head Gateway Switching Routing in

Mobile Ad Hoc Networks. International Journal of

Future Generation Communication and

Networking, 13(4), 99-111.

[36] Gupta, A., Garg, P., & Sonal, Y. S. (2020). Edge

Detection Based 3D Biometric System for Security

of Web-Based Payment and Task Management

Application. International Journal of Grid and

Distributed Computing, 13(1), 2064-2076.

[37] Kumar, P., Kumar, R., & Garg, P. (2020). Hybrid

Crowd Cloud Routing Protocol For Wireless

Sensor Networks.

[38] Garg, P., & Raman, P. K. Broadcasting Protocol &

Routing Characteristics With Wireless ad-hoc

networks.

[39] Garg, P., Arora, N., & Malik, T. Capacity

Improvement of WI-MAX In presence of Different

Codes WI-MAX: Speed & Scope of future.

[40] Garg, P., Saroha, K., & Lochab, R. (2011). Review

of wireless sensor networks-architecture and

applications. IJCSMS International Journal of

Computer Science & Management Studies, 11(01),

2231-5268.

[41] Yadav, S., &Garg, P. Development of a New

Secure Algorithm for Encryption and Decryption of

Images.

[42] Dixit, A., Sethi, P., & Garg, P. (2022). Rakshak: A

Child Identification Software for Recognizing

Missing Children Using Machine Learning-Based

Speech Clarification. International Journal of

Knowledge-Based Organizations (IJKBO), 12(3),

1-15.

[43] Shukla, N., Garg, P., & Singh, M. (2022). MANET

Proactive and Reactive Routing Protocols: A

Comparison Study. International Journal of

Knowledge-Based Organizations (IJKBO), 12(3),

1-14.

[44] Chauhan, S., Singh, M., & Garg, P. (2021). Rapid

Forecasting of Pandemic Outbreak Using Machine

Learning. Enabling Healthcare 4.0 for Pandemics:

A Roadmap Using AI, Machine Learning, IoT and

Cognitive Technologies, 59-73.

[45] Gupta, S., & Garg, P. (2021). An insight review on

multimedia forensics technology. Cyber Crime and

Forensic Computing: Modern Principles,

Practices, and Algorithms, 11, 27.

[46] Shrivastava, P., Agarwal, P., Sharma, K., & Garg,

P. (2021). Data leakage detection in Wi-Fi

networks. Cyber Crime and Forensic Computing:

Modern Principles, Practices, and Algorithms, 11,

215.

[47] Meenakshi, P. G., & Shrivastava, P. (2021).

Machine learning for mobile malware

analysis. Cyber Crime and Forensic Computing:

Modern Principles, Practices, and Algorithms, 11,

151.

[48] Garg, P., Pranav, S., & Prerna, A. (2021). Green

Internet of Things (G-IoT): A Solution for

Sustainable Technological Development. In Green

Internet of Things for Smart Cities (pp. 23-46).

CRC Press.

[49] Nanwal, J., Garg, P., Sethi, P., & Dixit, A. (2021).

Green IoT and Big Data: Succeeding towards

Building Smart Cities. In Green Internet of Things

for Smart Cities (pp. 83-98). CRC Press.

[50] Gupta, M., Garg, P., & Agarwal, P. (2021). Ant

Colony Optimization Technique in Soft

Computational Data Research for NP-Hard

Problems. In Artificial Intelligence for a

Sustainable Industry 4.0 (pp. 197-211). Springer,

Cham.

[51] Magoo, C., & Garg, P. (2021). Machine Learning

Adversarial Attacks: A Survey Beyond. Machine

Learning Techniques and Analytics for Cloud

Security, 271-291.

http://www.ijritcc.org/

	Ashlesha Gupta
	Abstract
	1. Introduction
	2. Smart Contract Fundamentals
	2.2 Relationship with Blockchain Architecture
	3. Architecture of Smart Contracts
	3.1 On-Chain Structure and Execution Environment
	3.1.1 Ethereum Virtual Machine (EVM) Example
	3.1.2 Alternative Architectures
	3.2 Off-Chain Interactions and Oracles
	4. Working Principles of Smart Contracts
	4.1 Life Cycle of a Smart Contract
	4.1.2 Invocation and Execution
	4.1.3 Termination and Upgrade
	4.2 Transaction Processing and Gas Management
	4.3 Interaction with External Systems
	5. Challenges and Issues of Smart Contracts
	5.1 Security Vulnerabilities and Reliability
	5.2 Scalability and Performance Limitations
	5.3 Privacy and Confidentiality
	5.4 Legal and Regulatory Challenges
	5.5 Other Challenges and Outlook
	6. Conclusion
	References:

