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Abstract 

Smart contracts are self-executing programs running on blockchain platforms that automatically enforce the terms of an 

agreement without the need for intermediaries. They promise benefits such as trustless execution, transparency, and 

efficiency, and have enabled a new wave of decentralized applications in finance, supply chain, and beyond. This 

research work provides a comprehensive overview of smart contract architecture, explains their working principles, and 

discusses the key challenges and issues they face from a computing perspective. We outline the theoretical foundations of 

smart contracts and how they integrate with blockchain architecture. We then detail the life cycle and operation of smart 

contracts, from deployment to execution, highlighting concepts like the Ethereum Virtual Machine (EVM) and 

transaction gas costs. Furthermore, we examine critical challenges including security vulnerabilities, scalability limits, 

privacy concerns, and legal/regulatory hurdles. Recent research efforts to improve smart contract reliability – such as 

formal verification, security analysis tools, and design best practices – are also reviewed. The paper is organized into 

major sections covering fundamentals, architecture, working principles, challenges, and practical considerations. Our 

discussion aims to inform computer science graduates and practitioners about both the promises and the pitfalls of smart 

contracts, providing a balanced understanding of their technical underpinnings and the ongoing research directions to 

address their limitations. 

Keywords: Smart Contracts, Blockchain, Ethereum, Decentralized Applications, Security, Scalability, Smart Contract 

Architecture, Privacy, Trustless Execution 

1. Introduction 

Smart contracts are a significant innovation in 

blockchain technology, often described as “self- 

executing programs that facilitate trustless transactions 

between multiple parties”. In essence, a smart contract 

is a piece of code deployed on a blockchain that 

automatically enforces the terms of an agreement when 

predetermined conditions are met. All parties have a 

shared, tamper-proof view of the contract’s state, 

eliminating the need for a trusted third-party 

intermediary. This concept was first proposed in the 

1990s by Nick Szabo, who envisioned digital contracts 

that could be executed by code. However, it was the 

advent of modern blockchains that made smart contracts 

practically realizable. In particular, the launch of 

Ethereum in 2015 introduced a programmable 

blockchain supporting Turing-complete smart contracts, 

marking the transition of blockchain technology into an 

era of “programmable finance” [1][2]. 

Blockchain platforms like Ethereum, Hyperledger 

Fabric, and others provide the infrastructure for smart 

contracts by ensuring a distributed ledger and consensus 

mechanism to record contract execution results. Unlike 

Bitcoin’s limited scripting, these platforms allow 

complex, user-defined logic in contracts [3]. Figure 1 

conceptually illustrates how two parties can interact via 

a blockchain-based smart contract without mutual trust: 

each party submits transactions to the contract, and the 

blockchain network executes the contract code 

deterministically on all nodes, updating the ledger state 

when conditions are fulfilled. This decentralized 

execution guarantees that the outcome is transparent 

and agreed upon by all blockchain nodes [4][5]. 
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Figure 1: Conceptual diagram of a blockchain smart 

contract between two participants. 

In Figure 1, each participant (A and B) interacts with a 

smart contract deployed on a blockchain network. The 

contract’s code (stored on the distributed ledger) 

automatically enforces the agreed rules. Both parties 

submit transactions to invoke contract functions, and the 

network’s nodes execute the contract in a trustless 

manner. The blockchain ledger (illustrated by the chain 

of blocks) records all contract states and transactions, 

ensuring tamper-proof and transparent outcomes [6][7]. 

Smart contracts offer several theoretical and practical 

benefits. They enable trustless execution of agreements 

– all parties can trust the code and the underlying 

cryptographic consensus of the blockchain rather than 

trusting each other or an intermediary. This can reduce 

transaction risk and costs, as contracts can transfer 

assets or verify conditions automatically without escrow 

agents or legal oversight, thereby saving on 

administrative fees. Smart contracts also improve 

process efficiency, executing transactions in near real- 

time once conditions are satisfied, which minimizes 

delays compared to traditional contract enforcement. 

For example, in supply chain payments, a smart contract 

can release funds instantly when a delivery is 

confirmed, instead of waiting for manual processing. 

Additionally, the results are transparent and verifiable – 

all contract interactions are recorded on the blockchain, 

creating an audit trail that enhances accountability 

[8][9][10]. 

Given these advantages, smart contracts have rapidly 

gained adoption across various domains. Ethereum’s 

ecosystem, in particular, has seen an explosion of 

decentralized applications (DApps) in areas such as 

decentralized finance (DeFi), games, digital collectibles, 

and more. By 2022, millions of contracts had been 

deployed on Ethereum and other platforms, signifying 

the growing reliance on code-based agreements. Figure 

2 shows the cumulative number of smart contracts 

deployed on Ethereum over time, illustrating an 

exponential growth trend. The count grew from 

essentially zero in 2015 to tens of millions by 2022, 

demonstrating how this technology moved from concept 

to widespread implementation in just a few years. This 

growth is fueled by the thriving developer community 

and the compelling use-cases that smart contracts 

enable – from automated financial instruments (e.g. 

lending, trading, insurance) to supply chain tracking and 

digital identity management [11][12][13]. 
 

Figure 2: Cumulative Contracts Deployed Over Time 

on Ethereum. 

2. Smart Contract Fundamentals 

2.1 Concept and Characteristics of Smart Contracts 

In simple terms, a smart contract is a program that 

automatically executes specific actions when predefined 

conditions are satisfied, with the outcomes enforced by 

code. The core idea blends principles from computer 

science and law: the contract’s “clauses” are written in 

code, and once deployed, the contract will self-enforce 

those clauses exactly as coded, without discretion. 

Because smart contracts run on a blockchain, they 

inherit key properties from the underlying distributed 

ledger: 

 Immutability: Once a smart contract is 

deployed to the blockchain, its code typically 

cannot be altered. The code and state are 

tamper-proof due to the cryptographic integrity 

of the ledger. This gives participants 

confidence that the contract’s rules won’t 

change arbitrarily. However, immutability also 

means bugs or inefficiencies in code are 
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difficult to fix, presenting a challenge for long- 

lived contracts [15]. 

 Distributed Consensus: Smart contract 

execution results are agreed upon by all or a 

subset of blockchain nodes (via the consensus 

protocol). Every validating node runs the 

contract code on their local copy of the 

blockchain state, ensuring that outcomes are 

replicated and verified across the network. 

This removes reliance on a single authority – 

the network collectively guarantees correct 

execution as long as the consensus mechanism 

and majority of nodes are honest [16]. 

 Deterministic Execution: To achieve 

consensus, smart contract functions must 

produce the same result on every node given 

the same state and input transaction. Contracts 

are therefore executed in a controlled, 

deterministic environment (such as Ethereum’s 

virtual machine). Non-deterministic operations 

(e.g., relying on wall-clock time or random 

numbers without a protocol) are avoided or 

explicitly handled so that all nodes stay in sync 

[17]. 

 Transparency: On public blockchains, smart 

contract code and its execution history are 

visible to all participants. All transactions 

invoking the contract, and any state changes 

(logs, events, etc.), are recorded on-chain. This 

transparency can increase trust and auditability 

of processes but also exposes sensitive logic 

and data, which may conflict with privacy 

requirements. Some platforms and contract 

designs address this via cryptographic 

techniques [18][19]. 

 Self-Enforcement: Once deployed, a smart 

contract will automatically execute when 

triggered by an appropriate transaction or 

event, and it will enforce the outcome exactly 

as encoded. This means that if the contract 

code says a payment will be made on a certain 

date upon condition X, then as soon as X is 

verified, the payment will occur – there is no 

need (and often no ability) for human 

intervention to stop it. This self-enforcing 

nature can eliminate ambiguity and the need 

for litigation in contract execution. However, it 

also means that errors or unforeseen scenarios 

can lead to undesirable outcomes that are hard 

to reverse (unlike a traditional legal contract 

which might be renegotiated or not enforced 

by mutual consent) [20][21]. 

The combination of these characteristics enables 

trustless interactions: participants can trust the 

contract’s code and the blockchain’s enforcement rather 

than each other. For example, consider an insurance 

payout contract for crop failure. The farmer and insurer 

encode the logic (if rainfall is below a threshold by date 

Y, pay out $Z to the farmer) into a smart contract. 

Neither party can cheat – the contract will automatically 

check an authoritative weather data feed and execute the 

payment if conditions are met. The farmer doesn’t need 

to trust the insurer to willingly pay, and the insurer 

doesn’t fear fraudulent claims; enforcement is automatic 

and objective [22]. 

2.2 Relationship with Blockchain Architecture 

Smart contracts do not exist in isolation – they are an 

application-layer construct that relies on the underlying 

blockchain architecture for security and execution. A 

blockchain system can be viewed in a layered 

architecture, typically including layers such as the 

network layer, consensus layer, and an application layer 

where smart contracts operate. Figure 1 already showed 

the abstract role of contracts on a blockchain. Here we 

elaborate how contracts fit into blockchain architecture 

[23]: 

 Blockchain Nodes and Virtual Machine: 

Each full node in the blockchain network 

maintains a copy of the ledger and executes 

smart contract code within a virtual machine 

(VM) environment. For instance, Ethereum 

introduced the Ethereum Virtual Machine 

(EVM), which is a runtime environment that 

executes contract bytecode in a sandboxed 

manner. Every node runs an EVM 

implementation to perform contract 

computations in lockstep. The VM ensures 

determinism and isolates the contract 

execution from directly affecting the node’s 

operating system. It also implements a gas 

mechanism to meter resource usage [24]. 

 Transactions and State: A smart contract is 

deployed via a special transaction that 

publishes the contract’s code to the blockchain, 

assigning it a unique address. Thereafter, users 
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interact with the contract by sending 

transactions to that address, which trigger 

specific functions in the code. These 

transactions, like any blockchain transaction, 

are propagated through the peer-to-peer 

network and included in blocks by 

miners/validators. When a block containing a 

contract call is confirmed, each node executes 

the contract code for that call and updates the 

contract’s state accordingly. The blockchain’s 

state (which, in Ethereum, includes account 

balances and contract storage) thus evolves as 

contract functions execute [25]. 

 Data Storage: Smart contracts can maintain 

persistent state in the form of key-value 

storage on the blockchain (e.g., Ethereum’s 

contracts have a Merkle-patricia storage trie). 

This is akin to a database that the contract can 

read and write. For example, a token contract 

stores balances for each account in its state 

variables. This on-chain state is replicated and 

stored by all full nodes, and updates to it are 

only made through the execution of 

transactions in blocks. The state storage is part 

of the blockchain’s overall ledger and benefits 

from the same tamper-resistance [26]. 

Table 1: Comparison of Major Blockchain Platforms 

for Smart Contracts 

 Six-Layer Perspective: Some research works 

describe blockchain-enabled smart contracts 

using a multi-layer architecture model. For 

instance, Wang et al. propose a six-layer 

architecture: (1) data layer – which includes 

the  distributed  ledger  and  cryptographic 

structures, (2) network layer – handling P2P 

communication among nodes, (3) consensus 

layer – ensuring agreement on ledger state, (4) 

incentive layer – e.g., mining rewards (mostly 

relevant for public chains), (5) contract layer – 

where smart contract logic resides, and (6) 

application layer – end-user applications that 

interact with contracts. In this view, the smart 

contract layer is built atop the lower layers 

(data, network, consensus) that provide 

security and reliability. The application layer 

then uses contracts to deliver functionality to 

users (such as a decentralized voting system or 

an automated supply chain payment system) 

[27]. 
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Table 1 depicts the Blockchain platforms for smart 

contracts differ in architecture. Ethereum pioneered 

public smart contracts with a fully decentralized but 

relatively slower model, using the EVM to run Solidity 

code on every node. Hyperledger Fabric shows an 

alternative for permissioned networks, foregoing a 

built-in cryptocurrency and allowing higher 

performance via restricted participation and a modular 

execution model. Solana represents a newer public 

chain emphasizing scalability, using a unique consensus 

and VM. These differences affect how smart contracts 

are written (e.g., language), how they execute and scale, 

and suitable use cases. All these platforms, however, 

share the common idea of code-based contract logic that 

is enforced by the blockchain’s consensus across 

participants [31]. 

3. Architecture of Smart Contracts 

While Section 2 introduced the foundational concepts, 

here we delve deeper into the architecture and 

components that make up a smart contract system. We 

use the term architecture to mean the structural design 

of the smart contract environment – including how 

contracts are represented on the blockchain, how they 

interface with the execution engine, and how different 

blockchain designs structure smart contract support 

[32][33]. 

3.1 On-Chain Structure and Execution Environment 

A deployed smart contract on Ethereum (or similar 

platforms) is identified by an address – effectively, a 

unique location in the blockchain’s state space. At that 

address, the blockchain stores the contract’s compiled 

bytecode and its persistent storage state (if any). The 

contract’s functions can be invoked by sending a 

transaction to its address with an appropriate function 

selector and parameters (in Ethereum’s ABI encoding). 

When such a transaction is processed by a miner or 

validator, it triggers the execution of the contract’s code 

in the blockchain’s execution environment [34]. 

For Ethereum and many other platforms, this 

environment is the Ethereum Virtual Machine (EVM). 

The EVM is a stack-based virtual machine that 

processes the contract’s bytecode instruction by 

instruction. It has access to the transaction’s input data, 

the contract’s storage, and some contextual information 

(block timestamp, sender address, etc.). Importantly, the 

EVM is designed to be completely deterministic and 

sandboxed. It cannot perform certain operations like 

generating random numbers (without a predefined 

source) or making network calls – this ensures that 

contract execution yields the same result on all nodes 

and does not depend on off-chain data unless provided 

through transactions or predefined system calls [35]. 

3.1.1 Ethereum Virtual Machine (EVM) Example 

To make the discussion concrete, consider the Ethereum 

Virtual Machine. Ethereum’s design was the first to 

integrate a general-purpose VM into a blockchain. The 

EVM is a stack machine with a word size of 256 bits 

(convenient for cryptographic operations). It has a few 

areas of memory: stack (for operations), memory 

(volatile byte-array for each execution, not persisted), 

and storage (persistent key-value store, persisted 

between calls). When a contract function is called, the 

EVM initializes with the function’s input data and the 

contract’s storage (state). As it runs the bytecode, it 

might push and pop values from the stack, do 

arithmetic, load from storage, etc., according to the 

instructions [36][37]. 

For example, a simple Solidity function like function 

add(uint x, uint y) public returns(uint){ return x+y; } 

would compile to EVM bytecode that (in pseudocode) 

does: push x, push y, ADD, and then return the result. 

The EVM would consume gas for the addition and the 

return. If this function is called via a transaction, the 

resulting state (just the return value in this case, which 

might be logged) is recorded in the transaction receipt. 

More complex functions that modify state would 

produce opcodes like SSTORE (to store a value in 

persistent storage) which have higher gas costs [38]. 
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3.1.2 Alternative Architectures 

Not all smart contract platforms follow Ethereum’s 

account-based model with a single global VM. For 

instance, UTXO-based smart contracts: Some 

blockchains (like Bitcoin and earlier versions of 

Cardano) use a UTXO model where contracts are 

realized through locking/unlocking scripts on UTXOs 

(unspent transaction outputs). Bitcoin’s Script is 

intentionally not Turing-complete and is used for very 

specific contracts (multi-signature, timelocks, etc.). 

Newer developments like BitML and Miniscript attempt 

to extend Bitcoin’s contract expressiveness, but they are 

outside the scope of general Turing-complete contracts 

[39]. 

Another design is layer-2 contracts: protocols built atop 

a base blockchain to extend capabilities, such as state 

channels and sidechains. These are not exactly smart 

contract architectures themselves, but they influence 

how contracts are designed (e.g., a state channel might 

use a smart contract on layer1 as an adjudicator but 

execute many transactions off-chain for scalability) 

[40]. 

3.2 Off-Chain Interactions and Oracles 

A limitation of smart contracts is that blockchains are 

closed environments – they do not inherently have 

access to external, real-world information (often termed 

the “oracle problem”). Most smart contracts need some 

connection to off-chain data to be truly useful (for 

example, a crop insurance contract needs weather data, 

a betting contract needs the outcome of a sports match, 

etc.). The architecture of a complete smart contract 

solution often includes oracle mechanisms to bridge on- 

chain and off-chain worlds [41]. 

An oracle is a trusted data feed or mechanism by which 

off-chain data can be fed into a contract. 

Architecturally, this might be implemented as a special 

type of transaction sent by designated oracle providers 

(e.g., an off-chain service signs a message with the 

temperature reading and submits it to the contract). The 

contract then parses and uses that data. Many oracle 

systems exist: some are centralized services, others are 

decentralized networks of feeders (like Chainlink or 

Band Protocol) that use their own consensus or 

economic incentives to provide reliable data. From the 

contract’s perspective, the oracle is simply another 

caller providing input [42]. 

4. Working Principles of Smart Contracts 

Smart contracts follow a well-defined life cycle: 

creation (deployment), operation (function calls and 

state transitions), and potentially termination. In this 

section, we break down the working principles into 

those stages and explain how a contract progresses from 

code to an active agreement and what happens during 

execution. We also cover important runtime concepts 

such as transaction processing, gas management, and 

how contracts handle execution flow and errors [43]. 

4.1 Life Cycle of a Smart Contract 

4.1.1 Creation and Deployment Phase 

The life of a smart contract begins with its deployment 

to the blockchain. A contract is typically written in a 

high-level language (e.g., Solidity), then compiled to 

the platform’s bytecode. To deploy, a user (often the 

developer or an entity initiating the contract) sends a 

contract creation transaction. In Ethereum, this is a 

transaction with no to address, containing the contract’s 

bytecode in the data field. The transaction must also 

include enough gas to cover the deployment cost (which 

depends on bytecode size and any constructor 

execution) [44][45]. 

When this creation transaction is processed by 

miners/validators, the bytecode is executed once – 

running the contract’s constructor (initialization code). 

The constructor can set up initial state or require certain 

conditions. Its execution produces the final runtime 

bytecode that will be stored (Solidity concatenates 

constructor code and runtime code; the constructor’s 

output is the runtime code). If the creation succeeds 

(doesn’t run out of gas and doesn’t revert), a new 

contract address is generated (usually derived from the 

creator’s address and their nonce in Ethereum) and the 

runtime bytecode is stored at that address. The contract 

now exists on-chain, and its initial state is set (storage 

variables initialized) [46]. 

4.1.2 Invocation and Execution 

After deployment, the contract enters the operation 

phase where it can be invoked repeatedly over its 

lifetime. Users (or other contracts) call the contract by 

issuing transactions. Each call is handled as a 

transaction that modifies state or produces some output, 

under the rules of the blockchain. 
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A contract invocation transaction will include: the 

contract’s address as the to, the function selector and 

parameters encoded in the data payload (for 

Ethereum/ABI), and some gas and fee like any 

transaction. When a miner/validator includes this 

transaction in a block, all nodes execute the contract’s 

code to process the call. 

During execution, the contract may: perform 

calculations, read or write its persistent storage, emit 

events (logs), send cryptocurrency (e.g., Ether) to other 

addresses, or call other contracts. All of these actions 

happen within the scope of the transaction. A key 

principle is atomicity: if any part of the execution fails 

(e.g., an assertion in code fails or a sub-call runs out of 

gas), the entire transaction is typically reverted, 

meaning the blockchain state is unchanged except for 

the used gas (which is still consumed). This is akin to a 

database transaction rollback on error. Atomicity 

greatly simplifies reasoning – a contract can make 

multiple updates and either all happen or none do, so 

there are no partial side-effects on-chain from a failed 

call [47]. 

4.1.3 Termination and Upgrade 

Smart contracts are usually designed to live indefinitely 

on the blockchain. However, there are mechanisms to 

terminate a contract if needed. In Ethereum, a contract’s 

code can include a SELFDESTRUCT (previously 

SUICIDE) opcode. If executed, this opcode removes the 

contract’s bytecode from the state (making the address 

no longer have associated code) and sends any 

remaining Ether in the contract to a designated target 

address. This effectively kills the contract – it cannot be 

called thereafter (calls will hit an empty account). 

Typically, a contract might include a self-destruct 

function guarded by some condition (e.g., only owner 

can trigger it, or it can trigger after a certain date). Self- 

destruction can be used to reclaim storage (refunding 

some gas to the destructor as incentive) or to migrate to 

a new contract version. 

4.2 Transaction Processing and Gas Management 

The operation of smart contracts is tightly linked to how 

transactions are processed on the blockchain. Each 

contract call is encapsulated in a transaction, which 

must be mined/validated in a block. The order of 

transactions is significant – if two users try to call the 

same contract, the one whose transaction is mined first 

will execute first and potentially affect the contract’s 

state before the second executes. Miners have some 

control over ordering (they could choose transactions, 

and on Ethereum users can pay higher gas fees to 

prioritize their transactions). This has led to phenomena 

like transaction front-running, where an observer might 

try to preempt someone else’s contract call by getting 

their transaction mined earlier (a concern especially in 

DeFi contracts). Contract designers sometimes 

incorporate mechanisms (like commit-reveal schemes 

or fairness protocols) to mitigate the impact of ordering 

on sensitive operations. 

Gas management is a fundamental aspect of how smart 

contracts work. As mentioned, each transaction 

specifies a gas limit and gas price. The EVM (or other 

VM) deducts gas for each operation. If the gas runs out, 

the execution is reverted (the state is rolled back), but 

the gas paid is still consumed from the sender’s account 

(to compensate miners for the work done up to failure). 

This means if a contract enters an infinite loop or a very 

heavy computation without enough gas, it will simply 

fail and waste gas. Thus, contracts must be designed to 

be gas-efficient and predictable in their gas usage, 

especially because on public chains gas costs equate to 

real money [48]. 

4.3 Interaction with External Systems 

As hinted in the architecture discussion, smart contracts 

often need to interact with systems or data outside the 

blockchain, which poses some unique working 

principles: 

Oracles: When a contract requires off-chain data, it 

typically follows a pattern: one transaction is made to 

request the data (perhaps calling a function that emits an 

event or sets a state indicating a request), then an off- 

chain oracle observes this and in a subsequent 

transaction provides the data by calling a callback 

function. During the period between request and 

response, the contract might be in a waiting state. For 

instance, a contract might have a function 

requestPrice(asset) and an oracle calls back 

fulfillPrice(asset, price) to supply the info. The working 

principle here is asynchronous operation – the contract 

must handle that the response comes later (maybe 

enforce that it comes before a timeout, etc.). This 

asynchronous, multi-transaction workflow is different 

from regular function calls and requires careful design 

to avoid inconsistencies (e.g., what if the oracle never 

responds? Many contracts include a fallback or the 

ability to cancel after some time). 
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Events and Off-chain Monitoring: A lot of the “action” 

in DApp user experience happens off-chain by 

monitoring on-chain events. For example, a 

decentralized exchange contract might emit an event 

when an order is filled. Off-chain services (like the 

front-end or analytics) catch that to update user 

interfaces. From a working perspective, contracts 

should emit meaningful events as part of their execution 

so that external systems can react. This does not affect 

the contract’s own logic but is crucial for the ecosystem 

around it. 

Permission and Roles: Smart contract operation often 

involves different roles (owner, participants, or even 

automated bots). Many contracts implement an owner 

role (using patterns like Ownable in OpenZeppelin) that 

allows certain privileged operations (like pausing the 

contract, upgrading logic via proxy, or triggering 

emergency withdrawals). These are essentially 

backdoors built for practicality and security, and they 

must be transparently documented since they partially 

break the trustless ideal (users need to trust that owners 

won’t abuse privileges). For instance, a contract might 

have a pause() function callable only by owner to halt 

contract activity if a vulnerability is discovered – this 

introduces a centralized element for safety [49]. 

Execution Order and Reentrancy: One subtle working 

principle in Ethereum is that within a single transaction, 

the order of execution is depth-first: if Contract A calls 

Contract B, which calls Contract C, the EVM will 

execute C then return to B then back to A. All of this is 

still one transaction. A notorious issue is reentrancy, 

where Contract C (or B) might call back into A (the 

original caller) before A’s execution is finished. This 

can happen if A, after calling B, hasn’t updated some 

state yet but B’s code invokes A again (perhaps via a 

fallback function). A classic example is a contract that 

sends money to a user and then updates their balance 

after the call. A malicious recipient contract can re-enter 

the function via its fallback and drain funds before the 

balance is updated. The working principle to avoid this 

is to complete all internal state changes before calling 

external contracts (the checks-effects-interactions 

pattern). Additionally, using reentrancy locks (a mutex 

in contract storage that prevents re-entry) is a common 

practice. 

Error Handling: When a contract calls another, if the 

callee reverts (throws an error), the caller by default 

also immediately reverts the entire transaction (unless 

the caller used low-level calls and manually handled the 

failure). Modern Solidity use of call, delegatecall 

returns a success flag that should be checked. Many 

historical bugs came from not checking return values of 

sends or calls – e.g., address.send() returns false on 

failure, and if code ignored it, it might consider a 

payment done when it actually failed. Today, best 

practice is to use transfer (which throws on failure) or 

handle the bool from call. This highlights that the 

working flow of contract execution can branch on 

whether sub-calls succeed or not, and developers must 

handle all possible outcomes to maintain consistency. 

To illustrate a typical sequence of operations in a 

working scenario, consider a token smart contract (like 

ERC-20 token on Ethereum). Its life cycle: it’s 

deployed by a creator (deployment phase). Thereafter, 

any user can call transfer(to, amount) to send tokens. 

The working of transfer is: check that msg.sender has ≥ 

amount balance, subtract amount from sender’s balance, 

add to recipient’s balance, emit a Transfer event, and 

return true. If any check fails, it reverts (so balances 

remain unchanged). This is straightforward. Now 

consider a more complex contract like a decentralized 

exchange contract: A user might call 

withdrawLiquidity() to remove their funds. The contract 

might call an external token contract’s transfer to give 

the user their tokens back. If that token’s transfer 

function calls into some other contract (or malicious 

token with a callback), the exchange contract must be 

written to handle reentrancy properly (likely by 

updating the user’s liquidity balance to 0 before calling 

external transfer). This shows multiple contracts 

interacting and the importance of ordering and 

atomicity [50]. 

5. Challenges and Issues of Smart Contracts 

While smart contracts enable powerful new 

applications, they also face numerous challenges that 

must be understood and addressed. These challenges 

span technical issues, such as security vulnerabilities 

and scalability limits, as well as broader concerns like 

privacy and legal enforceability. In this section, we 

outline the major categories of challenges and provide 

details on each, along with references to recent research 

that seeks to mitigate these problems. 

5.1 Security Vulnerabilities and Reliability 

Security is arguably the foremost challenge for smart 

contracts. Once deployed, contracts often hold or 

manage valuable assets (cryptocurrency, tokens, etc.), 
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making them attractive targets for attackers. 

Unfortunately, smart contracts have exhibited a wide 

range of vulnerabilities – from simple coding bugs to 

more subtle logical flaws – that have been exploited in 

the wild. The immutable, autonomous nature of 

contracts means that a security failure can have 

irreversible and damaging consequences (funds stolen 

or locked permanently). Some common vulnerability 

types include: 

 Reentrancy: As introduced earlier, this occurs when 

a contract calls an external contract, and that 

external call in turn invokes back into the calling 

contract (before the first invocation finishes). If the 

calling contract isn’t designed to handle reentrant 

calls, an attacker can exploit this to perform actions 

multiple times that should only happen once. The 

DAO attack is the classic example – the contract 

sent Ether before updating the sender’s balance, 

allowing the malicious recipient to call back 

repeatedly and drain funds. Reentrancy remains a 

critical threat; tools and design patterns exist to 

detect/prevent it (e.g., checks-effects-interactions 

pattern, reentrancy guard locks), but developers 

must apply them consistently. 

 Arithmetic Bugs (Overflows/Underflows): Early 

Solidity versions did not automatically check for 

overflow in arithmetic operations. If a contract did 

not use a library to check, an attacker could 

overflow a uint (wrap it around) to bypass balance 

checks, etc. For example, a token contract might 

think an account has a huge balance because it 

underflowed from 0 to 2^256-1. Solidity since v0.8 

has built-in overflow checks by default, mitigating 

this issue. But contracts compiled with older 

compilers or those intentionally turning off checks 

may still be vulnerable. 

 Access Control Flaws: Many contracts have 

functions that should be restricted (e.g., only owner 

can call). If these restrictions are mis-implemented 

or forgotten, attackers can directly call admin 

functions. In some cases, developers used tx.origin 

for authentication (checking if tx.origin == owner, 

as opposed to msg.sender). This is insecure because 

a contract can be tricked into calling another 

contract on behalf of a user. Best practice is to use 

msg.sender and proper modifiers for access control. 

Nonetheless, insecure or missing access controls 

have  caused  significant  losses  (for  example, 

forgetting to restrict a function that drains funds). 

Recent studies found access control issues to be a 

major category of smart contract vulnerabilities. 

 Unhandled Exceptions and Reverts: If a contract 

calls another and doesn’t handle failure, it could 

behave erroneously. For instance, prior to Solidity 

0.4.13, the recommended way to send Ether was 

send() which returns false on failure rather than 

throwing. Many contracts did not check this return 

value, leading to situations where Ether wasn’t 

actually sent but the contract still assumed it was 

(potentially causing inconsistent state). Nowadays, 

transfer() is used which throws on failure, or 

explicitly handling the bool from send()/call. 

Failure to properly handle these can lead to funds 

stuck or other logic issues. 

 Denial of Service (DoS): An attacker can 

sometimes block contract functionality. For 

example, a known DoS with (Unexpected) revert 

happened in Ethereum’s early days: a contract with 

a loop paying out rewards could be halted if one of 

the recipients always reverted (making the whole 

payout fail). Another example is DoS with block 

gas limit – if a contract accumulates too much data 

in arrays, certain functions may run out of gas 

consistently when trying to process all data (e.g., a 

poorly designed raffle that can never pick a winner 

because iterating over all entries exceeds gas). 

Attackers can exploit these by deliberately bloating 

data. Contracts must be designed to handle 

dynamic data sizes gracefully or set practical limits. 

 Logic Bugs and Flawed Assumptions: Some 

vulnerabilities are not low-level issues but higher- 

level logic mistakes – e.g., using an outdated price 

feed, or assuming certain order of events. A 

contract might assume that a particular call will 

only be made after some state is set, but a clever 

user might call functions out of the expected 

sequence. These are program-specific, and harder 

to generalize, but they underscore the need for 

thorough testing and formal verification where 

possible. One famous logic bug was in the Parity 

multisig wallet (2017) – an initialization function 

was publicly accessible due to a library contract 

mix-up, allowing an attacker to reset ownership and 

then selfdestruct the wallet, effectively freezing 

millions of Ether. In this case the vulnerability was 
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an unprotected function and an unintended 

sequence of calls (initializing after deployment). 

The impact of these vulnerabilities is evident in the 

amount of cryptocurrency lost or locked. According to a 

2020 study, over 3000 Ether were directly stolen in 

major attacks by that time, and much more has been lost 

since in DeFi hacks. As smart contracts have grown 

more complex (particularly in DeFi), attackers have also 

become more sophisticated, sometimes chaining 

multiple exploits and interacting through flash loans to 

exploit contract logic under unusual conditions. 

Figure 3 illustrates an analysis of top smart contract 

vulnerability categories by the total value of 

cryptocurrency lost (data from 2024 incident reports). It 

shows that access control vulnerabilities (e.g., leaked 

private keys, faulty ownership checks) accounted for by 

far the largest losses, indicating how critical proper 

authentication is. Other categories like reentrancy and 

arithmetic issues, while numerous in occurrences, 

resulted in comparatively smaller aggregate losses. This 

may be because after the DAO, developers became 

more aware of reentrancy, whereas access control issues 

can still happen through simple human error (and often 

allow an attacker to take everything in one go). 

Nonetheless, all these vulnerability types remain a 

concern. The figure underscores that focusing only on 

one type (like reentrancy) is not enough – security must 

be comprehensive. 
 

Figure 3: Major Smart Contract Vulnerability 

Categories by Total Losses (2024). 

To tackle security challenges, the community has 

responded with a variety of approaches: 

 Static Analysis and Security Tools: Numerous 

tools exist to scan contract code for known 

vulnerability patterns. Examples include 

Oyente, Mythril, Slither, Securify, and many 

more. These can automatically detect common 

issues like reentrancy, unchecked send, integer 

overflow (if using old Solidity), etc. A 

comprehensive survey by Zheng et al. catalogs 

many such tools and their coverage. However, 

static analysis can yield false 

positives/negatives, so results need expert 

review. 

 Formal Verification: Some critical contracts 

(like those securing billions in value) employ 

formal methods to prove certain properties. For 

example, the Algorand and Tezos communities 

have looked into formally verifying contract 

logic. Ethereum’s Solidity language has seen 

frameworks like Dafny or Why3 used to verify 

algorithms off-chain, and projects like CertiK 

and Runtime Verification have attempted to 

apply model checking to smart contracts. One 

challenge is the complexity – formal 

verification is time-consuming and requires 

expertise, and specifying the desired properties 

is non-trivial. Nonetheless, research like Singh 

et al. [3] emphasizes formalizing smart 

contracts to address vulnerabilities. Verified 

compilers and VMs (like the Flint language or 

Scilla) are also avenues being explored. 

 Security Design Patterns: The community has 

distilled best practices into patterns: e.g., 

checks-effects-interactions, withdrawal pattern 

(where users withdraw their funds instead of 

contract pushing funds to them, to avoid 

reentrancy issues), circuit breakers/pausable 

contracts (where an owner can pause the 

contract if something fishy is detected, 

stopping further damage), and rate limiting 

(limiting how much can be moved per 

transaction/time to mitigate hacks). A 

systematic review by Azimi et al. [7] analyzed 

dozens of security-oriented design patterns and 

found that current patterns only address a 

fraction of known vulnerability types. This 

suggests new patterns may be needed, but also 
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that developers should consistently apply the 

known ones. 

 Audit and Community Review: Professional 

audits by security firms are now standard for 

any significant smart contract deployment. 

These audits combine manual code review 

with tool-assisted analysis. While not 

infallible, audits have caught many issues 

before deployment. Moreover, some projects 

run bug bounty programs to incentivize 

independent researchers to find bugs (with 

rewards often in tens or hundreds of thousands 

of dollars, which is still cheaper than a 

successful exploit). The open-source nature of 

smart contracts enables community oversight – 

when source code is public (as is 

recommended), many eyes can examine it. For 

instance, the discovery of the Parity bug and 

others was often by community members or 

researchers. 

 Run-time Monitoring and Upgradability: Some 

contracts build in monitoring – e.g., watching 

for suspicious behavior (like an extremely 

large withdrawal) and automatically pausing if 

detected. Additionally, although immutability 

is core to blockchain, many teams opt for 

upgradeable contracts (via proxy pattern as 

discussed) so that if a severe bug is found, they 

can deploy a fix. This introduces trust trade- 

offs (users must trust the dev team not to abuse 

upgrades), but for certain contexts like DeFi 

platforms, it is seen as a practical necessity, at 

least initially. Over time, truly immutable 

contracts (when well-audited) are preferable as 

they remove even the owner/upgrade risk. 

5.2 Scalability and Performance Limitations 

Another major challenge for smart contracts (and 

blockchains in general) is scalability. Public 

blockchains have limited throughput and high latency 

compared to centralized systems, which directly affects 

smart contract applications. For example, Ethereum’s 

base layer can process on the order of ~15 transactions 

per second and each block comes roughly every 12–15 

seconds. This is several orders of magnitude below 

mainstream centralized payment networks or databases. 

As a result, popular smart contract dApps often face 

congestion: during the CryptoKitties game craze in 

2017, Ethereum network became clogged, delaying 

transactions and driving fees up. More recently, DeFi 

booms and NFT drops have caused similar spikes [51]. 

The performance limitations manifest in several ways: 

 Throughput (TPS): Limited transactions per second 

means if an application requires a high volume of 

interactions, it will either not be feasible or become 

extremely costly. For instance, a decentralized 

exchange processing thousands of trades per 

second on-chain is impossible on current Ethereum. 

Each trade is a transaction that competes with 

others for inclusion in blocks. When Uniswap and 

other DEXs became popular, Ethereum blocks 

often filled up completely, leading to users having 

to pay very high gas fees to prioritize their 

transactions. This constrains the types of 

applications – high-frequency trading, real-time 

gaming, or IoT microtransactions are impractical 

on current main chains. 

 Gas and Computation Limits: There is a block gas 

limit (Ethereum’s is around 30 million gas as of 

2022 after the London hardfork adjustments). This 

effectively caps how complex a single transaction 

(or block full of transactions) can be. If a smart 

contract function requires too much computation 

(and thus gas), it cannot be executed because it 

would exceed the block gas limit or be 

prohibitively expensive. This forces developers to 

break tasks into smaller parts or optimize heavily. 

Some computations are outright infeasible on-chain 

(like large-scale data analysis or machine learning 

algorithms) unless done in a very limited way. 

Scalability in terms of computation often requires 

moving work off-chain (layer 2 solutions or hybrid 

approaches). 

 State Growth and I/O: As contracts create more 

state (e.g., growing arrays, mappings with many 

entries), reading or iterating through state can 

become slow and costly. The gas cost for storage 

access is high (to disincentivize bloat). If a contract 

tries to loop through a large array in one 

transaction, it can easily run out of gas. This has led 

to design patterns like pagination (process data in 

chunks over multiple calls) and avoiding 

unbounded loops on-chain. Still, applications that 

naturally have large data sets (social networks, etc.) 

struggle to implement purely on-chain solutions. 
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 Latency and User Experience: A typical transaction 

might take on the order of tens of seconds to be 

confirmed (depending on block times and how 

much fee was paid). For many interactive 

applications, this is a poor user experience. Imagine 

a decentralized game where each move takes 15 

seconds to finalize – it’s not appealing. While some 

applications accept this (turn-based games, for 

example, or financial trades where a slight delay is 

tolerable), others need more real-time feedback. 

Layer 2 solutions or off-chain techniques (like state 

channels) are often used to give users instantaneous 

responses while eventually settling on-chain. 

5.3 Privacy and Confidentiality 

Privacy is another significant challenge for smart 

contracts. By design, public blockchains are transparent: 

all transactions and contract state are visible to anyone. 

While this transparency provides auditability, it is a 

double-edged sword for applications that require 

confidentiality. In many use cases (financial contracts, 

voting systems, healthcare data management, etc.), the 

details of contracts or user data should be kept private 

among authorized parties. However, on Ethereum and 

similar platforms, storing or computing on sensitive 

data means that data is exposed to the world (unless 

encrypted, and even then, operations on encrypted data 

are limited). 

Key privacy issues include: 

 Contract State and Logic Disclosure: The code of a 

smart contract is usually visible (especially if 

verified on explorers). Even if not, the bytecode 

can be analyzed. This means any secret business 

logic or algorithm cannot rely on being hidden on- 

chain. Moreover, all state variables are public (in 

Ethereum you can query storage by address even if 

not exposed by an ABI). For example, if a contract 

is holding a secret bid in an auction, that value 

could be read from the state (unless some 

commitment scheme is used). In traditional 

contexts, business logic or data might be 

proprietary or confidential, but on-chain it’s not. 

 Transaction Traceability: All interactions with 

contracts are traceable back to user accounts 

(pseudonymous addresses). Techniques exist to 

cluster addresses or identify patterns, so user 

behavior and relationships may be inferred. For 

instance, in a supposedly anonymous voting 

contract, one could potentially link votes to certain 

users by analyzing timing or transaction patterns. 

 Data Privacy: If a smart contract processes 

personal data (like identity information, medical 

records, etc.), putting that directly on a public 

blockchain would violate privacy in a serious way. 

Regulatory frameworks like GDPR are 

fundamentally at odds with immutable, transparent 

storage of personal data. Solutions often involve 

storing only hashes on-chain and keeping actual 

data off-chain with access control – but then the 

trustless aspect is reduced. 

5.4 Legal and Regulatory Challenges 

Smart contracts straddle a line between code and law. 

While the phrase "code is law" is popular in the 

blockchain community, the reality is that legal systems 

and governments may not recognize or accommodate 

agreements purely encoded on blockchain without 

additional legal framework. This creates a number of 

challenges: 

 Enforceability and Legal Recognition: Traditional 

contracts are legal documents that can be enforced 

in courts. A smart contract, however, is just code 

executing automatically. If a dispute arises (for 

example, if a bug causes an unfair outcome, or if 

someone claims they agreed under duress or by 

mistake), it's unclear how a court would treat the 

situation. Some jurisdictions have passed laws 

recognizing smart contracts (e.g., several US states 

have legislation that says a contract cannot be 

denied legal effect solely because it's a smart 

contract). But the interpretation is tricky – the 

contract terms might not be in natural language, 

making it hard for a judge to interpret parties' intent 

beyond "the code did X." There’s a gap between 

the legally enforceable intent and the literal code 

execution. In cases like the DAO hack, the hacker 

infamously claimed that the smart contract code 

permitted his actions (so it was "legal" by the 

contract's terms), whereas others saw it as theft. 

This philosophical conflict highlights the challenge: 

do we consider the code as the final arbiter, or is 

there an implicit higher-level agreement the code 

was supposed to implement? 

 Immutability vs. Legal Requirements: Laws like 

GDPR give individuals rights to delete personal 

data. But blockchain is immutable (and replicates 
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data globally). If personal data is in a smart 

contract, you can't just delete it. This conflict 

means either avoid putting such data on-chain or 

use encryption and off-chain storage. Another 

issue: if a court orders to stop or reverse a 

transaction (say it was fraudulent), how can that be 

done on a decentralized chain? It’s practically 

irreversible unless the community does a hard fork 

(which is extremely rare and contentious, as seen 

after the DAO hack fork of Ethereum vs Ethereum 

Classic divergence). 

 Jurisdiction and Conflict of Laws: Smart contracts 

often involve pseudonymous parties across 

different jurisdictions. Which country's law applies 

if something goes wrong? Even identifying the 

parties can be hard if they only use addresses. 

There may also be regulatory questions: for 

example, are certain DeFi smart contracts 

essentially unregulated securities exchanges? 

Regulators like the SEC in the US have been 

looking closely at decentralized platforms to see if 

they violate financial laws. Operating purely via 

code doesn't exempt from regulatory scope – those 

who deploy or benefit from the contracts could be 

targeted by enforcement. 

 Embedding Legal Contracts into Code: One 

approach to reconcile legal and smart contracts is to 

have hybrid contracts: a natural language 

agreement that references a smart contract or even 

incorporates it by reference. For instance, an ISDA 

(International Swaps and Derivatives Association) 

contract could include a clause that parties will use 

a certain smart contract for payments or 

calculations. The legal contract would govern 

overall, while the smart contract handles execution. 

If something went wrong, the legal contract could 

override (like an oracle failure or exploit could be 

handled by an off-chain settlement determined by 

an arbiter). Projects in the "smart legal contracts" 

space (like Accord Project) explore such hybrids. 

There’s also the concept of Ricardian contracts – 

human-readable contracts that also have a unique 

identifier and can be processed by software. 

 Regulatory Compliance Built-in: Smart contracts 

might need to incorporate rules to comply with law. 

For example, a security token contract might 

enforce that only KYC/whitelisted addresses can 

hold  the  token,  to  comply  with  securities 

regulations. Or a gambling dApp might geoblock 

certain regions by checking IP (if accessed through 

a front-end) or require a proof of location. These 

measures, however, are often circumventable 

(because on-chain, you can't truly enforce 

geography, users can use VPNs or just interact 

directly with contracts). Nonetheless, attempts are 

made to integrate compliance (like adding 

pause/blacklist functions for regulatory reasons – 

e.g., USDC stablecoin’s contract has blacklisting 

ability to comply with law enforcement requests). 

 Taxation and Reporting: If smart contracts handle 

economic activity, how to ensure proper reporting 

for tax? The anonymity and disintermediation 

complicates the typical channels regulators use 

(banks, centralized exchanges). Some jurisdictions 

are forcing intermediaries (like requiring exchanges 

to KYC and report transactions). If a significant 

portion of commerce happened via smart contracts, 

governments might attempt to require that contracts 

have built-in backdoors or reporting – which goes 

against decentralization ethos and likely not 

feasible technically unless they force it at 

endpoints. 

5.5 Other Challenges and Outlook 

Beyond the major categories above, there are several 

additional challenges and considerations with smart 

contracts: 

 Development Complexity and Skill Shortage: 

Writing secure and efficient smart contracts is 

difficult and requires specialized knowledge. 

The pool of developers who deeply understand 

blockchain programming (Solidity/Vyper, 

EVM, etc.) and security is relatively small. 

This skill shortage can lead to mistakes or slow 

down adoption. As mentioned in Section 5.1, 

even experienced developers have gotten 

things wrong due to the unusual paradigms 

(like all variables being public, transaction 

ordering issues, etc.). The industry is 

responding with better educational resources, 

frameworks, and higher-level languages, but 

the learning curve remains a challenge. The 

rapid change in blockchain tech (with new 

layer 2s, new programming models) also 

means constant learning. 
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 User Experience: Interacting with smart 

contracts directly can be cumbersome for 

users. Managing private keys, paying gas fees, 

dealing with long addresses, etc., is not user- 

friendly. Mistakes like sending funds to the 

wrong contract or losing keys are unforgiving. 

For mainstream adoption, much better UX 

(likely abstracting the blockchain bits away) is 

needed. Projects try to improve this via smart 

contract wallets (with social recovery), user- 

friendly ENS names instead of addresses, 

meta-transactions (where someone else pays 

gas for the user), etc. But striking a balance 

between ease-of-use and decentralization is 

tricky. 

 Upgrade and Maintenance: As discussed, 

smart contracts are hard to patch once 

deployed. While proxy patterns allow 

upgrades, they introduce trust in the 

upgradability (the owner could deploy 

malicious new logic). Some contracts adopt a 

time-delay for upgrades (so users can see code 

of new version and exit if they don’t like it). 

Others avoid upgrades entirely for security 

(e.g., Uniswap V2 is immutable – they just 

deployed V3 as a whole new set of contracts 

when improving). Maintenance and 

governance of smart contracts (especially those 

that are parts of protocols) remain challenging 

– they operate 24/7 globally, and flaws can’t 

be hidden behind a firewall or fixed with a 

quick hotpatch without users noticing. This is 

both a challenge and, in a way, a strength 

(forces more rigorous testing, but still things 

slip). 

 Interoperability: There are many blockchain 

platforms, and smart contracts on one typically 

can’t directly interact with another. Cross- 

chain bridges (often themselves implemented 

via smart contracts + off-chain relays) exist, 

but have been notorious targets for hacks 

(many hundreds of millions stolen from 

vulnerable bridges in 2021-2022). Achieving 

secure interoperability is still a work in 

progress. If a contract on Chain A could 

reliably trigger one on Chain B through some 

standardized protocol, it would open up 

possibilities (like using Bitcoin within 

Ethereum DeFi seamlessly, or doing atomic 

swaps across chains). Projects like Cosmos and 

Polkadot focus on interoperability but within 

their own ecosystems. General interoperability 

still faces technical and trust challenges. 

 Energy and Environmental Concerns: This is 

more about underlying consensus (proof-of- 

work vs proof-of-stake) than smart contracts 

per se, but in as much as Ethereum until 2022 

was PoW, the usage of its smart contracts had 

an indirect environmental cost. With the merge 

to PoS, Ethereum’s energy usage dropped by 

>99%. So, this challenge has been largely 

addressed for Ethereum, though other PoW 

chains with contracts (like Bitcoin eventually 

with layers, or others) might still consider it. In 

any event, energy usage is less of a narrative 

issue for smart contracts now, but it was a 

barrier for some adoption (certain enterprises 

didn’t want to use PoW networks due to ESG 

concerns). 

 Ethical and Societal Implications: Code-driven 

contracts raise interesting questions. For 

example, if an algorithm auto-liquidates a 

user's collateral at an unfavorable moment due 

to a glitch, there's no empathy or discretionary 

judgment that a human might exercise. Also, 

who is accountable? The developer, the DAO 

governing a protocol, or no one (since "code 

did it")? This "responsibility gap" could be an 

issue, especially with AI and smart contracts 

possibly merging in the future (autonomous 

agents transacting). Societally, what if people 

start relying on unstoppable code for things 

that maybe should have human oversight (like 

inheritance distribution – if a bug gave all to 

one child and none to another, would that 

stand?). 

6. Conclusion 

Smart contracts represent a fundamental paradigm shift 

toward trustless automation of agreements, enabling 

direct transaction execution without intermediaries. This 

review comprehensively explores the smart contract 

landscape, detailing its fundamental architecture— 

including its embedded role within blockchain systems 

and components like the EVM—and its complete 

working principles. The paper provides an in-depth 

discussion of the myriad challenges facing widespread 

adoption, which include dominant concerns like critical 
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security vulnerabilities (e.g., reentrancy exploits) 

necessitating enhanced verification tools; scalability 

limitations driving Layer 2 solutions; privacy issues 

stemming from inherent blockchain transparency; and 

pervasive legal and regulatory ambiguity concerning 

enforceability. Despite these hurdles, we analyze the 

accelerating integration of smart contracts across critical 

domains like Decentralized Finance (DeFi) and supply 

chain management, also noting the positive 

computational impact on software engineering and 

distributed computing. In conclusion, while smart 

contracts offer a powerful tool for efficiency and 

innovation, realizing their full potential depends on 

successfully navigating these architectural, technical, 

and social challenges through coordinated, 

interdisciplinary collaboration. 
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