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Abstract

Smart contracts are self-executing programs running on blockchain platforms that automatically enforce the terms of an
agreement without the need for intermediaries. They promise benefits such as trustless execution, transparency, and
efficiency, and have enabled a new wave of decentralized applications in finance, supply chain, and beyond. This
research work provides a comprehensive overview of smart contract architecture, explains their working principles, and
discusses the key challenges and issues they face from a computing perspective. We outline the theoretical foundations of
smart contracts and how they integrate with blockchain architecture. We then detail the life cycle and operation of smart
contracts, from deployment to execution, highlighting concepts like the Ethereum Virtual Machine (EVM) and
transaction gas costs. Furthermore, we examine critical challenges including security vulnerabilities, scalability limits,
privacy concerns, and legal/regulatory hurdles. Recent research efforts to improve smart contract reliability — such as
formal verification, security analysis tools, and design best practices — are also reviewed. The paper is organized into
major sections covering fundamentals, architecture, working principles, challenges, and practical considerations. Our
discussion aims to inform computer science graduates and practitioners about both the promises and the pitfalls of smart
contracts, providing a balanced understanding of their technical underpinnings and the ongoing research directions to
address their limitations.
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1. Introduction Blockchain platforms like Ethereum, Hyperledger
Fabric, and others provide the infrastructure for smart
contracts by ensuring a distributed ledger and consensus
mechanism to record contract execution results. Unlike
Bitcoin’s limited scripting, these platforms allow
complex, user-defined logic in contracts [3]. Figure 1
conceptually illustrates how two parties can interact via
a blockchain-based smart contract without mutual trust:
each party submits transactions to the contract, and the
blockchain network executes the contract code
deterministically on all nodes, updating the ledger state
when conditions are fulfilled. This decentralized
execution guarantees that the outcome is transparent
and agreed upon by all blockchain nodes [4][5].

Smart contracts are a significant innovation in
blockchain technology, often described as “self-
executing programs that facilitate trustless transactions
between multiple parties”. In essence, a smart contract
is a piece of code deployed on a blockchain that
automatically enforces the terms of an agreement when
predetermined conditions are met. All parties have a
shared, tamper-proof view of the contract’s state,
eliminating the need for a trusted third-party
intermediary. This concept was first proposed in the
1990s by Nick Szabo, who envisioned digital contracts
that could be executed by code. However, it was the
advent of modern blockchains that made smart contracts
practically realizable. In particular, the launch of
Ethereum in 2015 introduced a programmable
blockchain supporting Turing-complete smart contracts,
marking the transition of blockchain technology into an
era of “programmable finance” [1][2].
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Figure 1: Conceptual diagram of a blockchain smart
contract between two participants.

In Figure 1, each participant (A and B) interacts with a
smart contract deployed on a blockchain network. The
contract’s code (stored on the distributed ledger)
automatically enforces the agreed rules. Both parties
submit transactions to invoke contract functions, and the
network’s nodes execute the contract in a trustless
manner. The blockchain ledger (illustrated by the chain
of blocks) records all contract states and transactions,
ensuring tamper-proof and transparent outcomes [6][7].

Smart contracts offer several theoretical and practical
benefits. They enable trustless execution of agreements
— all parties can trust the code and the underlying
cryptographic consensus of the blockchain rather than
trusting each other or an intermediary. This can reduce
transaction risk and costs, as contracts can transfer
assets or verify conditions automatically without escrow
agents or legal oversight, thereby saving on
administrative fees. Smart contracts also improve
process efficiency, executing transactions in near real-
time once conditions are satisfied, which minimizes
delays compared to traditional contract enforcement.
For example, in supply chain payments, a smart contract
can release funds instantly when a delivery is
confirmed, instead of waiting for manual processing.
Additionally, the results are transparent and verifiable —
all contract interactions are recorded on the blockchain,
creating an audit trail that enhances accountability

[8][9][20]-

Given these advantages, smart contracts have rapidly
gained adoption across various domains. Ethereum’s
ecosystem, in particular, has seen an explosion of
decentralized applications (DApps) in areas such as
decentralized finance (DeFi), games, digital collectibles,
and more. By 2022, millions of contracts had been
deployed on Ethereum and other platforms, signifying
the growing reliance on code-based agreements. Figure
2 shows the cumulative number of smart contracts
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deployed on Ethereum over time, illustrating an
exponential growth trend. The count grew from
essentially zero in 2015 to tens of millions by 2022,
demonstrating how this technology moved from concept
to widespread implementation in just a few years. This
growth is fueled by the thriving developer community
and the compelling use-cases that smart contracts
enable — from automated financial instruments (e.g.
lending, trading, insurance) to supply chain tracking and
digital identity management [11][12][13].
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Figure 2: Cumulative Contracts Deployed Over Time
on Ethereum.

2. Smart Contract Fundamentals
2.1 Concept and Characteristics of Smart Contracts

In simple terms, a smart contract is a program that
automatically executes specific actions when predefined
conditions are satisfied, with the outcomes enforced by
code. The core idea blends principles from computer
science and law: the contract’s “clauses” are written in
code, and once deployed, the contract will self-enforce
those clauses exactly as coded, without discretion.
Because smart contracts run on a blockchain, they
inherit key properties from the underlying distributed
ledger:

e Immutability: Once a smart contract is
deployed to the blockchain, its code typically
cannot be altered. The code and state are
tamper-proof due to the cryptographic integrity
of the ledger. This gives participants
confidence that the contract’s rules won’t
change arbitrarily. However, immutability also
means bugs or inefficiencies in code are
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difficult to fix, presenting a challenge for long-
lived contracts [15].

e Distributed Consensus: Smart contract
execution results are agreed upon by all or a
subset of blockchain nodes (via the consensus
protocol). Every validating node runs the
contract code on their local copy of the
blockchain state, ensuring that outcomes are
replicated and verified across the network.
This removes reliance on a single authority —
the network collectively guarantees correct
execution as long as the consensus mechanism
and majority of nodes are honest [16].

e Deterministic  Execution: To achieve
consensus, smart contract functions must
produce the same result on every node given
the same state and input transaction. Contracts
are therefore executed in a controlled,
deterministic environment (such as Ethereum’s
virtual machine). Non-deterministic operations
(e.g., relying on wall-clock time or random
numbers without a protocol) are avoided or
explicitly handled so that all nodes stay in sync
[17].

e Transparency: On public blockchains, smart
contract code and its execution history are
visible to all participants. All transactions
invoking the contract, and any state changes
(logs, events, etc.), are recorded on-chain. This
transparency can increase trust and auditability
of processes but also exposes sensitive logic
and data, which may conflict with privacy
requirements. Some platforms and contract
designs address this via cryptographic
techniques [18][19].

e Self-Enforcement: Once deployed, a smart
contract will automatically execute when
triggered by an appropriate transaction or
event, and it will enforce the outcome exactly
as encoded. This means that if the contract
code says a payment will be made on a certain
date upon condition X, then as soon as X is
verified, the payment will occur — there is no
need (and often no ability) for human
intervention to stop it. This self-enforcing
nature can eliminate ambiguity and the need
for litigation in contract execution. However, it
also means that errors or unforeseen scenarios
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can lead to undesirable outcomes that are hard
to reverse (unlike a traditional legal contract
which might be renegotiated or not enforced
by mutual consent) [20][21].

The combination of these characteristics enables
trustless interactions: participants can trust the
contract’s code and the blockchain’s enforcement rather
than each other. For example, consider an insurance
payout contract for crop failure. The farmer and insurer
encode the logic (if rainfall is below a threshold by date
Y, pay out $Z to the farmer) into a smart contract.
Neither party can cheat — the contract will automatically
check an authoritative weather data feed and execute the
payment if conditions are met. The farmer doesn’t need
to trust the insurer to willingly pay, and the insurer
doesn’t fear fraudulent claims; enforcement is automatic
and objective [22].

2.2 Relationship with Blockchain Architecture

Smart contracts do not exist in isolation — they are an
application-layer construct that relies on the underlying
blockchain architecture for security and execution. A
blockchain system can be viewed in a layered
architecture, typically including layers such as the
network layer, consensus layer, and an application layer
where smart contracts operate. Figure 1 already showed
the abstract role of contracts on a blockchain. Here we
elaborate how contracts fit into blockchain architecture
[23]:

e Blockchain Nodes and Virtual Machine:
Each full node in the blockchain network
maintains a copy of the ledger and executes
smart contract code within a virtual machine
(VM) environment. For instance, Ethereum
introduced the Ethereum Virtual Machine
(EVM), which is a runtime environment that
executes contract bytecode in a sandboxed
manner. Every node runs an EVM
implementation to perform contract
computations in lockstep. The VM ensures
determinism and isolates the contract
execution from directly affecting the node’s
operating system. It also implements a gas
mechanism to meter resource usage [24].

e Transactions and State: A smart contract is
deployed via a special transaction that
publishes the contract’s code to the blockchain,
assigning it a unique address. Thereafter, users
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interact with the contract by sending Table 1: Comparison of Major Blockchain Platforms
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Table 1 depicts the Blockchain platforms for smart
contracts differ in architecture. Ethereum pioneered
public smart contracts with a fully decentralized but
relatively slower model, using the EVM to run Solidity
code on every node. Hyperledger Fabric shows an
alternative for permissioned networks, foregoing a
built-in  cryptocurrency and  allowing  higher
performance via restricted participation and a modular
execution model. Solana represents a newer public
chain emphasizing scalability, using a unique consensus
and VM. These differences affect how smart contracts
are written (e.g., language), how they execute and scale,
and suitable use cases. All these platforms, however,
share the common idea of code-based contract logic that
is enforced by the blockchain’s consensus across
participants [31].

3. Architecture of Smart Contracts

While Section 2 introduced the foundational concepts,
here we delve deeper into the architecture and
components that make up a smart contract system. We
use the term architecture to mean the structural design
of the smart contract environment — including how
contracts are represented on the blockchain, how they
interface with the execution engine, and how different
blockchain designs structure smart contract support
[32][33].

3.1 On-Chain Structure and Execution Environment

A deployed smart contract on Ethereum (or similar
platforms) is identified by an address — effectively, a
unique location in the blockchain’s state space. At that
address, the blockchain stores the contract’s compiled
bytecode and its persistent storage state (if any). The
contract’s functions can be invoked by sending a
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transaction to its address with an appropriate function
selector and parameters (in Ethereum’s ABI encoding).
When such a transaction is processed by a miner or
validator, it triggers the execution of the contract’s code
in the blockchain’s execution environment [34].

For Ethereum and many other platforms, this
environment is the Ethereum Virtual Machine (EVM).
The EVM is a stack-based virtual machine that
processes the contract’s bytecode instruction by
instruction. It has access to the transaction’s input data,
the contract’s storage, and some contextual information
(block timestamp, sender address, etc.). Importantly, the
EVM is designed to be completely deterministic and
sandboxed. It cannot perform certain operations like
generating random numbers (without a predefined
source) or making network calls — this ensures that
contract execution yields the same result on all nodes
and does not depend on off-chain data unless provided
through transactions or predefined system calls [35].

3.1.1 Ethereum Virtual Machine (EVM) Example

To make the discussion concrete, consider the Ethereum
Virtual Machine. Ethereum’s design was the first to
integrate a general-purpose VM into a blockchain. The
EVM is a stack machine with a word size of 256 bits
(convenient for cryptographic operations). It has a few
areas of memory: stack (for operations), memory
(volatile byte-array for each execution, not persisted),
and storage (persistent key-value store, persisted
between calls). When a contract function is called, the
EVM initializes with the function’s input data and the
contract’s storage (state). As it runs the bytecode, it
might push and pop values from the stack, do
arithmetic, load from storage, etc., according to the
instructions [36][37].

For example, a simple Solidity function like function
add(uint x, uint y) public returns(uint){ return x+y; }
would compile to EVM bytecode that (in pseudocode)
does: push x, push y, ADD, and then return the result.
The EVM would consume gas for the addition and the
return. If this function is called via a transaction, the
resulting state (just the return value in this case, which
might be logged) is recorded in the transaction receipt.
More complex functions that modify state would
produce opcodes like SSTORE (to store a value in
persistent storage) which have higher gas costs [38].
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3.1.2 Alternative Architectures

Not all smart contract platforms follow Ethereum’s
account-based model with a single global VM. For
instance, UTXO-based smart contracts: Some
blockchains (like Bitcoin and earlier wversions of
Cardano) use a UTXO model where contracts are
realized through locking/unlocking scripts on UTXOs
(unspent transaction outputs). Bitcoin’s Script is
intentionally not Turing-complete and is used for very
specific contracts (multi-signature, timelocks, etc.).
Newer developments like BitML and Miniscript attempt
to extend Bitcoin’s contract expressiveness, but they are
outside the scope of general Turing-complete contracts
[39].

Another design is layer-2 contracts: protocols built atop
a base blockchain to extend capabilities, such as state
channels and sidechains. These are not exactly smart
contract architectures themselves, but they influence
how contracts are designed (e.g., a state channel might
use a smart contract on layerl as an adjudicator but
execute many transactions off-chain for scalability)
[40].

3.2 Off-Chain Interactions and Oracles

A limitation of smart contracts is that blockchains are
closed environments — they do not inherently have
access to external, real-world information (often termed
the “oracle problem”). Most smart contracts need some
connection to off-chain data to be truly useful (for
example, a crop insurance contract needs weather data,
a betting contract needs the outcome of a sports match,
etc.). The architecture of a complete smart contract
solution often includes oracle mechanisms to bridge on-
chain and off-chain worlds [41].

An oracle is a trusted data feed or mechanism by which
offchain data can be fed into a contract.
Architecturally, this might be implemented as a special
type of transaction sent by designated oracle providers
(e.g., an off-chain service signs a message with the
temperature reading and submits it to the contract). The
contract then parses and uses that data. Many oracle
systems exist: some are centralized services, others are
decentralized networks of feeders (like Chainlink or
Band Protocol) that use their own consensus or
economic incentives to provide reliable data. From the
contract’s perspective, the oracle is simply another
caller providing input [42].
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4. Working Principles of Smart Contracts

Smart contracts follow a well-defined life cycle:
creation (deployment), operation (function calls and
state transitions), and potentially termination. In this
section, we break down the working principles into
those stages and explain how a contract progresses from
code to an active agreement and what happens during
execution. We also cover important runtime concepts
such as transaction processing, gas management, and
how contracts handle execution flow and errors [43].

4.1 Life Cycle of a Smart Contract
4.1.1 Creation and Deployment Phase

The life of a smart contract begins with its deployment
to the blockchain. A contract is typically written in a
high-level language (e.g., Solidity), then compiled to
the platform’s bytecode. To deploy, a user (often the
developer or an entity initiating the contract) sends a
contract creation transaction. In Ethereum, this is a
transaction with no to address, containing the contract’s
bytecode in the data field. The transaction must also
include enough gas to cover the deployment cost (which
depends on bytecode size and any constructor
execution) [44][45].

When this creation transaction is processed by
miners/validators, the bytecode is executed once —
running the contract’s constructor (initialization code).
The constructor can set up initial state or require certain
conditions. Its execution produces the final runtime
bytecode that will be stored (Solidity concatenates
constructor code and runtime code; the constructor’s
output is the runtime code). If the creation succeeds
(doesn’t run out of gas and doesn’t revert), a new
contract address is generated (usually derived from the
creator’s address and their nonce in Ethereum) and the
runtime bytecode is stored at that address. The contract
now exists on-chain, and its initial state is set (storage
variables initialized) [46].

4.1.2 Invocation and Execution

After deployment, the contract enters the operation
phase where it can be invoked repeatedly over its
lifetime. Users (or other contracts) call the contract by
issuing transactions. Each call is handled as a
transaction that modifies state or produces some output,
under the rules of the blockchain.

793


http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received: 25 January 2023 Revised: 12 February 2023 Accepted: 30 March 2023

A contract invocation transaction will include: the
contract’s address as the to, the function selector and
parameters encoded in the data payload (for
Ethereum/ABI), and some gas and fee like any
transaction. When a miner/validator includes this
transaction in a block, all nodes execute the contract’s
code to process the call.

During execution, the contract may: perform
calculations, read or write its persistent storage, emit
events (logs), send cryptocurrency (e.g., Ether) to other
addresses, or call other contracts. All of these actions
happen within the scope of the transaction. A key
principle is atomicity: if any part of the execution fails
(e.g., an assertion in code fails or a sub-call runs out of
gas), the entire transaction is typically reverted,
meaning the blockchain state is unchanged except for
the used gas (which is still consumed). This is akin to a
database transaction rollback on error. Atomicity
greatly simplifies reasoning — a contract can make
multiple updates and either all happen or none do, so
there are no partial side-effects on-chain from a failed
call [47].

4.1.3 Termination and Upgrade

Smart contracts are usually designed to live indefinitely
on the blockchain. However, there are mechanisms to
terminate a contract if needed. In Ethereum, a contract’s
code can include a SELFDESTRUCT (previously
SUICIDE) opcode. If executed, this opcode removes the
contract’s bytecode from the state (making the address
no longer have associated code) and sends any
remaining Ether in the contract to a designated target
address. This effectively Kills the contract — it cannot be
called thereafter (calls will hit an empty account).
Typically, a contract might include a self-destruct
function guarded by some condition (e.g., only owner
can trigger it, or it can trigger after a certain date). Self-
destruction can be used to reclaim storage (refunding
some gas to the destructor as incentive) or to migrate to
a new contract version.

4.2 Transaction Processing and Gas Management

The operation of smart contracts is tightly linked to how
transactions are processed on the blockchain. Each
contract call is encapsulated in a transaction, which
must be mined/validated in a block. The order of
transactions is significant — if two users try to call the
same contract, the one whose transaction is mined first
will execute first and potentially affect the contract’s
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state before the second executes. Miners have some
control over ordering (they could choose transactions,
and on Ethereum users can pay higher gas fees to
prioritize their transactions). This has led to phenomena
like transaction front-running, where an observer might
try to preempt someone else’s contract call by getting
their transaction mined earlier (a concern especially in
DeFi contracts). Contract designers sometimes
incorporate mechanisms (like commit-reveal schemes
or fairness protocols) to mitigate the impact of ordering
on sensitive operations.

Gas management is a fundamental aspect of how smart
contracts work. As mentioned, each transaction
specifies a gas limit and gas price. The EVM (or other
VM) deducts gas for each operation. If the gas runs out,
the execution is reverted (the state is rolled back), but
the gas paid is still consumed from the sender’s account
(to compensate miners for the work done up to failure).
This means if a contract enters an infinite loop or a very
heavy computation without enough gas, it will simply
fail and waste gas. Thus, contracts must be designed to
be gas-efficient and predictable in their gas usage,
especially because on public chains gas costs equate to
real money [48].

4.3 Interaction with External Systems

As hinted in the architecture discussion, smart contracts
often need to interact with systems or data outside the
blockchain, which poses some unique working
principles:

Oracles: When a contract requires off-chain data, it
typically follows a pattern: one transaction is made to
request the data (perhaps calling a function that emits an
event or sets a state indicating a request), then an off-
chain oracle observes this and in a subsequent
transaction provides the data by calling a callback
function. During the period between request and
response, the contract might be in a waiting state. For
instance, a contract might have a function
requestPrice(asset) and an oracle calls back
fulfillPrice(asset, price) to supply the info. The working
principle here is asynchronous operation — the contract
must handle that the response comes later (maybe
enforce that it comes before a timeout, etc.). This
asynchronous, multi-transaction workflow is different
from regular function calls and requires careful design
to avoid inconsistencies (e.g., what if the oracle never
responds? Many contracts include a fallback or the
ability to cancel after some time).
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Events and Off-chain Monitoring: A lot of the “action”
in DApp user experience happens off-chain by
monitoring  on-chain events. For example, a
decentralized exchange contract might emit an event
when an order is filled. Off-chain services (like the
front-end or analytics) catch that to update user
interfaces. From a working perspective, contracts
should emit meaningful events as part of their execution
so that external systems can react. This does not affect
the contract’s own logic but is crucial for the ecosystem
around it.

Permission and Roles: Smart contract operation often
involves different roles (owner, participants, or even
automated bots). Many contracts implement an owner
role (using patterns like Ownable in OpenZeppelin) that
allows certain privileged operations (like pausing the
contract, upgrading logic via proxy, or triggering
emergency withdrawals). These are essentially
backdoors built for practicality and security, and they
must be transparently documented since they partially
break the trustless ideal (users need to trust that owners
won’t abuse privileges). For instance, a contract might
have a pause() function callable only by owner to halt
contract activity if a vulnerability is discovered — this
introduces a centralized element for safety [49].

Execution Order and Reentrancy: One subtle working
principle in Ethereum is that within a single transaction,
the order of execution is depth-first: if Contract A calls
Contract B, which calls Contract C, the EVM will
execute C then return to B then back to A. All of this is
still one transaction. A notorious issue is reentrancy,
where Contract C (or B) might call back into A (the
original caller) before A’s execution is finished. This
can happen if A, after calling B, hasn’t updated some
state yet but B’s code invokes A again (perhaps via a
fallback function). A classic example is a contract that
sends money to a user and then updates their balance
after the call. A malicious recipient contract can re-enter
the function via its fallback and drain funds before the
balance is updated. The working principle to avoid this
is to complete all internal state changes before calling
external contracts (the checks-effects-interactions
pattern). Additionally, using reentrancy locks (a mutex
in contract storage that prevents re-entry) is a common
practice.

Error Handling: When a contract calls another, if the
callee reverts (throws an error), the caller by default
also immediately reverts the entire transaction (unless
the caller used low-level calls and manually handled the
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failure). Modern Solidity use of call, delegatecall
returns a success flag that should be checked. Many
historical bugs came from not checking return values of
sends or calls — e.g., address.send() returns false on
failure, and if code ignored it, it might consider a
payment done when it actually failed. Today, best
practice is to use transfer (which throws on failure) or
handle the bool from call. This highlights that the
working flow of contract execution can branch on
whether sub-calls succeed or not, and developers must
handle all possible outcomes to maintain consistency.

To illustrate a typical sequence of operations in a
working scenario, consider a token smart contract (like
ERC-20 token on Ethereum). Its life cycle: it’s
deployed by a creator (deployment phase). Thereafter,
any user can call transfer(to, amount) to send tokens.
The working of transfer is: check that msg.sender has >
amount balance, subtract amount from sender’s balance,
add to recipient’s balance, emit a Transfer event, and
return true. If any check fails, it reverts (so balances
remain unchanged). This is straightforward. Now
consider a more complex contract like a decentralized
exchange contract: A user might  call
withdrawLiquidity() to remove their funds. The contract
might call an external token contract’s transfer to give
the user their tokens back. If that token’s transfer
function calls into some other contract (or malicious
token with a callback), the exchange contract must be
written to handle reentrancy properly (likely by
updating the user’s liquidity balance to 0 before calling
external transfer). This shows multiple contracts
interacting and the importance of ordering and
atomicity [50].

5. Challenges and Issues of Smart Contracts

While smart contracts enable powerful new
applications, they also face numerous challenges that
must be understood and addressed. These challenges
span technical issues, such as security vulnerabilities
and scalability limits, as well as broader concerns like
privacy and legal enforceability. In this section, we
outline the major categories of challenges and provide
details on each, along with references to recent research
that seeks to mitigate these problems.

5.1 Security Vulnerabilities and Reliability

Security is arguably the foremost challenge for smart
contracts. Once deployed, contracts often hold or
manage valuable assets (cryptocurrency, tokens, etc.),
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making them attractive targets for attackers.
Unfortunately, smart contracts have exhibited a wide
range of vulnerabilities — from simple coding bugs to
more subtle logical flaws — that have been exploited in
the wild. The immutable, autonomous nature of
contracts means that a security failure can have
irreversible and damaging consequences (funds stolen
or locked permanently). Some common vulnerability
types include:

Reentrancy: As introduced earlier, this occurs when
a contract calls an external contract, and that
external call in turn invokes back into the calling
contract (before the first invocation finishes). If the
calling contract isn’t designed to handle reentrant
calls, an attacker can exploit this to perform actions
multiple times that should only happen once. The
DAO attack is the classic example — the contract
sent Ether before updating the sender’s balance,
allowing the malicious recipient to call back
repeatedly and drain funds. Reentrancy remains a
critical threat; tools and design patterns exist to
detect/prevent it (e.g., checks-effects-interactions
pattern, reentrancy guard locks), but developers
must apply them consistently.

Arithmetic Bugs (Overflows/Underflows): Early
Solidity versions did not automatically check for
overflow in arithmetic operations. If a contract did
not use a library to check, an attacker could
overflow a uint (wrap it around) to bypass balance
checks, etc. For example, a token contract might
think an account has a huge balance because it
underflowed from 0 to 2/256-1. Solidity since v0.8
has built-in overflow checks by default, mitigating
this issue. But contracts compiled with older
compilers or those intentionally turning off checks
may still be vulnerable.

Access Control Flaws: Many contracts have
functions that should be restricted (e.g., only owner
can call). If these restrictions are mis-implemented
or forgotten, attackers can directly call admin
functions. In some cases, developers used tx.origin
for authentication (checking if tx.origin == owner,
as opposed to msg.sender). This is insecure because
a contract can be tricked into calling another
contract on behalf of a user. Best practice is to use
msg.sender and proper modifiers for access control.
Nonetheless, insecure or missing access controls
have caused significant losses (for example,
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forgetting to restrict a function that drains funds).
Recent studies found access control issues to be a
major category of smart contract vulnerabilities.

Unhandled Exceptions and Reverts: If a contract
calls another and doesn’t handle failure, it could
behave erroneously. For instance, prior to Solidity
0.4.13, the recommended way to send Ether was
send() which returns false on failure rather than
throwing. Many contracts did not check this return
value, leading to situations where Ether wasn’t
actually sent but the contract still assumed it was
(potentially causing inconsistent state). Nowadays,
transfer() is used which throws on failure, or
explicitly handling the bool from send()/call.
Failure to properly handle these can lead to funds
stuck or other logic issues.

Denial of Service (DoS): An attacker can
sometimes block contract functionality. For
example, a known DoS with (Unexpected) revert
happened in Ethereum’s early days: a contract with
a loop paying out rewards could be halted if one of
the recipients always reverted (making the whole
payout fail). Another example is DoS with block
gas limit — if a contract accumulates too much data
in arrays, certain functions may run out of gas
consistently when trying to process all data (e.g., a
poorly designed raffle that can never pick a winner
because iterating over all entries exceeds gas).
Attackers can exploit these by deliberately bloating
data. Contracts must be designed to handle
dynamic data sizes gracefully or set practical limits.

Logic Bugs and Flawed Assumptions: Some
vulnerabilities are not low-level issues but higher-
level logic mistakes — e.g., using an outdated price
feed, or assuming certain order of events. A
contract might assume that a particular call will
only be made after some state is set, but a clever
user might call functions out of the expected
sequence. These are program-specific, and harder
to generalize, but they underscore the need for
thorough testing and formal verification where
possible. One famous logic bug was in the Parity
multisig wallet (2017) — an initialization function
was publicly accessible due to a library contract
mix-up, allowing an attacker to reset ownership and
then selfdestruct the wallet, effectively freezing
millions of Ether. In this case the vulnerability was
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an unprotected function and an unintended
sequence of calls (initializing after deployment).

The impact of these vulnerabilities is evident in the
amount of cryptocurrency lost or locked. According to a
2020 study, over 3000 Ether were directly stolen in
major attacks by that time, and much more has been lost
since in DeFi hacks. As smart contracts have grown
more complex (particularly in DeFi), attackers have also
become more sophisticated, sometimes chaining
multiple exploits and interacting through flash loans to
exploit contract logic under unusual conditions.

Figure 3 illustrates an analysis of top smart contract
vulnerability categories by the total wvalue of
cryptocurrency lost (data from 2024 incident reports). It
shows that access control vulnerabilities (e.g., leaked
private keys, faulty ownership checks) accounted for by
far the largest losses, indicating how critical proper
authentication is. Other categories like reentrancy and
arithmetic issues, while numerous in occurrences,
resulted in comparatively smaller aggregate losses. This
may be because after the DAO, developers became
more aware of reentrancy, whereas access control issues
can still happen through simple human error (and often
allow an attacker to take everything in one Qo).
Nonetheless, all these wvulnerability types remain a
concern. The figure underscores that focusing only on
one type (like reentrancy) is not enough — security must
be comprehensive.

Logsic errony
$64M
Flash Loan
Exploits
$16M
Input .
Validation
Bugs
$11M
Price
Oracle
Manipulation Input Validation
$OM Bugs
$1M
Figure 3: Major Smart Contract Vulnerability

Categories by Total Losses (2024).
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To tackle security challenges, the community has
responded with a variety of approaches:

Static Analysis and Security Tools: Numerous
tools exist to scan contract code for known
vulnerability  patterns. Examples include
Oyente, Mythril, Slither, Securify, and many
more. These can automatically detect common
issues like reentrancy, unchecked send, integer
overflow (if using old Solidity), etc. A
comprehensive survey by Zheng et al. catalogs
many such tools and their coverage. However,
static analysis can yield false
positives/negatives, so results need expert
review.

Formal Verification: Some critical contracts
(like those securing billions in value) employ
formal methods to prove certain properties. For
example, the Algorand and Tezos communities
have looked into formally verifying contract
logic. Ethereum’s Solidity language has seen
frameworks like Dafny or Why3 used to verify
algorithms off-chain, and projects like CertiK
and Runtime Verification have attempted to
apply model checking to smart contracts. One
challenge is the complexity - formal
verification is time-consuming and requires
expertise, and specifying the desired properties
is non-trivial. Nonetheless, research like Singh
et al. [3] emphasizes formalizing smart
contracts to address vulnerabilities. Verified
compilers and VMs (like the Flint language or
Scilla) are also avenues being explored.

Security Design Patterns: The community has
distilled best practices into patterns: e.g.,
checks-effects-interactions, withdrawal pattern
(where users withdraw their funds instead of
contract pushing funds to them, to avoid
reentrancy issues), circuit breakers/pausable
contracts (where an owner can pause the
contract if something fishy is detected,
stopping further damage), and rate limiting
(limiting how much can be moved per
transaction/time to mitigate hacks). A
systematic review by Azimi et al. [7] analyzed
dozens of security-oriented design patterns and
found that current patterns only address a
fraction of known vulnerability types. This
suggests new patterns may be needed, but also
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that developers should consistently apply the
known ones.

e Audit and Community Review: Professional
audits by security firms are now standard for
any significant smart contract deployment.
These audits combine manual code review
with  tool-assisted analysis. While not
infallible, audits have caught many issues
before deployment. Moreover, some projects
run bug bounty programs to incentivize
independent researchers to find bugs (with
rewards often in tens or hundreds of thousands
of dollars, which is still cheaper than a
successful exploit). The open-source nature of
smart contracts enables community oversight —
when source code is public (as is
recommended), many eyes can examine it. For
instance, the discovery of the Parity bug and
others was often by community members or
researchers.

e Run-time Monitoring and Upgradability: Some
contracts build in monitoring — e.g., watching
for suspicious behavior (like an extremely
large withdrawal) and automatically pausing if
detected. Additionally, although immutability
is core to blockchain, many teams opt for
upgradeable contracts (via proxy pattern as
discussed) so that if a severe bug is found, they
can deploy a fix. This introduces trust trade-
offs (users must trust the dev team not to abuse
upgrades), but for certain contexts like DeFi
platforms, it is seen as a practical necessity, at
least initially. Over time, truly immutable
contracts (when well-audited) are preferable as
they remove even the owner/upgrade risk.

5.2 Scalability and Performance Limitations

Another major challenge for smart contracts (and
blockchains in general) is scalability. Public
blockchains have limited throughput and high latency
compared to centralized systems, which directly affects
smart contract applications. For example, Ethereum’s
base layer can process on the order of ~15 transactions
per second and each block comes roughly every 12-15
seconds. This is several orders of magnitude below
mainstream centralized payment networks or databases.
As a result, popular smart contract dApps often face
congestion: during the CryptoKitties game craze in
2017, Ethereum network became clogged, delaying
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transactions and driving fees up. More recently, DeFi
booms and NFT drops have caused similar spikes [51].

The performance limitations manifest in several ways:

e Throughput (TPS): Limited transactions per second
means if an application requires a high volume of
interactions, it will either not be feasible or become
extremely costly. For instance, a decentralized
exchange processing thousands of trades per
second on-chain is impossible on current Ethereum.
Each trade is a transaction that competes with
others for inclusion in blocks. When Uniswap and
other DEXs became popular, Ethereum blocks
often filled up completely, leading to users having
to pay very high gas fees to prioritize their
transactions. This constrains the types of
applications — high-frequency trading, real-time
gaming, or loT microtransactions are impractical
on current main chains.

e Gas and Computation Limits: There is a block gas
limit (Ethereum’s is around 30 million gas as of
2022 after the London hardfork adjustments). This
effectively caps how complex a single transaction
(or block full of transactions) can be. If a smart
contract function requires too much computation
(and thus gas), it cannot be executed because it
would exceed the block gas limit or be
prohibitively expensive. This forces developers to
break tasks into smaller parts or optimize heavily.
Some computations are outright infeasible on-chain
(like large-scale data analysis or machine learning
algorithms) unless done in a very limited way.
Scalability in terms of computation often requires
moving work off-chain (layer 2 solutions or hybrid
approaches).

e State Growth and 1/O: As contracts create more
state (e.g., growing arrays, mappings with many
entries), reading or iterating through state can
become slow and costly. The gas cost for storage
access is high (to disincentivize bloat). If a contract
tries to loop through a large array in one
transaction, it can easily run out of gas. This has led
to design patterns like pagination (process data in
chunks over multiple calls) and avoiding
unbounded loops on-chain. Still, applications that
naturally have large data sets (social networks, etc.)
struggle to implement purely on-chain solutions.
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e Latency and User Experience: A typical transaction
might take on the order of tens of seconds to be
confirmed (depending on block times and how
much fee was paid). For many interactive
applications, this is a poor user experience. Imagine
a decentralized game where each move takes 15
seconds to finalize — it’s not appealing. While some
applications accept this (turn-based games, for
example, or financial trades where a slight delay is
tolerable), others need more real-time feedback.
Layer 2 solutions or off-chain techniques (like state
channels) are often used to give users instantaneous
responses while eventually settling on-chain.

5.3 Privacy and Confidentiality

Privacy is another significant challenge for smart
contracts. By design, public blockchains are transparent:
all transactions and contract state are visible to anyone.
While this transparency provides auditability, it is a
double-edged sword for applications that require
confidentiality. In many use cases (financial contracts,
voting systems, healthcare data management, etc.), the
details of contracts or user data should be kept private
among authorized parties. However, on Ethereum and
similar platforms, storing or computing on sensitive
data means that data is exposed to the world (unless
encrypted, and even then, operations on encrypted data
are limited).

Key privacy issues include:

e Contract State and Logic Disclosure: The code of a
smart contract is usually visible (especially if
verified on explorers). Even if not, the bytecode
can be analyzed. This means any secret business
logic or algorithm cannot rely on being hidden on-
chain. Moreover, all state variables are public (in
Ethereum you can query storage by address even if
not exposed by an ABI). For example, if a contract
is holding a secret bid in an auction, that value
could be read from the state (unless some
commitment scheme is used). In traditional
contexts, business logic or data might be
proprietary or confidential, but on-chain it’s not.

e Transaction Traceability: All interactions with
contracts are traceable back to user accounts
(pseudonymous addresses). Techniques exist to
cluster addresses or identify patterns, so user
behavior and relationships may be inferred. For
instance, in a supposedly anonymous voting
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contract, one could potentially link votes to certain
users by analyzing timing or transaction patterns.

e Data Privacy: If a smart contract processes
personal data (like identity information, medical
records, etc.), putting that directly on a public
blockchain would violate privacy in a serious way.
Regulatory  frameworks like GDPR are
fundamentally at odds with immutable, transparent
storage of personal data. Solutions often involve
storing only hashes on-chain and keeping actual
data off-chain with access control — but then the
trustless aspect is reduced.

5.4 Legal and Regulatory Challenges

Smart contracts straddle a line between code and law.
While the phrase "code is law" is popular in the
blockchain community, the reality is that legal systems
and governments may not recognize or accommodate
agreements purely encoded on blockchain without
additional legal framework. This creates a number of
challenges:

e Enforceability and Legal Recognition: Traditional
contracts are legal documents that can be enforced
in courts. A smart contract, however, is just code
executing automatically. If a dispute arises (for
example, if a bug causes an unfair outcome, or if
someone claims they agreed under duress or by
mistake), it's unclear how a court would treat the
situation. Some jurisdictions have passed laws
recognizing smart contracts (e.g., several US states
have legislation that says a contract cannot be
denied legal effect solely because it's a smart
contract). But the interpretation is tricky — the
contract terms might not be in natural language,
making it hard for a judge to interpret parties' intent
beyond "the code did X." There’s a gap between
the legally enforceable intent and the literal code
execution. In cases like the DAO hack, the hacker
infamously claimed that the smart contract code
permitted his actions (so it was "legal" by the
contract's terms), whereas others saw it as theft.
This philosophical conflict highlights the challenge:
do we consider the code as the final arbiter, or is
there an implicit higher-level agreement the code
was supposed to implement?

e Immutability vs. Legal Requirements: Laws like
GDPR give individuals rights to delete personal
data. But blockchain is immutable (and replicates
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data globally). If personal data is in a smart
contract, you can't just delete it. This conflict
means either avoid putting such data on-chain or
use encryption and off-chain storage. Another
issue: if a court orders to stop or reverse a
transaction (say it was fraudulent), how can that be
done on a decentralized chain? It’s practically
irreversible unless the community does a hard fork
(which is extremely rare and contentious, as seen
after the DAO hack fork of Ethereum vs Ethereum
Classic divergence).

Jurisdiction and Conflict of Laws: Smart contracts
often involve pseudonymous parties across
different jurisdictions. Which country's law applies
if something goes wrong? Even identifying the
parties can be hard if they only use addresses.
There may also be regulatory questions: for
example, are certain DeFi smart contracts
essentially unregulated securities exchanges?
Regulators like the SEC in the US have been
looking closely at decentralized platforms to see if
they violate financial laws. Operating purely via
code doesn't exempt from regulatory scope — those
who deploy or benefit from the contracts could be
targeted by enforcement.

Embedding Legal Contracts into Code: One
approach to reconcile legal and smart contracts is to
have hybrid contracts: a natural language
agreement that references a smart contract or even
incorporates it by reference. For instance, an ISDA
(International Swaps and Derivatives Association)
contract could include a clause that parties will use
a certain smart contract for payments or
calculations. The legal contract would govern
overall, while the smart contract handles execution.
If something went wrong, the legal contract could
override (like an oracle failure or exploit could be
handled by an off-chain settlement determined by
an arbiter). Projects in the "smart legal contracts"
space (like Accord Project) explore such hybrids.
There’s also the concept of Ricardian contracts —
human-readable contracts that also have a unique
identifier and can be processed by software.

Regulatory Compliance Built-in: Smart contracts
might need to incorporate rules to comply with law.
For example, a security token contract might
enforce that only KYC/whitelisted addresses can
hold the token, to comply with securities
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regulations. Or a gambling dApp might geoblock
certain regions by checking IP (if accessed through
a front-end) or require a proof of location. These
measures, however, are often circumventable
(because on-chain, you can't truly enforce
geography, users can use VPNs or just interact
directly with contracts). Nonetheless, attempts are
made to integrate compliance (like adding
pause/blacklist functions for regulatory reasons —
e.g., USDC stablecoin’s contract has blacklisting
ability to comply with law enforcement requests).

e Taxation and Reporting: If smart contracts handle
economic activity, how to ensure proper reporting
for tax? The anonymity and disintermediation
complicates the typical channels regulators use
(banks, centralized exchanges). Some jurisdictions
are forcing intermediaries (like requiring exchanges
to KYC and report transactions). If a significant
portion of commerce happened via smart contracts,
governments might attempt to require that contracts
have built-in backdoors or reporting — which goes
against decentralization ethos and likely not
feasible technically unless they force it at
endpoints.

5.5 Other Challenges and Outlook

Beyond the major categories above, there are several
additional challenges and considerations with smart
contracts:

e Development Complexity and Skill Shortage:
Writing secure and efficient smart contracts is
difficult and requires specialized knowledge.
The pool of developers who deeply understand
blockchain  programming  (Solidity/Vyper,
EVM, etc.) and security is relatively small.
This skill shortage can lead to mistakes or slow
down adoption. As mentioned in Section 5.1,
even experienced developers have gotten
things wrong due to the unusual paradigms
(like all variables being public, transaction
ordering issues, etc.). The industry is
responding with better educational resources,
frameworks, and higher-level languages, but
the learning curve remains a challenge. The
rapid change in blockchain tech (with new
layer 2s, new programming models) also
means constant learning.
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User Experience: Interacting with smart
contracts directly can be cumbersome for
users. Managing private keys, paying gas fees,
dealing with long addresses, etc., is not user-
friendly. Mistakes like sending funds to the
wrong contract or losing keys are unforgiving.
For mainstream adoption, much better UX
(likely abstracting the blockchain bits away) is
needed. Projects try to improve this via smart
contract wallets (with social recovery), user-
friendly ENS names instead of addresses,
meta-transactions (where someone else pays
gas for the user), etc. But striking a balance
between ease-of-use and decentralization is
tricky.

Upgrade and Maintenance: As discussed,
smart contracts are hard to patch once
deployed. While proxy patterns allow
upgrades, they introduce trust in the
upgradability (the owner could deploy
malicious new logic). Some contracts adopt a
time-delay for upgrades (so users can see code
of new version and exit if they don’t like it).
Others avoid upgrades entirely for security
(e.g., Uniswap V2 is immutable — they just
deployed V3 as a whole new set of contracts
when improving). Maintenance and
governance of smart contracts (especially those
that are parts of protocols) remain challenging
— they operate 24/7 globally, and flaws can’t
be hidden behind a firewall or fixed with a
quick hotpatch without users noticing. This is
both a challenge and, in a way, a strength
(forces more rigorous testing, but still things

slip).

Interoperability: There are many blockchain
platforms, and smart contracts on one typically
can’t directly interact with another. Cross-
chain bridges (often themselves implemented
via smart contracts + off-chain relays) exist,
but have been notorious targets for hacks
(many hundreds of millions stolen from
vulnerable bridges in 2021-2022). Achieving
secure interoperability is still a work in
progress. If a contract on Chain A could
reliably trigger one on Chain B through some
standardized protocol, it would open up
possibilities  (like using Bitcoin  within
Ethereum DeFi seamlessly, or doing atomic
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swaps across chains). Projects like Cosmos and
Polkadot focus on interoperability but within
their own ecosystems. General interoperability
still faces technical and trust challenges.

e Energy and Environmental Concerns: This is
more about underlying consensus (proof-of-
work vs proof-of-stake) than smart contracts
per se, but in as much as Ethereum until 2022
was PoW, the usage of its smart contracts had
an indirect environmental cost. With the merge
to PoS, Ethereum’s energy usage dropped by
>99%. So, this challenge has been largely
addressed for Ethereum, though other PoW
chains with contracts (like Bitcoin eventually
with layers, or others) might still consider it. In
any event, energy usage is less of a narrative
issue for smart contracts now, but it was a
barrier for some adoption (certain enterprises
didn’t want to use PoW networks due to ESG
CONCerns).

e Ethical and Societal Implications: Code-driven
contracts raise interesting questions. For
example, if an algorithm auto-liquidates a
user's collateral at an unfavorable moment due
to a glitch, there's no empathy or discretionary
judgment that a human might exercise. Also,
who is accountable? The developer, the DAO
governing a protocol, or no one (since “code
did it")? This "responsibility gap" could be an
issue, especially with Al and smart contracts
possibly merging in the future (autonomous
agents transacting). Societally, what if people
start relying on unstoppable code for things
that maybe should have human oversight (like
inheritance distribution — if a bug gave all to
one child and none to another, would that
stand?).

6. Conclusion

Smart contracts represent a fundamental paradigm shift
toward trustless automation of agreements, enabling
direct transaction execution without intermediaries. This
review comprehensively explores the smart contract
landscape, detailing its fundamental architecture—
including its embedded role within blockchain systems
and components like the EVM—and its complete
working principles. The paper provides an in-depth
discussion of the myriad challenges facing widespread
adoption, which include dominant concerns like critical
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security vulnerabilities (e.g., reentrancy exploits)
necessitating enhanced verification tools; scalability
limitations driving Layer 2 solutions; privacy issues
stemming from inherent blockchain transparency; and
pervasive legal and regulatory ambiguity concerning
enforceability. Despite these hurdles, we analyze the
accelerating integration of smart contracts across critical
domains like Decentralized Finance (DeFi) and supply
chain  management, also noting the positive
computational impact on software engineering and
distributed computing. In conclusion, while smart
contracts offer a powerful tool for efficiency and
innovation, realizing their full potential depends on
successfully navigating these architectural, technical,
and social challenges  through  coordinated,
interdisciplinary collaboration.
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