
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 9

Article Received: 25 July 2022 Revised: 12 September 2022 Accepted: 30 September 2022

 236
IJRITCC | September 2022, Available @ http://www.ijritcc.org

Migrating Legacy Angular JS Applications to

React Native: A Case Study

Manasa Talluri

Independent Researcher, Usa.

Abstract

Despite JavaScript libraries and frameworks growing in number over time, it is increasingly difficult for both

experienced and inexperienced developers to choose the appropriate one. There is currently no explicit review

process for developers to ensure that a framework matches the scope and objectives of their project. In order to

help developers choose the best framework for their project depending on their tastes and level of experience,

this study looks at the evaluation process. Because component-based React projects and traditional AngularJS

apps have distinct ideas, patterns, and structures, the transfer is challenging. This study outlines an easy,

affordable, and efficient way to switch from AngularJS to React apps. The research provides a framework with

comprehensive instructions for transforming the display layer of any conventional AngularJS application into a

component-based React application, while also comparing various approaches. Ng-React Copilot, a migration

support tool, was used to teach developers and automate the migration. The tool was created by converting the

framework's suggested major refactorings into a collection of detection methods and activating scanning against

the specified codebase. The utility works with popular integrated development environments and may be used

as a command-line tool. The framework and tool were tested on a subset of small, medium, and enterprise-level

AngularJS legacy applications, and the findings demonstrate that the study's conclusions are accurate.

Keywords: - JavaScript Libraries, AngularJS Application, Architecture, , Cost-Effective, Algorithms, Migration

Assistant, Ng-React Copilot,

I. INTRODUCTION

AngularJS was a comprehensive framework that made it

possible to create web applications quickly. Following

the MVC design enabled developers to incorporate the

same ideas found in server-side frameworks into client-

side programming. Because AngularJS was used to build

sophisticated apps, the framework's shortcomings

became apparent within a few years [1]. Some of these

problems resulted from the way the framework was

embraced by the community, while others were caused

by the framework's fundamental design.

The scope and two-way data binding were extensively

used to facilitate communication between the controller,

the template, and other crucial AngularJS components

like Directives since the framework promoted MVC

design [1, 2]. Scope Soup code was recognised as this

anti-pattern. Although AngularJS's two-way data flow

initially seemed promising, it made it very difficult to

anticipate data modifications in big applications.

Additionally, the templates were making the program

less predictable.

Front-end frameworks and libraries have proliferated in

the area of web development in recent years, giving

programmers the tools they need to construct dynamic

and effective online applications. Notably, React and

Angular have become popular choices, each with unique

benefits and capabilities. Facebook created the

JavaScript framework React, which uses a virtual

Document Object Model (DOM) for efficient rendering

and stresses a component-based design.

On the other hand, Google's all-inclusive framework

Angular offers a more complete solution with integrated

services and application architecture guidelines. Because

of the widespread use of these technologies and the

continuous debate about their relative advantages,

understanding the differences between them is crucial for

developers and enterprises looking to create scalable and

maintainable systems [2, 3]. This thesis' main goal is to

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 9

Article Received: 25 July 2022 Revised: 12 September 2022 Accepted: 30 September 2022

 237
IJRITCC | September 2022, Available @ http://www.ijritcc.org

provide a comparative examination of React and

Angular, supported by real-world knowledge gained via

creating two web applications: one using React and the

other using Angular.

By analysing their advantages, disadvantages, and

performance in several areas, this research aims to

provide a sophisticated understanding of how these

frameworks align with various project requirements and

development contexts.

Java script has gained popularity since HTML's

revolution. The fact that client-side scripting is just as

crucial as server-side scripting is widely acknowledged.

When smartphones and other mobile devices were

introduced, cross-platform application compatibility

became a difficult topic. A growing number of new

systematic JavaScript scripts were created as a result of

this need. They included jQuery. As the most dependable

and quick JS library, jQuery contributed to the reduction

of code lines [3, 4]. Soon, this turned into a revolution.

Numerous jQuery plug-ins were made available, each

capable of solving a thousand different issues in a

thousand different ways. To improve Java Script's

resilience, experience, and productivity, Google released

the AngularJS framework. Since AngularJS is MVC, it

has received a lot of praise and criticism so far.

Client-side front end developers have taken notice of the

declarative programming approach it introduced, and as

a result, the majority of businesses have already ceased

using jQuery and are switching to AngularJS [3, 4]. In

the user's perspective, AngularJS functions similarly to

an application and doesn't need additional server-side

interaction to calculate the front-end code. For single-

page web applications that need to function really well,

AngularJS is popular.

In almost every developer forum, one of the most recent

subjects of discussion is AngularJS vs. jQuery. Since

both frameworks are front end orientated and

optimisation and compression are methods that may be

used to enhance speed rather than migrate, some

individuals argue that it is not worth switching from

jQuery to AngularJS. Others argue that with the growing

popularity of MVC-based frameworks, AngularJS is the

ideal moment to replace jQuery, which has grown

outdated.

Today's most widely used browser programming

language, JavaScript, was created especially for creating

event-based user interfaces that work in a web browser.

For this reason, they are best suited to create client-side

applications [6, 7]. In recent years, they have also

evolved into a general-purpose computing platform that

works with browsers as well as other programs like office

suites and Rich Internet Application frameworks like

Google Web Toolkit, Qooxdoo.org, Cappuccino.org, and

others.

It had been seen that in the research conducted, they

compared jQuery library with BackboneJS in 2015. They

created an easy-to-use application utilising three distinct

frameworks: BackboneJS, jQuery, and plain JavaScript.

In order to make the browser load faster since there

would be less space, they utilised compressed versions of

all frameworks [7, 8]. Simple CRUD tasks, such as

creating, reading, updating, and deleting forms inside the

application, were to be carried out by it.

When applied to my situation, the 2013 study was an

intriguing endeavour. In a real-time setting, he attempted

to contrast the JavaScript BackboneJS and AngularJS

frameworks. He used the open-source to-do MVC

application with HTML local storage as the foundational

layer for his testing. using the aid of test environments

constructed using PhantomJS, the DOM performances of

the two comparable apps were examined [5, 6].

According to his investigation, AngularJS performs

better than BackboneJS when handling several DOM

entries at once, but it exhibits a delay while handling a

single item in a DOM 1000 times.

Some developers at Stack Overflow, the largest online

community of developers from around the world who

support and contribute to each other's work, have

expressed a slight concern that using a lot of these

plugins in an application could make it weak overall

because not all the libraries will always adhere to each

other firmly, even though jQuery is one of those

frameworks that makes programming easier [5, 6].

Instead of being a library, AngularJS is a JavaScript

framework that facilitates the extension of HTML into a

more legible and expressive language. Angular HTML is

embellished with unique markup that works in tandem

with JavaScript [5, 6]. As a result, you may stop manually

changing views and concentrate on building your

application logic. Angular is perfect for rich interactive

frameworks and contributes to cleaner, more efficient

code.

Numerous JavaScript frameworks are available. jQuery

is the most popular. The most popular framework for UI

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 9

Article Received: 25 July 2022 Revised: 12 September 2022 Accepted: 30 September 2022

 238
IJRITCC | September 2022, Available @ http://www.ijritcc.org

design is this one. completed a stunning analysis of the

jQuery framework's performance. They have effectively

raised awareness of the benefits and drawbacks of jQuery

in an assessed manner.

1.1 Migration strategy

Several well-known code migration techniques are used

in the industry, including the Big-Bang approach, which

calls for converting the entire codebase from the old

technology to the new technology in a single attempt, the

Side-by-Side approach [5, 6], which splits the old and

new applications at the entry level so that they can run

side by side, and the Bottom-Up approach, which enables

developers to gradually incorporate the new technology

by applying it to small portions of the application where

the changes can be isolated without affecting the entire

application.

1.2 Prepare AngularJS code for migration

The view layer of the legacy application, which consists

of templates and directives, is the simplest code to begin

the conversion, according to AngularjS migration

projects that have already been completed. AngularJS

directives are more similar to React components [7, 8].

The templates may be readily converted to components

by dividing them up into appropriate directives. These

little adjustments made to the program make its code

easier to work with without altering its functionality.

When a directive is converted to a single React

component, first group all of its code together so that old

code may be removed and transferred simultaneously [7,

8]. Next, because React is always element-based, prefer

directives as elements to attributes, comments, or classes.

React encourages the usage of plain Java script for

converting custom directives [23, 24]. The second option

is to do away with Angular translation, which is a

complex idea in AngularJS and is absent from React.

Previous study advises removing it as soon as feasible

since it makes the template behaviour very wasteful. In

a similar manner, a distinct HTML template may be

injected into a parent template using the ng-include

directive, indicating that the injected HTML is a stand-

alone piece of user interface [8, 9]. Accordingly, earlier

studies recommend isolating the Ng and including UIs as

directives.

The converted component's AngularJS-specific

functionalities should be replaced [9, 10]. It is necessary

to substitute JS-specific features or their React

counterparts for the many AngularJS capabilities

included in the directive templates. The options are

shown in the following Table 1.

Table 1 Other Options for AngularJS Functionalities.

[22]

AngularJS React

$http Fetch or Axios

$q
Native support in

ES6

$timeout/$interval Native timeout

$document/ $window
Native document

and window

$formats/$validators/$parsers

Vanila JS to

format, Validate

and parse data.

Ng-form, Filters, ng-extend,

Angular. merge
Vanila JS

Angular. Element
React-dom or

jQuery

Angular. For Eac, angular.

Extend, angular. Merge
Lodash

Ng-class, ng-show, ng-if, ng-

hide

Vanilla JS

conditions

Ng-minlength, ng-maxlenght,

ng-disable, ng-required

Minlength,

Maxlenght, disable

and Required

Default HTML

Validation

ngRoute/angular-Ui-router React router

Protractor
Enzyme,

Nightwatch.js

$httbackend , Dependency

injection
Jest or Re-wire

Ng-init, $onDestroy

Component Did

Mount(),

Component Will

Unmount()

Ng-model Default Value

Ng-click OnClick

Directive bindings may be immediately transformed to

props in the component by using props to specify the

inputs and outputs of a React component. It is advised to

declare props in the PropTypes section, which aids in

program validation and helps programmers determine

the inputs and outputs the component supports. The

directive logic must then be migrated into the component

when the props have been defined [9, 10].Because

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 9

Article Received: 25 July 2022 Revised: 12 September 2022 Accepted: 30 September 2022

 239
IJRITCC | September 2022, Available @ http://www.ijritcc.org

AngularJS and React have separate lifecycle event

systems, it is important to properly move the code into

AngularJS components. These factors make moving the

logic the most difficult and error-prone part of the whole

conversion process, thus it should be done carefully [12,

13].

React2Angular middleware may be used to wrap a React

component in a pseudo-Angular directive after the React

component is complete. This allows the AngularJS

application to connect with an Angular directive rather

than a React component [9, 10]. React components may

work together effortlessly inside the AngularJS

framework thanks to the pseudo directive. The

Angulag2React middleware's functionality is shown in

Figure 1.

Fig. 1 How React2Angular middleware facilitates data

flow. [22]

When an excessive number of characteristics are sent

down via the intermediate components, separate the

container components from the presentational ones. The

presentational components are in charge of handling user

interactions and rendering the user interface [9, 10].

Typically, container components transmit information to

presentational components after communicating with

backend servers and services [20, 21]. Container

components are mostly located on top of the component

tree and are primarily concerned with how things

operate, whereas presentational components are located

at the bottom of the tree and are exclusively concerned

with appearance.

II. METHODOLOGY

2.1 Choosing the migration strategy

In the highly competitive web application sector, the Big-

Bang strategy may be quite risky. The stability may be

impacted by the massive codebase duplication caused by

the side-by-side method. One of Angular and React's

primary benefits is that React can easily coexist with

AngularJS by acting as the View layer. Additionally,

React is a fairly lightweight library [11]. Taking into

account each of these strategies, the Bottom-Up strategy

was selected with less migration-related repercussions.

2.2 Migration framework

When transitioning AngularJS apps to React, the 23-step

incremental modifications covered in the literature study

section may be used as a generic kind of refactoring. To

create a framework that was both relevant and simple to

recall, those refactorings were grouped [12]. The best

grouping criteria, given the environment in which this

framework is used, were to categorise them according to

their function and the time they are used. The

corresponding groups and refactorings are shown below

[20].

Group 1: Break the application to directives

Refactoring #1: Put all of a directive's code in one place.

Refactoring #2: Give preference to directives as

elements over classes, comments, and attributes.

Refactoring #3: Get rid of transclusion

Refactoring #4: Use a directive in lieu of ng-include.

Refactoring #5: Extract a directive's root controller

Refactoring #6: As a directive, extract the controller.

Refactoring #7: Take a directive out of big templates.

Group 2: Define the input/outputs and isolate the

directive

Refactoring #8: Change the external reference to bound

inputs.

Refactoring #9: Use bound outputs in lieu of the external

impact.

Refactoring #10: Separate the scope of the directive

Refactoring #11: Use bound output in lieu of state

mutation.

Refactoring #12: Use one-way data binding instead of

two-way data binding.

Group 3: Convert the directives to React components

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 9

Article Received: 25 July 2022 Revised: 12 September 2022 Accepted: 30 September 2022

 240
IJRITCC | September 2022, Available @ http://www.ijritcc.org

Refactoring #13: In the React component, convert the

directive template to JSX.

Refactoring #14: Change the characteristics unique to

AngularJS that were used in the converted component.

Refactoring #15: The directive bindings should be

moved as component props.

Refactoring #16: Transfer the component's directive

logic.

Group 4: Bind the React component to AngularJS

Refactoring #17: Use the React2Angular middleware to

bind the React component to AngularJS.

Group 5: Miscellaneous changes

Refactoring #18: When too many characteristics are sent

down via the intermediate components, separate the

presentational components from the container

components.

Refactoring #19: Import the angular service into the

container component after converting it to a JavaScript

module.

Refactoring #20: Import the angular service into the

container component after wrapping it as a JavaScript

module.

Refactoring #21: Present a UI framework that offers

form widgets that are preferred by React.

Refactoring #22: Use custom directives to migrate

widgets to components.

Refactoring #23: Transfer validations, sanitisation, and

formatting to services

Fig. 2 The migration framework's workflow. [14]

III. IMPLEMENTATION

3.1 Automating the migration workflow

There are many degrees of automation that allow the

process to be completely automated without the need for

human involvement. Semi-automation is chosen as the

method to automate the workflow in accordance with the

project's scope in order to prevent unforeseen faults from

being introduced into automated code [13]. One

refactoring, #13, was discovered as a potential code

generation, and nine refactorings, #1, #2, #3, #4, #6, #7,

#12, #14, and #15, were identified as potential

refactorings to detect.

3.2 Consolidated migration assistance tool

The AngularJS to Angular conversion process is

automated using an existing solution called Angular

Copilot. It had an impact on the development of the "Ng-

React Copilot" AngularJS to React migration tool.

Fig. 3 Diagram of components for Ng-React Copilot.

[16]

The Ng-React Copilot tool is available for direct

download from GitHub for developers to use. In order to

start the tool as "node index.js," the developer might

provide the directory path to scan as the first parameter.

The three scan modes that Ng-React Copilot operates in

are code creation, analysis, and data extraction [11]. The

project's metadata is extracted in the Extract Data mode

and utilised in the Analysis mode. Analyse mode

scanning is used by the program after data extraction.

After the scan is finished, [12], the application will

compile all of the findings and provide the user with a

summary of the findings.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 9

Article Received: 25 July 2022 Revised: 12 September 2022 Accepted: 30 September 2022

 241
IJRITCC | September 2022, Available @ http://www.ijritcc.org

Fig. 4 Summary report for Ng-React Copilot. [18]

IV. RESULT AND EVALUATION

Based on their size and breadth, we established three tiers

of benchmark apps to assess the Ng-React Copilot tool.

These categories are,

• Small apps with simpler AngularJS code are an

example. For this category, benchmarking apps

are chosen from among the AngularJS

PhoneCat applications available on the official

AngularJS websites [13].

• Medium level programs, which are full

applications designed for server-specific uses

rather than starter apps. "Angular-app" is

chosen as the benchmarking application for this

category from among the AngularJS apps

posted on GitHub [17, 18].

• Candidates for this category include enterprise-

level applications with bigger and more

complex code bases.

Orange HRM Enterprise was chosen as the

benchmarking application for this category since it is an

HR solution that is based on AngularJS. The refactorings

found at each level of the migration are summarised in

the following Table 2.

Table 2 An overview of every detected refactoring.

Total files Applications Levels

Refactoring

occurrences
Small Medium Enterprise

Refactoring #1 26 88 1001

Refactoring #2 42 45 631

Refactoring #3 - -

Refactoring #4 - -

Refactoring #6

Refactoring #7 - -

Refactoring

#12
 - -

Refactoring

#13
 - -

Refactoring

#14
- - -

Refactoring

#15
- - -

4.1 File search efficiency of Ng-React

Copilot

The tool's speed was within an acceptable range since the

scan times for all three instances were less than 10

seconds. There was a problem since it produced a lot of

false positives by failing to exclude library files that

weren't in the designated directories [16].

4.2 Migration flow

Compared to enterprise-level apps, the migration of

small applications was very simple. The ability of simple

migrations is diminished as logic and code complexity

rise.

4.3 Speed of migration

The ability to automatically construct the React

component from the directive template and highlight the

AngularJS-specific usages is the most effective

automation step of the Ng-React Copilot tool.

Refactoring the current AngularJS code to create separate

directives takes up most of the work [16, 19]. The

migration accelerated when the isolated directions were

withdrawn [16]. Developers must address the current

scope soup inefficiencies in order to create separated

directives from AngularJS code.

4.4 Accuracy of Ng-React Copilot

During the scanning process, several false positives were

found, despite the refactoring detection's generally high

accuracy. All instances of the ng-controller directive's

use were highlighted in "Refactoring #6," although some

of them are required at the AngularJS component tree's

root level. The Ng-React Copilot tool helped with

"Refactoring #15," however it identified the variables as

false positives when they were within JSX in-line

routines.

V. CONCLUSION

A framework and tool for moving the display layer of

older AngularJS apps to more recent React-based apps

are proposed in this project. Application migration at the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 9

Article Received: 25 July 2022 Revised: 12 September 2022 Accepted: 30 September 2022

 242
IJRITCC | September 2022, Available @ http://www.ijritcc.org

small, medium, and enterprise levels was used to test the

suggested framework and tool, and the findings indicate

that the suggested approach works well at all three levels.

The automation tool has to be enhanced to include the

manual refactorings that were not discovered in the

framework in order for it to be helpful in enterprise-level

application migration, even if the framework meets the

majority of the requirements for such migrations.

It is necessary to manually configure the Ng-React

Copilot. The Ng-React Copilot tool, which displays all of

the refactorings simultaneously, does not represent the

migration procedure that the framework offers. This

leaves the user unsure of where to begin the transfer

procedure. The AngularJS application's leaf nodes cannot

be automatically identified in order to initiate the

transfer. Most time-consuming phases in the business

application conversion process, such converting

controllers to directives, preventing scope soup in the

code, isolating directives, and moving the functionality

of the directives, are not automated by the tool. The

framework leaves it up to the developer to make

judgements since it offers no ways to prevent coupling

between external libraries.

It is necessary for the developer to determine whether or

not the false positives found in the NgReact Copilot tool

are false positives. It is ineffective and misleading.

React's methods vary from the direct DOM

manipulations used in other libraries like Jquery-based

controls, making the conversion challenging when

AngularJS UI relies on them. With incompatible JS event

systems, the same problem existed. Since they are

beyond the purview of this study, the JSX syntaxes and

the rules for the newest React features, including React

hooks, will not be covered in comprehensiveness.

VI. FUTURE WORK

The following ways have been suggested to get around

the restrictions. To allow for customisation according to

the kind of application, the Ng-React Copilot tool should

be improved to take settings via a configuration file.

Enhancing the tool to detect the use of the AngularJS

directive in the code is preferable. To begin the migration

process, make a component map and highlight the leaf

nodes. There should be further investigation on the most

popular couplings between AngularJS and other libraries,

as well as some recommendations for standardising their

refactoring. For instance, Jquery and AngularJS are used

in the majority of apps; more study is needed to

determine how to transfer such direct DOM manipulation

functionality into React. That information needs to be

included in the Ng-React Copilot tool.

The Ng-React Copilot tool's detection algorithms need to

be enhanced in logic to prevent false positives. To

provide the developer a clear picture of the effort, it

would be beneficial if the tool could estimate the number

of lines in the code that would be associated with the

identified refactorings. To identify further framework

and tool restrictions and enhancements, the assessment

should be carried out by running enterprise applications

through their whole lifecycle from bottom to top. For

instance, there are no instructions in the suggested

framework on how to switch an AngularJS application's

routing to React. Currently, developers are free to choose

how to set up React and other necessary libraries in an

AngularJS application, since this framework does not

cover these steps or instructions.

REFERENCES

[1] David Flanagan. JavaScript: The Defnitive Guide,

7th Edition. O’Reilly Media, Inc., 2020.

[2] JavaScript: The Good Parts. O’Reilly Media, Inc.,

2008.

[3] Axel Rauschmayer. Exploring ES6 Upgrade to the

next version of JavaScript. 2018.

[4] T. J. Crowder. JavaScript: The New Toys. Wrox,

2020.

[5] Koskinen, I., Zimmerman, J., Binder, T., Redström,

J., & Wensveen, S. (2011). Design research through

practice: From the lab, field, and showroom.

Morgan Kaufmann.

[6] M. A. Putri, H. N. Hadi, and F. Ramdani.

Performance testing analysis on web application:

Study case student admission web system. pages 1–

5, 11 2018.

[7] J. Voutilainen. Evaluation of front-end javascript

frameworks for master data management application

development. pages 4–6, 12 2017.

[8] Y. K. Xing, J. P. Huang, and Y. Y. Lai. Research and

analysis of the front-end frameworks and libraries in

e-business development. pages 68–72, 08 2019.

[9] Rafael Auler, Edson Borin, Peli Halleux, Michal

Moskal, and Nikolai Tillmann. Addressing

javascript jit engines performance quirks: A

crowdsourced adaptive compiler. volume 8409, 04

2014.

[10] Buckler, C. (2016), ‘Browser Trends January 2016:

12 Month Review’, Site-point Blog, 12 January.

[11] Calero, C., Ruiz, J. and Piattini, M. (2004), ‘A web

metrics survey using WQM’, Web Engineering,

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 9

Article Received: 25 July 2022 Revised: 12 September 2022 Accepted: 30 September 2022

 243
IJRITCC | September 2022, Available @ http://www.ijritcc.org

1(2004109140), pp. 147–160. Chrome Developer

(2016) Profiling JavaScript Performance [Online].

[12] Conrad, A. (2012), ‘3 Reasons to Choose AngularJS

for Your Next Project’, Envato TutPlus, 26

December.

[13] Eric, A. M. and Bert, B. (2001) Introduction to CSS3

[Online].

[14] Faruk, Paul, Alex, Ryan, Patrick, Stu and Richard

(2016) What is Modernizr? [Online].

[15] Gayatri, N Nickolas, S. R. A. V. (2009),

‘Performance Analysis and Enhancement of

Software Quality Metrics using Decision Tree based

Feature Extraction’, Int. J. of Recent Trends in

Engineering and Technology, 2(4), pp. 4–6.

[16] Gizas, A., Christodoulou, S. P. and Pomonis, T.

(2014), ‘Performance and Quality Evaluation of

jQuery Javascript Framework’, Science and

Engineering Publishing Company, 3(1), pp. 12–22.

[17] Habra, N., Abran, A., Lopez, M. and Sellami, A.

(2008), ‘A framework for the design and verification

of software measurement methods’, Journal of

Systems and Software, 81(5), pp. 633–648.

Halstead, M. H. (1977), Elements of Software

Science (Operating and Programming Systems

Series), New York: Elsevier Science Inc.

[18] Ladan, Z. and Hagelb¨ack, J. (2015), ‘Comparing

performance between plain JavaScript and popular

JavaScript frameworks’, Linnaeus University

Swedan, 1(1), pp. 1–26.

[19] Lamb, D. (2014), ‘jQuery vs. AngularJS: A

Comparison and Migration Walkthrough’, Airpair

Blog.

[20] Lei Kai, Ma Yining, T. Z. (2015), ‘Performance

comparison and evaluation of web development

technologies in PHP, Python and Node.js’,

Proceedings - 17th IEEE International Conference

on Computational Science and Engineering, CSE

2014, Jointly with 13th IEEE International

Conference on Ubiquitous Computing and

Communications, IUCC 2014, 13th International

Symposium on Pervasive Systems, 1(1), pp. 661–

668.

[21] J. Cincovi´c and M. Punt. Comparison: Angular vs.

react vs. vue. which framework is the best choice?

In: Zdravkovi´c, M., Konjovi´c, Z., Trajanovi´c, M.

(Eds.) ICIST 2020 Proceedings, pages 250–255,

2020.

[22] Juilee Waranashiwar and Manda Ukey. Ionic

framework with angular for hybrid app

development. 2018.

[23] iFour Team, Devon Fata, Pixoul’s CEO. Which

technology is better, angularjs or reactjs for frontend

development? 04 October 2021.

[24] iFour Team, Justin Nabity, Originator, and CEO of

Doctors Thrive. Which technology is better,

angularjs or reactjs for frontend development? 04

October 2021.

http://www.ijritcc.org/

