
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 7

Article Received: 28 April 2022 Revised: 30 June 2022 Accepted: 19 July 2022 Publication: 31 July 2022

__

154

IJRITCC | July 2022, Available @ http://www.ijritcc.org

Adaptive System Design: Architectural Design

Considerations for Secure Context Awareness

Poonam Ponde1

Department of Computer Science,

Nowrosjee Wadia College, Pune, India

poonamponde@gmail.com

Manisha Bharambe2

Department of Computer Science,

MES Abasaheb Garware College, Pune, India

mgb.agc@mespune.in

Harshita Vachhani3

Department of Computer Science,

Pratibha College of Commerce and Computer Studies, India

Profharshita@gmail.com

Abstract— Modern software systems increasingly operate in dynamic and unpredictable environments. This requires adaptive

capabilities to maintain performance, reliability, and security. Context awareness is a crucial aspect, allowing systems to

understand and react to their surroundings. However, the collection, processing, and utilization of context information introduces

significant security and privacy challenges. Architectural design considerations for building secure, context-aware adaptive

systems are explored. This paper presents a comprehensive architectural framework for secure, context-aware adaptive systems,

integrating security and software design patterns across all functional blocks. Design patterns are reusable solutions to commonly

occurring problems. By embedding security functions into each component and applying design patterns, the proposed

architecture aims to build systems that are not only adaptable but are also secure. Important considerations include secure context

sensing, context aggregation, dynamic policy management, and privacy-preserving data handling. The architecture emphasizes

a modular and layered approach, incorporating established architectural and security design patterns.

Keywords- Context-awareness, Security, Architecture, Software engineering, Adaptive, Design patterns.

I. INTRODUCTION

Context awareness is an integral aspect of ubiquitous and

pervasive computing. A context aware system provides relevant

services to the user according to the environment. Any

information which can be used to describe the circumstances of

a user in an operation can be considered as context. A context-

aware system is concerned with who, where, when, and what of

various entities and uses this information to determine how it

affects the application. The proliferation of ubiquitous

computing, the Internet of Things (IoT), and highly

interconnected environments has given rise to a new paradigm

in software engineering: adaptive systems. Unlike traditional

static systems, adaptive systems possess the inherent ability to

autonomously modify their behavior, structure, or policies in

response to changes in their internal state or external

environment (Cheng & Garlan, 2010). This adaptability is vital

for maintaining desired quality-of-service, optimizing resource

utilization, and ensuring robustness in complex contexts.

Examples range from smart grids adapting to demand

fluctuations (Lu et al., 2013) to e-health systems adjusting care

plans based on patient vital signs (Coutinho et al., 2014).

Context awareness lies at the heart of any adaptive system.

Context refers to any information that can be used to

characterize the situation of an entity (Dey, 2001). This

includes, but is not limited to, location, time, user activity,

device capabilities, network conditions, and environmental

factors. By accurately sensing, interpreting, and reacting to

context, adaptive systems can deliver more personalized,

efficient, and relevant services (Schilit et al., 1994).

Applications include smart homes, weather forecasts, or a

mobile application that modifies its UI based on network

bandwidth and user location (Perera et al., 2014).

However, context awareness comes with significant security

and privacy implications. Contextual information often contains

highly sensitive data about individuals, organizations, or critical

infrastructure (Bellavista et al., 2008; Krishna & Babu, 2012).

Malicious users could exploit vulnerabilities in context

acquisition or processing to gain unauthorized access,

manipulate system behavior, or launch privacy-invasive attacks

(Loehr & Hartenstein, 2006). This necessitates a shift from

traditional, static security models to more dynamic and context-

aware approaches (Chen & Kotz, 2009). Therefore, designing

adaptive systems with inherent secure context awareness is a

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 7

Article Received: 28 April 2022 Revised: 30 June 2022 Accepted: 19 July 2022 Publication: 31 July 2022

__

155

IJRITCC | July 2022, Available @ http://www.ijritcc.org

fundamental architectural requirement. This paper aims to

systematically analyze and present architectural design

considerations for integrating security into adaptive context-

aware systems. A key aspect of achieving robust and

maintainable architectures is the integration of software design

patterns (Gamma et al., 1994) into the design, which offer

proven solutions to recurring design problems. Research has

also specifically explored pattern-oriented approaches for

context-aware systems (Rossi et al., 2005; Riva et al., 2006;

Ponde et al., 2019). The paper also explores how these patterns

can specifically contribute to the security and adaptability of

context-aware systems.

II. RELATED WORK

2.1 Context Awareness

Context awareness research began with foundational definitions

(Dey, 2001) and frameworks for ubiquitous computing (Schilit

et al., 1994), evolving to include formal context modeling for

reasoning (Wang et al., 2004; Kagal et al., 2001). Adaptive

systems research has focused on self-adaptive paradigms like

autonomic computing (Kephart & Chess, 2003) and

architectural feedback loops such as MAPE-K (Cheng &

Garlan, 2010; Oreizy et al., 1999).

2.2 Design Patterns

The application of software design patterns to improve system

robustness is well-established (Gamma et al., 1994). This

extends to security patterns, which provide reusable solutions

for common security problems like authentication and secure

logging (Schumacher et al., 2006; Kohl et al., 1993). Patterns

have also been explored for adaptive system design,

emphasizing modularity and dynamic configuration

(Buschmann et al., 1996). A pattern-oriented approach has been

investigated for the design and implementation of context-

aware systems (Ponde et al., 2019) highlighting patterns and

pattern language for context awareness.

Security

2.3 Security Patterns

The intersection of security and context awareness is a growing

concern. Literature identifies security and privacy issues

inherent in context-aware systems, such as sensitive

information exposure and manipulation (Bellavista et al., 2008;

Krishna & Babu, 2012). While context can enhance security by

enabling adaptive authentication (Chen & Kotz, 2009), it also

introduces new vulnerabilities (Loehr & Hartenstein, 2006).

Privacy-by-design principles (Langheinrich, 2001) and context-

aware privacy policies (Ferri et al., 2007) are crucial in this

domain. This paper builds upon these foundations, proposing an

architecture for adaptive, context-aware system with security

aspects intrinsically woven into the design.

III. ARCHITECTURAL DESIGN

Designing a secure context-aware adaptive system requires a

layered and modular architecture that integrates security

considerations at every stage of the context lifecycle. The

proposed architecture, depicted in the block diagram in Figure

1 covers crucial aspects of integrating context such as context

sources, context acquisition, context processing, and context

reasoning. The design also embeds security functions into each

component. This section elaborates on the key architectural

blocks of the secure, adaptive context-aware system, outlining

their responsibilities and highlighting relevant software design

patterns that facilitate their implementation.

Figure 1. Architectural design of a secure, context-aware

system

3.1 Security Policy Repository

The Security Policy Repository acts as the centralized,

authoritative, and highly secure store for all security policies,

rules, and constraints that govern the system's operation. This

includes both static policies and dynamically generated

adaptive policies. Its core function is to ensure the integrity,

availability, and non-repudiation of these crucial policies.

To achieve this, patterns like the Repository pattern ensure a

clean separation between the domain logic and data access,

promoting maintainability. Version Control patterns are critical

for tracking changes, enabling rollbacks, and auditing policy

evolution. Immutable Data patterns can be applied to policy

versions to ensure integrity, Auditor patterns help log all access

and modification attempts for analysis; contributing to the

Secure Configuration security pattern (Schumacher et al.,

2006).

3.2 Credential and Key Management

The Credential and Key Management block is a highly secured

system responsible for managing all cryptographic keys, digital

certificates, and sensitive credentials required by various

system components and context sources. This includes

functionalities typically handled by a Public Key Infrastructure

(PKI) and Hardware Security Modules (HSMs).

This central entity is very important since a compromise of this

system would adversely affect the confidentiality and integrity

of communication and data across the entire architecture. The

Singleton pattern might be used for controlling access to this

critical resource, ensuring a single point of control (Gamma et

al., 1994). The Vault (Security Pattern) directly applies here,

providing a secure, isolated store for secrets (Schumacher et al.,

2006). Proxy patterns can be used to control and log all access

to the underlying secure storage.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 7

Article Received: 28 April 2022 Revised: 30 June 2022 Accepted: 19 July 2022 Publication: 31 July 2022

__

156

IJRITCC | July 2022, Available @ http://www.ijritcc.org

3.3 Context Sources

Context Sources comprise raw contextual information that is

acquired from various sources, which can include physical

sensors, user inputs, external APIs (e.g., weather services,

social media feeds), and internal system logs (e.g., network

traffic, CPU load). (Dey, 2001; Schilit et al., 1994). The primary

security concern at this stage is to ensure the authenticity and

integrity of the raw data. If context data is compromised at the

source, it can lead to manipulated system behavior or erroneous

security decisions further down the line.

The Observer pattern is often useful for sensors to notify when

new data is available (Gamma et al., 1994). A Gateway or Data

Source Integration pattern facilitates connecting to diverse

external data providers.

3.4 Secure Context Input

The Secure Context Input block securely collects and pre-

processes raw context data from various sources and transforms

heterogeneous inputs into a standardized, verified, and sanitized

format. This block is crucial for preventing malicious data

injection, filtering out noise, and ensuring data quality through

mechanisms like secure communication channels and source

authentication. The Input Validation (Security Pattern) is

fundamental here, sanitizing inputs before further processing

(Schumacher et al., 2006). The Authenticator (Security Pattern)

ensures that data originates from trusted sources. A Privacy

Filter pattern can be applied to minimize sensitive data or

anonymize it early, aligning with privacy-by-design principles

(Langheinrich, 2001). Concepts of a Mediator or Broker pattern

can facilitate decoupled communication between context

producers and consumers while maintaining security.

3.5 Context Storage and Processing

The Context Storage and Processing block is responsible for

securely storing the acquired and validated context data, and

performing initial processing such as aggregation, and

formatting for higher-level reasoning. This block focuses on

ensuring the confidentiality, integrity, and availability of stored

context, preventing unauthorized access or tampering that could

lead to replay attacks, sensitive information inference, or

misleading the adaptive system (Bellavista et al., 2008; Krishna

& Babu, 2012). The Repository pattern is essential for

managing persistent storage (Gamma et al., 1994). Encryption

(Security Pattern) is applied to stored data for confidentiality.

Fine-grained Access Control List (ACL), Role-Based Access

Control (RBAC), or Attribute-Based Access Control (ABAC)

patterns dictate who can access what context. The Immutable

Log pattern helps create tamper-resistant records of context

changes. An Aggregator pattern is crucial for combining diverse

context streams into a coherent view.

3.6 Security Monitoring and Anomaly Detection

This block continuously observes all context data streams,

system logs, component behaviors, and adaptive actions. It

employs advanced analytics, and rule-based systems to identify

deviations, suspicious patterns, or known threat indicators. It

provides real-time threat intelligence, enabling the adaptive

system to respond dynamically to security incidents and detect

threats (Ning et al., 2001; Loehr & Hartenstein, 2006). The

Observer pattern is fundamental for subscribing to system

events and data streams (Gamma et al., 1994). Strategy patterns

can encapsulate various detection algorithms (e.g., statistical

anomaly detection, signature-based detection). The Alerting

(Security Pattern) is used to notify relevant components or

administrators of detected threats (Schumacher et al., 2006). A

Circuit Breaker pattern might temporarily halt suspicious

operations.

3.7 Context Reasoning Engine

The Context Reasoning Engine serves as the "brain" of the

system. It processes the clean, aggregated context data to fuse

information, infer higher-level situations, predict future states,

or identify significant events (Wang et al., 2004; Kagal et al.,

2001). This is typically achieved using semantic reasoning,

inference models, and complex rule-based systems. The

security of this block is paramount, as incorrect, biased, or

malicious inferences can directly lead to misapplied security

policies, opening vulnerabilities or causing denial of service.

The Interpreter pattern can be used for processing rule sets or

logical expressions. The Mediator pattern helps coordinate

interactions between different reasoning sub-components.

Strategy patterns allow for swapping different reasoning

algorithms.

3.8 Adaptive Policy and Decision Engine

This block is the core of the system's adaptability and security

response (Cheng & Garlan, 2010; Kephart & Chess, 2003). It

dynamically generates, updates, and manages security policies

in real-time based on the inferred context and detected threats.

This includes resolving policy conflicts, assessing risks of

proposed adaptations, planning the optimal adaptation strategy,

and orchestrating its secure deployment. It translates security

insights into actionable, real-time policy adjustments to

mitigate emerging threats or optimize the overall security

posture (Chen & Kotz, 2009). The Strategy pattern is vital for

selecting appropriate adaptation strategies based on risk and

context. The Policy Decision Point (PDP) (Security Pattern) is

embedded here, making authorization decisions (Schumacher et

al., 2006). State patterns can manage the lifecycle of adaptive

policies. An Orchestrator pattern coordinates the complex steps

of adaptation planning and policy deployment. The Builder

pattern can be used to construct new dynamic policies.

3.9 Secure Actuation and Enforcement

The Secure Actuation and Enforcement layer is responsible for

securely implementing the adaptive decisions and enforcing

security policies across the system. This involves controlling

and reconfiguring system components, dynamically adjusting

access controls (acting as Policy Enforcement Points, PEPs),

triggering alerts, or modifying service behavior. It is the final

point of security enforcement and adaptation execution,

ensuring that all actions are authorized, auditable, and executed

securely to prevent system compromise (Oreizy et al., 1999).

The Policy Enforcement Point (PEP) (Security Pattern) is a core

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 7

Article Received: 28 April 2022 Revised: 30 June 2022 Accepted: 19 July 2022 Publication: 31 July 2022

__

157

IJRITCC | July 2022, Available @ http://www.ijritcc.org

element, ensuring no action bypasses policy (Schumacher et al.,

2006). The Command pattern can encapsulate adaptive actions

for execution (Gamma et al., 1994). The Proxy pattern can be

used to control access to system resources being reconfigured.

Secure Remote Procedure Call (RPC) or Message Bus patterns

facilitate secure communication for actuation. The Auditor

pattern ensures all changes are logged for accountability, and

Rollback mechanisms are critical for recovering from failed or

malicious adaptations.

3.10 Application/Service Layer

The Application/Service Layer represents the actual business

logic, user-facing applications, and core services that consume

context-aware features and adapt their behavior. From an

application design perspective, this layer actively consumes

secure context information provided by the Context Reasoning

Engine to become truly context-aware, enabling

personalization, proactive assistance, or intelligent resource

management (Perera et al., 2014). It also receives adaptation

directives (e.g., changes in access permissions,

reconfigurations) from the Secure Actuation & Enforcement

layer, which it uses to dynamically adjust its functionality or

user experience. Applications here must be designed with an

awareness of the underlying security policies, properly

interpreting contextual data, handling sensitive information

responsibly, and gracefully responding to adaptive changes.

The Context Object pattern allows applications to easily access

and interpret contextual data. Authentication and Authorization

patterns are crucial within the application itself (Schumacher et

al., 2006). An API Gateway and Service Façade pattern can

secure external access, and Circuit Breaker patterns improve

resilience.

IV. CONCLUSION

Adaptive systems driven by context awareness offer vast

opportunities for creating intelligent and user-centric software.

However, the dynamic nature and reliance on sensitive

contextual information introduces significant security

challenges. This paper has outlined a comprehensive set of

architectural design considerations for building secure context-

aware adaptive systems. The architecture showcases a robust

and modular design for secure context-aware adaptive systems

by integrating well-established architectural and security design

patterns across all components. The design combines adaptive

logic, continuous monitoring, secure context handling, and

dynamic policy enforcement, thereby ensuring both flexibility

and security. The proposed architectural block diagram

illustrates how components can interact, with security

monitoring and adaptive policy management acting as crucial

feedback loops to maintain a robust security posture in a

continuously changing environment. The paper highlights the

role of software design patterns in providing proven, reusable

solutions to implement security principles effectively within

each architectural block. Emphasizing security and privacy at

every stage—from input validation and credential management

to anomaly detection and policy adaptation—makes the system

not only intelligent and context-sensitive but also inherently

trustworthy and scalable for real-world deployments.

Despite current advancements, several promising directions

remain for future research in secure adaptive systems. These

include formal verification of adaptive policies to ensure

security properties are maintained during dynamic changes, and

addressing scalability challenges in large, distributed

environments. Lastly, a well-defined pattern language for

secure adaptive design can standardize solutions and promote

best practices. This paper proposes a rapid future-oriented

content analysis of wireless networks, aiming to explore

emerging trends, technologies, and challenges. By focusing on

advanced methodologies and predictive insights, it seeks to

understand how evolving wireless network content can shape

future innovations, enhance performance, and address potential

issues efficiently.

REFERENCES

[1] Bellavista, P., Corradi, A., & Stefanelli, C. (2008). Context-

aware systems: A security and privacy perspective. Journal

of Network and Computer Applications, 31(3), 327-342.

[2] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,

& Stal, M. (1996). Pattern-Oriented Software Architecture,

Volume 1: A System of Patterns. John Wiley & Sons.

[3] Chen, S., & Kotz, D. (2009). A survey of context-aware

mobile computing research. Dartmouth College Computer

Science Technical Report, TR2009-649.

[4] Cheng, B. H., & Garlan, D. (2010). Software architecture

for self-adaptive systems: An introduction. In Software

engineering for self-adaptive systems (pp. 1-9). Springer.

[5] Coutinho, M., Garcia, A. F., & Barbosa, M. G. (2014).

Context-awareness in e-health: A systematic review.

International Journal of Medical Informatics, 83(12), 920-

932.

[6] Dey, A. K. (2001). Understanding and using context.

Personal and Ubiquitous Computing, 5(1), 4-7.

[7] Ferri, F., Grifoni, P., & Piccioni, F. (2007). Context-aware

privacy in pervasive systems: A survey. In Managing

contextual information for decision support systems (pp.

243-268). IGI Global.

[8] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994).

Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley.

[9] Garlan, D. (2000). Software architecture: A roadmap. In

The future of software engineering (pp. 91-101). ACM.

[10] Hansman, S., & Hunt, J. (2000). A taxonomy of network

and computer attacks. Computers & Security, 19(3), 200-

210.

[11] Hong, J., Ng, J., & Landay, J. (2004). A privacy-sensitive

architecture for context-aware applications. Proceedings of

the 2004 ACM symposium on Applied computing (SAC),

1774-1779.

[12] Howard, M., & LeBlanc, D. (2003). Writing secure code

(2nd ed.). Microsoft Press.

[13] Kagal, L., Anupam, V., & Finin, T. (2001). A framework

for context-aware security in pervasive computing.

Proceedings of the 2001 ACM workshop on Security in

mobile computing and applications, 1-10.

[14] Kephart, J., & Chess, D. (2003). The vision of autonomic

computing. Computer, 36(1), 41-50.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 7

Article Received: 28 April 2022 Revised: 30 June 2022 Accepted: 19 July 2022 Publication: 31 July 2022

__

158

IJRITCC | July 2022, Available @ http://www.ijritcc.org

[15] Klein, C., Becker, S., & Garlan, D. (2009). An aspect-

oriented approach to dynamic software architectures.

Proceedings of the 4th international workshop on Software

engineering for adaptive and self-managing systems

(SEAMS), 127-136.

[16] Kohl, J., Neuman, B., & Ts'o, T. (1993). The Kerberos

Network Authentication Service (V5). RFC 1510.

[17] Krishna, K. V., & Babu, A. S. (2012). Secure context

management for ubiquitous computing environments.

International Journal of Computer Science Issues (IJCSI),

9(1), 382-386.

[18] Kumar, M., & Kumar, R. (2009). Context-aware security in

mobile environments. International Journal of Network

Security, 9(3), 302-308.

[19] Langheinrich, M. (2001). Privacy by design—principles of

privacy-aware ubiquitous systems. In Ubicomp 2001:

Ubiquitous Computing (pp. 273-291). Springer.

[20] Loehr, M., & Hartenstein, H. (2006). A survey of secure

and privacy-aware mobile computing. Proceedings of the

2nd IEEE International Conference on Mobile Ad-hoc and

Sensor Systems (MASS).

[21] Lu, Y., Wu, J., & Wang, J. (2013). Towards an adaptive

security architecture for smart grid. Proceedings of the

2013 IEEE International Conference on Smart Grid

Communications (SmartGridComm), 597-602.

[22] Ma, J., Wang, Z., & Chen, G. (2006). An adaptive

architecture based on reflection for context-aware

pervasive computing. Proceedings of the 2006 IEEE

International Conference on Pervasive Computing and

Communications (PerCom), 137-146.

[23] Medvidovic, N., & Taylor, R. N. (2000). A classification

and comparison framework for software architecture

description languages. IEEE Transactions on Software

Engineering, 26(1), 70-93.

[24] Ning, P., Wang, X. S., & Jajodia, S. (2001). Design and

implementation of an intrusion detection system for ad hoc

networks. IEEE Communications Magazine, 39(1), 118-

125.

[25] Oreizy, P., Medvidovic, N., & Taylor, R. N. (1999).

Architecture-based runtime software evolution.

Proceedings of the 21st International Conference on

Software Engineering (ICSE '99), 177-186.

[26] Pascoe, J. (1998). The stick-e notes architecture: Extending

the interface beyond the desktop. Proceedings of the 1998

International Conference on Intelligent User Interfaces

(IUI), 261-264.

[27] Ponde, P., Shirwaikar, S., & Kharat, V., (2019) A Pattern

Oriented Approach for Context Aware Systems.

International Journal of Software Engineering, Vol 12

No.1, pp.79-99.

[28] Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos,

D. (2014). Context aware computing for the Internet of

Things: A survey. IEEE Communications Surveys &

Tutorials, 16(1), 414-454.

[29] Riva, O., Di Flora, C., Russo, S., & Raatikainen, K. (2006,

March). Unearthing design patterns to support context-

awareness. In Fourth Annual IEEE International

Conference on Pervasive Computing and Communications

Workshops (PERCOMW'06) (pp. 5-pp). IEEE.

[30] Roman, M., & Campbell, R. H. (2003). A model for

context-aware adaptation in mobile multi-agent systems.

Journal of Computer Systems Science & Engineering,

18(4), 317-332.

[31] Rossi, G., Gordillo, S., & Lyardet, F. (2005). Design

Patterns for Context-Aware Adaptation. In Symposium on

Applications and the Internet Workshops (SAINT 2005

Workshops), 170-173.

http://doi.org/10.1109/SAINTW.2005.1620004

[32] Schilit, B. N., Adams, N., & Want, R. (1994). Context-

aware computing applications. Proceedings of the

Workshop on Mobile Computing Systems and Applications,

85-90.

[33] Schmidt, A., Beigl, M., & Gellersen, H. W. (1999). There

is more to context than location. Computers & Graphics,

23(6), 893-901.

[34] Schumacher, M., Fernandez-Buglioni, E., Hybertson, D.,

Buschmann, F., & Sommerlad, P. (2006). Security

Patterns: Integrating Security and Business Processes.

John Wiley & Sons.

[35] Stajano, F., & Anderson, R. (1999). The resurrecting

duckling: Security issues for ubiquitous computing.

Proceedings of the 7th Security Protocols Workshop, 17-

22.

[36] Vasconcelos, A., Alvares, L., & Baggio, R. (2007). Secure

and trusted context-awareness for pervasive environments.

In Pervasive Computing and Communications Workshops

(PERCOMW '07) (pp. 165-170). IEEE.

[37] Wang, X., Zhang, D., & Yang, M. (2004). Context

modeling and reasoning for pervasive computing.

Proceedings of the International Conference on Pervasive

Computing and Communications (PerCom), 143-150.

[38] Weiser, M. (1991). The computer for the 21st century.

Scientific American, 265(3), 94-104.

[39] Xu, J., Zhang, C., & Xu, Y. (2011). Secure and private

context sensing and sharing in mobile social networks.

Proceedings of the IEEE Global Communications

Conference (GLOBECOM), 1-5.

[40] Yuan, S. F., & Yu, J. W. (2005). Research on security

architecture of context-aware pervasive computing.

Proceedings of the International Conference on Mobile

Computing and Ubiquitous Networking (MobiQuitous), 1-

6.

[41] Zhou, B., & Zhang, J. (2008). A survey of context-aware

security in pervasive computing. Proceedings of the 5th

International Conference on Ubiquitous Intelligence and

Computing (UIC), 33-44.

http://www.ijritcc.org/

