
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 13 Issue: 1

Article Received: 25 January 2025 Revised: 12 March 2025 Accepted: 30 May 2025

 133
IJRITCC | May 2025, Available @ http://www.ijritcc.org

Artificial Neural Networks and Optimization

Technique: A theoretical study

Basir Ahamed Khan
Department of Physics, Murshidabad University

Berhampore, Murshidabad 742101, India

e-mail: bakhan.mu@gmail.com

Abstract— Artificial Neural Networks (ANNs) have become a pivotal tool in modern artificial intelligence (AI), significantly impacting

various fields such as image processing, natural language processing, and autonomous systems. The training process of ANNs requires find-
ing optimal parameters (weights and biases) that minimize a loss function, which can be computationally intensive and challenging. To achieve

better performance, it is crucial to employ efficient optimization techniques that guide the network toward optimal solutions effectively. This

paper provides an overview of ANNs, including their structure, types, applications, advantages, challenges, and future directions. This review

also provides optimization techniques that are used to enhance their performance during training.

Keywords- Artificial Neural Network; Back propagation; Feed forward; Gradient descent; Supervised learning

I. INTRODUCTION

Artificial Neural Networks are computational models
inspired by the biological neural networks that make up the
human brain. These neurons work together to solve complex
problems by mimicking how biological neurons in the human
brain process information [1-6].The increasing availability of
large datasets, coupled with advancements in computational
power, has fuelled the development of deep learning
architectures, extending the capabilities of ANNs [7]. These
networks, particularly Deep Neural Networks (DNNs), have
demonstrated remarkable success in solving challenging
problems across multiple disciplines [8,9]. The effectiveness of
ANNs is largely attributed to their ability to learn from data
through optimization techniques such as backpropagation
[10,11] and gradient descent [12]. Originally developed for
pattern recognition tasks, ANNs have evolved to support deep
learning and complex AI applications. The key components of
an ANN include: Input Layer: Accepts the input data. Hidden
Layers: Layers of neurons that perform transformations and
learn features from the input data and Output Layer: Produces
the final prediction or classification result. Neurons in the hidden
layers use weights, biases, and activation functions to process
the input data and make predictions [13]. During training, ANNs
adjust these weights through a process called backpropagation to
minimize the error between predicted and actual values. The
network uses activation functions (e.g., ReLU, sigmoid) to
introduce non-linearity. Schematic diagram of ANN structure is
shown in Figure.1.

II. TYPES OF NEURAL NETWORK

Different types of neural networks are used for classification
tasks. Feedforward net-works (FNNs) [14], convolutional neural
networks (CNNs) [15,16], recurrent neural net-works (RNNs)
[17], and transformers are key types of neural networks used in
various machine learning applications [18]. Feedforward neural
networks (FNNs) are the simplest type, where information flows
in one direction from the input layer to the output layer without
loops, making them suitable for basic classification and

regression tasks. Convolutional neural networks (CNNs) are
designed for image processing, utilizing filters and pooling
layers to detect spatial patterns and features efficiently. They are
widely used in tasks such as image recognition, object detection,
and facial recognition. Recurrent neural networks (RNNs), on
the other hand, are designed for sequential data processing,
allowing information to persist across time steps, making them
useful for speech recognition, time-series forecasting, and
natural language processing. A more advanced form of RNNs,
called Long Short-Term Memory (LSTM) networks, helps
address the issue of vanishing gradients and improves long-term
dependency handling. Transformers, a newer and more powerful
architecture, use self-attention mechanisms to process sequences
in parallel rather than sequentially, making them highly effective
for natural language processing tasks, including machine
translation and text generation. These different neural network
architectures have revolutionized artificial intelligence [19] by
enabling machines to perform complex tasks with high accuracy.

III. ANN TRAINING

In Artificial Neural Networks (ANNs), training data plays a

crucial role in learning patterns and making accurate

predictions. The training dataset consists of input features

(independent variables) and corresponding target outputs

(dependent variables), which the model uses to learn

relationships between inputs and outputs. Before training

begins, the data is often preprocessed through normalization,

scaling, or feature engineering to enhance learning efficiency.

The dataset is typically divided into three subsets: training data,

which is used to update the model’s weights; validation data,

which helps tune hyperparameters and prevent overfitting and

test data, which evaluates the model’s performance on unseen

data. A well-prepared training dataset should be diverse and

representative of real-world scenarios to ensure that the ANN

generalizes well. The quality, quantity, and balance of the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 13 Issue: 1

Article Received: 25 January 2025 Revised: 12 March 2025 Accepted: 30 May 2025

 134
IJRITCC | May 2025, Available @ http://www.ijritcc.org

training data significantly influence the model’s accuracy and

reliability. Training an ANN involves the following key steps:

• Forward Propagation: Input data is passed through the

network, and predictions are made.

• Loss Function: The difference between the predicted

and true output is measured using a loss function (e.g.,

Cross-Entropy Loss, Mean Squared Error).

• Backpropagation: The error is propagated back

through the network to update the weights using

optimization algorithms (e.g., Stochastic Gradient

Descent, Adam).

• Epochs: The process of forward propagation and

backpropagation [20] is repeated for multiple epochs

until the network converges to an optimal set of

weights.

IV. ACTIVE FUNCTIONS AND CLASSICIFICATIONS

Activation functions are critical in determining the output of

each neuron and introducing non-linearity into the network.

Some commonly used activation functions in classification

tasks include:

• Sigmoid: Outputs values between 0 and 1, often used

in binary classification tasks.

• ReLU (Rectified Linear Unit): Outputs the input

directly if positive, otherwise zero. Popular due to its

simplicity and efficiency.

• Softmax: Used in the output layer for multi-class

classification tasks to normalize outputs into a

probability distribution.

Table 1. Most common activation functions used in ANNs.

Function Expression Application

Linear 𝑓(𝑧) = 𝑧 Output layers

Logistic sigmoid
𝑓(𝑧) =

1

1 + 𝑒−𝑧
Output and hidden

layers

Hyperbolic

tangent sigboid
𝑓(𝑧) =

𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧 Hidden layers

ReLU 𝑓(𝑧) = max(0, 𝑧) Output layers

V. CHALLENGES IN TRAINING ANNS

Training an ANN involves adjusting its weights and biases to

minimize the difference between predicted outputs and actual

labels. This process is done through optimization, but several

challenges arise in this context:

• Local Minima: The loss function may have multiple

local minima, making it difficult to find the global

minimum [21].

• Vanishing/Exploding Gradients: During

backpropagation, gradients can either become too

small (vanishing) or too large (exploding), which

hampers learning.

• Slow Convergence: Without efficient optimization,

the learning process can be slow, especially for deep

networks with many layers.

• Overfitting: ANNs may overfit the training data,

resulting in poor generalization to unseen data.

Thus, an effective optimization technique can significantly

enhance the training process and overall performance of

ANNs.

VI. OPTIMIZATION IN ANNS

Optimization in ANNs involves adjusting the model's

parameters (weights and biases) using a loss function (or cost

function) and an optimization algorithm. The goal is to

minimize the loss function through an iterative process. The

most commonly used optimization algorithm in neural networks

is Gradient Descent, but there are several variants and

improvements to this technique that help make the training

process more efficient.

A. Gradient descent

Gradient Descent (GD) [22] is an optimization algorithm that
adjusts the parameters in the direction of the negative gradient
of the loss function with respect to the parameters. The update
rule for weights is

 𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 − 𝜂. ∇𝐿(𝑤) (1)
where 𝑤𝑛𝑒𝑤is the updated weight, 𝑤𝑜𝑙𝑑 is the current weight, 𝜂is
the learning rate and ∇𝐿(𝑤) is the gradient of the loss function
with respect to the weights. There are three main variations of
gradient descent:

• Batch Gradient Descent (BGD): Computes the gradient
of the entire dataset before updating the weights. It can
be slow for large datasets.

• Stochastic Gradient Descent (SGD): Updates the
weights after processing each training example. It’s
faster but introduces more noise, which can sometimes
help escape local minima.

• Mini-batch Gradient Descent: Combines both BGD
and SGD by using a small batch of data points to
compute the gradient. This is often the most efficient
approach.

B. Efficient optimization techniques

While gradient descent is fundamental, several advanced

optimization techniques [23-26] have been developed to

improve the convergence speed, stability, and performance of

ANNs.

1. Momentum

Momentum helps accelerate the optimization by considering

past gradients to smooth out the updates, which helps overcome

local minima and reduce oscillations. The update rule with

momentum is

 𝑣𝑡+1 = 𝛽𝑣𝑡 + (1 − 𝛽)∇𝐿(𝑤) (2)

 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑣𝑡+1 (3)

where 𝑣𝑡 is the velocity (accumulated gradients), 𝛽 is the

momentum factor (usually set to 0.9), and 𝜂 is the learning rate.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 13 Issue: 1

Article Received: 25 January 2025 Revised: 12 March 2025 Accepted: 30 May 2025

 135
IJRITCC | May 2025, Available @ http://www.ijritcc.org

2. Adaptive Gradient Algorithms

These algorithms adapt the learning rate for each parameter

individually, which helps in speeding up the training process

and preventing overshooting.

(i) Adagrad

It adjusts the learning rate based on the frequency of parameter

updates. Parameters that get updated frequently have smaller

learning rates. The update rule is:

 𝑤𝑡+1 = 𝑤𝑡 −
𝜂

√𝐺𝑡+𝜖
∇𝐿(𝑤) (4)

where 𝐺𝑡 is the cumulative sum of squared gradients up to time

step 𝑡, and 𝜖 is a small constant to prevent division by zero.

(ii) RMSprop(Root Mean Square Propagation)

It is an adaptive learning rate optimization algorithm designed

to improve the performance and stability of gradient descent. It

works by maintaining a moving average of the squared

gradients for each weight and dividing the gradient by the root

of this average. The moving average is controlled by a decay

factor (commonly around 0.9), which determines how quickly

past gradients are forgotten. By adapting the learning rate for

each parameter based on recent gradient magnitudes, RMSprop

is particularly effective in scenarios where the cost function

varies widely across dimensions, such as in recurrent neural

networks (RNNs) or deep feedforward networks. The update

rule is

 𝑤𝑡+1 = 𝑤𝑡 −
𝜂

√𝐸[𝑔2]𝑡+𝜖
∇𝐿(𝑤) (5)

where 𝐸[𝑔2]𝑡 is the moving average of the squared gradients.

(iii) Adam (Adaptive Momemt Estimation)

Adam combines the benefits of momentum and RMSprop. It

keeps a moving average of both the gradients and the squared

gradients. The update rule is

 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)∇𝐿(𝑤)

 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)(∇𝐿(𝑤))2

 𝑤𝑡−1 = 𝑤𝑡 −
𝜂

√𝑣𝑡+𝜖
𝑚𝑡 (6)

where 𝑚𝑡 and 𝑣𝑡 are moving averages of the gradients and

squared gradients, respectively. 𝛽1and 𝛽2are decay rates for the

moving averages (typically 0.9 and 0.999).

(iv) Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm [27] is a popular

optimization technique used to solve nonlinear least squares

problems. It is often employed in problems where the goal is to

minimize the sum of the squares of nonlinear functions. It's

particularly useful when solving problems related to curve

fitting, machine learning, and parameter estimation, where we

want to minimize the discrepancy between a model and observed

data.

• Nonlinear Least Squares Problem: The algorithm is

commonly used when the objective function is

nonlinear and you wish to minimize the sum of the

squared residuals (errors).

• Combines Gradient Descent and Gauss-Newton

Methods:

o Gradient Descent: This method uses the

gradient (or derivative) of the function to

iteratively move toward the minimum.

o Gauss-Newton Method: This is more specific

for least squares problems, and it uses second-

order approximations to find the optimal

parameters. It approximates the Hessian

(second-order derivative) with the Jacobian.

• Damping Factor: The Levenberg-Marquardt algorithm

[28] introduces a damping factor, which adjusts the

step size during the optimization process. This helps

balance between the stability of gradient descent and

the fast convergence of Gauss-Newton.

• Hybrid Approach: If the algorithm is far from the

optimal solution, it behaves more like gradient descent.

If it's closer to the optimal solution, it shifts toward the

Gauss-Newton method.

The Levenberg-Marquardt algorithm works by iterating on the

following steps:

• Compute the Jacobian Matrix: This matrix contains the

first derivatives of the residuals (the errors) with

respect to the model parameters.

• Compute the Hessian Approximation: The Hessian

matrix is approximated using the Jacobian. It provides

information about the curvature of the function.

• Update Rule: The parameters are updated using a

combination of the gradient descent step and the

Gauss-Newton step, adjusting the step size with the

damping factor.

The update rule is

 𝑋𝑘+1 = 𝑋𝑘 − (𝐽𝑇𝐽 + 𝜆𝐼)−1𝐽𝑇𝑟 (7)

where 𝑋𝑘 is the current set of parameters, 𝐽 is the Jacobian

matrix of residuals, 𝜆 is the damping factor (which is adjusted

to every iteration), 𝐼 is the identity matrix, 𝑟 is the residual

vector (the difference between the model predictions and actual

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 13 Issue: 1

Article Received: 25 January 2025 Revised: 12 March 2025 Accepted: 30 May 2025

 136
IJRITCC | May 2025, Available @ http://www.ijritcc.org

data). Damping Adjustment: The damping factor 𝜆is adjusted

after each iteration:If the new parameters lead to a decrease in

the objective function, the damping factor is decreased

(allowing the algorithm to behave more like Gauss-Newton

[29]).If the new parameters do not lead to a decrease, the

damping factor is increased (making the algorithm behave more

like gradient descent).

3. Learning Types and Learning Rate Scheduling

Learning rate scheduling in Artificial Neural Networks (ANNs)

is a technique used to adjust the learning rate during training to

enhance model performance and convergence. The learning rate

controls how much the model updates its weights based on the

gradient of the loss function. A high learning rate may lead to

unstable training, while a low one can slow down convergence.

Scheduling methods like step decay (reduces the learning rate

by a factor every few epochs), exponential decay (reduces the

learning rate exponentially over time), and adaptive techniques

(e.g., learning rate annealing or adaptive optimizers like Adam

and RMSprop) help optimize training efficiency. Proper

learning rate scheduling prevents overshooting, accelerates

convergence, and improves generalization, making it a crucial

component of deep learning optimization. Each learning type

serves different purposes, with supervised learning [30]

excelling in predictive tasks, unsupervised learning [31] useful

for data exploration, and reinforcement learning [32] being

ideal for dynamic decision-making scenarios. Comparisons

among the three learning types are given in Table 2.

4. Regularization Technique

Regularization techniques in Artificial Neural Networks

(ANNs) help prevent overfitting, ensuring that models

generalize well to new data. One common approach is

L1andL2regularization (Lasso and Ridge regression), which

adds a penalty to the loss function to constrain the magnitude of

the weights, preventing excessive complexity. Dropout is

another widely used technique that randomly deactivates a

fraction of neurons during training, forcing the network to learn

more robust features. Batch normalization stabilizes and

accelerates training by normalizing inputs to each layer,

reducing internal covariate shifts. Early stopping monitors

validation loss and halts training when overfitting begins. Data

augmentation, particularly in image processing, enhances the

training dataset by applying transformations such as rotation,

flipping, and scaling, helping the model generalize better.

Additionally, weight initialization techniques, like Xavier or He

initialization, ensure stable gradient flow, preventing neurons

from becoming inactive or dominating the learning process.

These regularization techniques play a crucial role in improving

the performance and reliability of ANNs across various

applications [33]. It prevents overfitting and improve

generalization by adding penalties to the loss function or

modifying the network architecture.

• L1 and L2 Regularization:

o L1 (lasso) adds the sum of the absolute values

of the weights to the loss function.

o L2 (ridge) adds the sum of the squared values

of the weights.

• Dropout: Randomly drops a percentage of neurons

during training, which helps prevent overfitting by

forcing the network to rely on different combinations

of neurons.

• Early Stopping: Monitors the performance on the

validation set and stops training when the model's

performance starts degrading, thus preventing

overfitting.

Table 2. A comparison among supervised, unsupervised and

reinforcement learning.

VII. APPLIACTIONS OF ANNS

ANNs are widely applied across multiple domain:

• Healthcare: Disease prediction, medical imaging, drug

discovery.

• Finance: Fraud detection, algorithmic trading, risk

assessment.

• Automotive: Autonomous vehicles, driver-assist

systems.

• Natural Language Processing (NLP): Machine

translation, sentiment analysis, chatbots.

Features
Supervised

Learning

Unsupervised

Learning

Reinforcement

Learning

Definition
Learns from
labeled data

Learns from
unlabeled data

Learns through

trial and error
with rewards

and penalties

Data Type

Labeled data

(input-output

pairs)

Unlabeled

data (no

explicit

output)

Interaction with

an environment

Goal

Predict

outcomes
based on past

data

Discover

patterns or

structures

Maximize

cumulative

rewards

Examples
Classification,

Regression

Clustering,

Anomaly

Detection

Robotics, Game

AI, Self-driving

cars

Training

Approach

Direct

mapping of

input to
output

Finding

hidden

relationships
in data

Learning by

taking actions

and receiving
feedback

Supervision

Requires

human-

labeled data

No labeled

data needed

Learns

dynamically

from rewards

and penalties

Use Cases

Spam

detection,

Image
recognition,

Stock price

prediction

Customer

segmentation,
Market basket

analysis

Robot

navigation,
Chess-playing

AI, Automated

trading

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 13 Issue: 1

Article Received: 25 January 2025 Revised: 12 March 2025 Accepted: 30 May 2025

 137
IJRITCC | May 2025, Available @ http://www.ijritcc.org

• Manufacturing: Predictive maintenance, quality

control.

• Image Classification: CNNs are widely used in image

recognition and classification tasks, such as object

detection, facial recognition, and medical image

analysis.

• Speech Recognition: RNNs, particularly Long Short-

Term Memory (LSTM) networks, are used to

recognize speech patterns and transcribe spoken

language.

• Text Classification: ANNs are used for tasks like

sentiment analysis, topic classification, and spam

detection in text data.

• Medical Diagnosis: ANNs can help classify diseases

based on medical images, patient data, or diagnostic

tests, improving decision-making in healthcare.

• Fraud Detection: ANNs are used in finance and e-

commerce for detecting fraudulent transactions or

behaviours.

VIII. CHALLENGES IN ANN-BASED CLASSICIFICATION

The While ANNs have achieved remarkable success, there are

still several challenges:

• Overfitting: ANNs, especially deep ones, can overfit

the training data, resulting in poor generalization to

unseen data. Techniques like dropout, regularization,

and early stopping are used to mitigate overfitting.

• Interpretability: ANNs, particularly deep neural

networks, are often considered black-box models,

making it difficult to interpret the rationale behind

their predictions.

• Computational Complexity: Training deep neural

networks requires substantial computational resources,

including GPUs and large datasets. This can be a

barrier for organizations with limited resources.

• Computational Cost: Requires significant processing

power and memory.

• Data Quality and Quantity: ANNs require large,

labeled datasets to perform well. For domains with

limited labeled data, semi-supervised learning or

transfer learning may be necessary. Performance

heavily relies on high-quality, labeled datasets.

• Hyperparameter Tuning: ANNs have several

hyperparameters (e.g., learning rate, number of layers,

number of neurons), and finding the optimal

combination can be time-consuming and requires

experimentation.

• Black Box Nature: Lack of interpretability in decision-

making processes.

IX. ADVANTAGES OF ANNS

One of the main strength of ANNs is their ability to learn and
adapt from data, which allows them to model and recognize
intricate patterns that are difficult for traditional algorithms to
capture. They are especially useful for tasks such as image and

speech recognition, natural language processing, and predictive
analytics. ANNs are also capable of handling large and noisy
datasets, making them suitable for real-world applications where
data is often imperfect. Additionally, once trained, ANNs can
make predictions or classifications quickly, which is beneficial
for real-time systems. Their flexibility and scalability further
enhance their usefulness across a wide range of industries and
research fields. Point wise we can say the advantage of ANN as

• Adaptability: Can learn from data without explicit
programming.

• Scalability: Handles large datasets efficiently.

• Pattern Recognition: Excels in image, speech, and text
recognition tasks.

• Automation: Reduces the need for manual feature

engineering.

X. FUTURE DIRECTIONS

The field of ANN-based classification continues to evolve, and

several promising developments are shaping its future:

• Transfer Learning: Pre-trained models can be fine-

tuned on new tasks with less labeled data, making

ANNs more accessible in domains with limited data.

• Explainable AI (XAI): Researchers are working on

methods to make ANNs more interpretable, helping

users understand how predictions are made.

• Neural Architecture Search (NAS): Automated

techniques to search for the optimal neural network

architecture could improve the efficiency of model

design.

• Quantum Neural Networks: The combination of

quantum computing and neural networks could open

up new frontiers in solving complex classification

problems.

XI. CONCLUSIONS

Artificial Neural Networks have proven to be a powerful tool

for classification tasks across various domains. In this paper, we

explored artificial neural networks (ANNs) through the lens of

optimization-driven learning, emphasizing the central role that

optimization techniques play in enabling ANNs to generalize

from data and solve complex problems. By framing learning as

an optimization process, we highlighted how neural networks

iteratively adjust their parameters to minimize a loss function,

thereby capturing patterns in high-dimensional spaces. We

examined key components of this framework, including loss

function design, gradient-based optimization algorithms,

regularization techniques, and architecture selection—all of

which are critical to both performance and stability. The

synergy between network design and optimization strategy is

what ultimately drives the success of modern neural networks

in fields ranging from computer vision to natural language

processing. Despite their powerful capabilities, ANNs remain

sensitive to issues like overfitting, local minima, and data

distribution shifts. These challenges underline the importance

of continued research in more robust optimization techniques,

scalable architectures, and learning paradigms such as meta-

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 13 Issue: 1

Article Received: 25 January 2025 Revised: 12 March 2025 Accepted: 30 May 2025

 138
IJRITCC | May 2025, Available @ http://www.ijritcc.org

learning and unsupervised learning. In summary, optimization

not only underpins how ANNs learn but also shapes their

capacity to adapt, generalize, and evolve. A deeper

understanding of this interplay offers pathways toward more

efficient, interpretable, and intelligent learning systems in the

future.

ACKNOWLEDGMENT

I would like to thank Prof. Jane Alam sir for encouraging me
to write this article.

REFERENCES

[1] S. Haykin, “Neural Networks” – A Comprehensive

Foundation, Prentice Hall, 2nd Ed. 1999
[2] C. M. Bishop, “Neural Networks for Pattern Recognition”,

Oxford University Press. 1995.
[3] K. Gurney, “An Introduction to Neural Networks”,

Routledge, ISBN 1-85728-673-1 London, 1997.
[4] R. Rojas, ”Neural Networks: A Systematic Introduction”,

Springer, ISBN 3-540-60505-3, Germany, 1996. Yu, W.; He,
H.; Zhang, N. “Advances in Neural Networks,” ISNN 2009
6th International Symposium 2009.

[5] W. Yu, H. He, and N. Zhang, “Advances in Neural
Networks”, ISNN 2009 6th International Symposium, 2009.

[6] W. S. Mc Culloch, and W. Pitts, “A logical calculus of the
ideas immanent in nervous activity.” Bulletin of
Mathematical Biophysics”, Vol. 5, pp. 115-133, 1943

[7] J. J. Hopfield, “Neural networks and physical systems with
emergent collective computational abilities”. Proc Nat Acad.
Sci, 79, 2554–2558, 1982.

[8] Y. Lecun, Y. Bengio and G. Hinton, “Deep learning”, Nature,
521, 436–444, 2015.

[9] K. G. Kim, “Deep learning book review”, Nature, 29, 1–73,
2019.

[10] G. Nunnari, “An improved back propagation algorithm to
predict episodes of poor air quality”, Soft Comput., 10, 132–
139, 2006.

[11] Y. Wu, and S. Wang, “A new algorithm of improving the
learning performance of neural network by feedback”.
Journal of Computer Research and Development, 41(9),
1488–1492, 2004.

[12] Amari. Shun-ichi, “Backpropagation and stochastic gradient
descent method”. Neurocomputing, 5, 185-196, 1993.

[13] E. Ahmadzadeh, J. Lee and I. Moon, “Optimized Neural
Network Weights and Biases Using Particle Swarm
Optimization Algorithm for Prediction Applications”. J.
Korea Multimed. Soc., 20, 1406–1420, 2017.

[14] A. Balsabi, “Some analytical solutions to the general
approximation problem for feed forward neural networks”.
Neural Networks, 6, 991–996, 1993.

[15] R. Yamashita, M. Nishio, and R.K.G. Do et. al.,
“Convolutional neural networks: an overview and application
in radiology”. Insights Imaging, 9, 611–629, 2018.
https://doi.org/10.1007/s13244-018-0639-9

[16] S.R. Dubey, S. Chakraborty, S.K. Roy, S. Mukherjee, S.K.
Singh, and B.B. Chaudhuri, “DiffGrad: An Optimization
Method for Convolutional Neural Networks”. IEEE Trans.
Neural Netw. Learn. Syst., 31, 4500–4511, 2020.

[17] Alex Sherstinsky, “Fundamentals of Recurrent Neural
Network (RNN) and Long Short-Term Memory (LSTM)
network”. Physica D: Nonlinear Phenomena, 404, 132306,
2020.

[18] A. Mosavi, M. Salimi, S.F. Ardabili, T. Rabczuk, S.
Shamshirband and A.R. Varkonyi-Koczy, “State of the Art
of Machine Learning Models in Energy Systems, a
Systematic Review”. Energies, 12, 1301, 2019.

[19] C. Li, “Biodiversity assessment based on artificial
intelligence and neural network algorithms”. Microprocess.
Microsyst., 79, 103321, 2020.

[20] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors”. Nature, 323,
533–536, 1986.

[21] A. M. Schweidtmann, and A. Mitsos, “Deterministic Global
Optimization with Artificial Neural Networks Embedded”. J.
Optim. Theory Appl., 180, 925–948, 2019.

[22] E. M. L. Beale, “A derivation of conjugate gradients, In:
Numerical Methods for Nonlinear Optimization, F. A.
Lootsma, (Ed.)”, Academic Press, London, 1972.

[23] A. Askarzadeh and A. Rezazadeh, “Artificial neural network
training using a new efficient optimization algorithm”. Appl.
Soft Comput. J., 13, 1206–1213, 2013.

[24] M. Tabassum and K. A. Mathew, “A Genetic Algorithm
Analysis towards Optimization solutions”. Int. J. Digit. Inf.
Wirel. Commun., 4, 124–142, 2014.

[25] A. M. Schweidtmann, and A. Mitsos, “Deterministic Global
Optimization with Artificial Neural Networks Embedded.” J.
Optim. Theory Appl., 180, 925–948, 2019.

[26] M. H. Lin, J. F. Tsai, and C. S. Yu, “A review of deterministic
optimization methods in engineering and management”.
Math. Probl. Eng., 2012, 756023, 2012.

[27] M.T. Hagan and M. B. Menhaj, “Training feedforward
networks with the Marquardt algorithm”. Neural Netw. IEEE
Trans., 5, 989–993, 1994.

[28] M. T. Hagan and M. Menhaj, “Training feed-foward
networks with the Marquardt algorithm”. IEEE Transactions
on Neural Networks, 5, 989-993, 1999.

[29] A. Bordes, L. Bottou and P. Gallinari, “SGD-QN: Careful
quasi Newton stochastic gradient descent”. Journal of
Machine Learning Research, 10, 1737–1754, 2009.

[30] M. F. Møller, “A scaled conjugate gradient algorithm for fast
supervised learning”. Neural Netw., 6, 525–533, 1993.

[31] H. U. Dike, Y. Zhou, K. K. Deveerasetty and Q. Wu,
Unsupervised Learning Based On Artificial Neural Network:
A Review, 2018 IEEE International Conference on Cyborg
and Bionic Systems (CBS), Shenzhen, China, pp. 322-327,
2018. doi: 10.1109/CBS.2018.8612259.

[32] M. Kusy, and R. Zajdel, “Application of Reinforcement
Learning Algorithms for the Adaptive Computation of the
Smoothing Parameter for Probabilistic Neural Network”.
IEEE Trans. Neural Netw. Learn. Syst., 26, 2163–2175,
2015.

[33] W. Tian, Z. Liao and J. Zhang, “An optimization of artificial
neural network model for predicting chlorophyll dynamics”.
Ecol. Modell., 364, 42–52, 2017.

Figure 1. Artificial neural network architectures with feed-forward
and backpropagation algorithms

Weighted

connection

Input

layer

Hidden

layer

Output

layer

Output

Neuro

ns

Back-propagation

Forward-propagation

http://www.ijritcc.org/
https://doi.org/10.1007/s13244-018-0639-9
https://www.sciencedirect.com/journal/physica-d-nonlinear-phenomena
https://www.sciencedirect.com/journal/physica-d-nonlinear-phenomena/vol/404/suppl/C

