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Abstract— Artificial Neural Networks (ANNs) have become a pivotal tool in modern artificial intelligence (AI), significantly impacting 

various fields such as image processing, natural language processing, and autonomous systems. The training process of ANNs requires find-
ing optimal parameters (weights and biases) that minimize a loss function, which can be computationally intensive and challenging. To achieve 

better performance, it is crucial to employ efficient optimization techniques that guide the network toward optimal solutions effectively. This 

paper provides an overview of ANNs, including their structure, types, applications, advantages, challenges, and future directions. This review 

also provides optimization techniques that are used to enhance their performance during training. 
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I.  INTRODUCTION  

Artificial Neural Networks are computational models 
inspired by the biological neural networks that make up the 
human brain. These neurons work together to solve complex 
problems by mimicking how biological neurons in the human 
brain process information [1-6].The increasing availability of 
large datasets, coupled with advancements in computational 
power, has fuelled the development of deep learning 
architectures, extending the capabilities of ANNs [7]. These 
networks, particularly Deep Neural Networks (DNNs), have 
demonstrated remarkable success in solving challenging 
problems across multiple disciplines [8,9]. The effectiveness of 
ANNs is largely attributed to their ability to learn from data 
through optimization techniques such as backpropagation 
[10,11] and gradient descent [12]. Originally developed for 
pattern recognition tasks, ANNs have evolved to support deep 
learning and complex AI applications. The key components of 
an ANN include: Input Layer: Accepts the input data. Hidden 
Layers: Layers of neurons that perform transformations and 
learn features from the input data and Output Layer: Produces 
the final prediction or classification result. Neurons in the hidden 
layers use weights, biases, and activation functions to process 
the input data and make predictions [13]. During training, ANNs 
adjust these weights through a process called backpropagation to 
minimize the error between predicted and actual values. The 
network uses activation functions (e.g., ReLU, sigmoid) to 
introduce non-linearity. Schematic diagram of ANN structure is 
shown in Figure.1. 

II. TYPES OF NEURAL NETWORK 

Different types of neural networks are used for classification 
tasks. Feedforward net-works (FNNs) [14], convolutional neural 
networks (CNNs) [15,16], recurrent neural net-works (RNNs) 
[17], and transformers are key types of neural networks used in 
various machine learning applications [18]. Feedforward neural 
networks (FNNs) are the simplest type, where information flows 
in one direction from the input layer to the output layer without 
loops, making them suitable for basic classification and 

regression tasks. Convolutional neural networks (CNNs) are 
designed for image processing, utilizing filters and pooling 
layers to detect spatial patterns and features efficiently. They are 
widely used in tasks such as image recognition, object detection, 
and facial recognition. Recurrent neural networks (RNNs), on 
the other hand, are designed for sequential data processing, 
allowing information to persist across time steps, making them 
useful for speech recognition, time-series forecasting, and 
natural language processing. A more advanced form of RNNs, 
called Long Short-Term Memory (LSTM) networks, helps 
address the issue of vanishing gradients and improves long-term 
dependency handling. Transformers, a newer and more powerful 
architecture, use self-attention mechanisms to process sequences 
in parallel rather than sequentially, making them highly effective 
for natural language processing tasks, including machine 
translation and text generation. These different neural network 
architectures have revolutionized artificial intelligence [19] by 
enabling machines to perform complex tasks with high accuracy. 

 

III. ANN TRAINING 

 

In Artificial Neural Networks (ANNs), training data plays a 

crucial role in learning patterns and making accurate 

predictions. The training dataset consists of input features 

(independent variables) and corresponding target outputs 

(dependent variables), which the model uses to learn 

relationships between inputs and outputs. Before training 

begins, the data is often preprocessed through normalization, 

scaling, or feature engineering to enhance learning efficiency. 

The dataset is typically divided into three subsets: training data, 

which is used to update the model’s weights; validation data, 

which helps tune hyperparameters and prevent overfitting and 

test data, which evaluates the model’s performance on unseen 

data. A well-prepared training dataset should be diverse and 

representative of real-world scenarios to ensure that the ANN 

generalizes well. The quality, quantity, and balance of the 
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training data significantly influence the model’s accuracy and 

reliability. Training an ANN involves the following key steps:  

• Forward Propagation: Input data is passed through the 

network, and predictions are made. 

• Loss Function: The difference between the predicted 

and true output is measured using a loss function (e.g., 

Cross-Entropy Loss, Mean Squared Error). 

• Backpropagation: The error is propagated back 

through the network to update the weights using 

optimization algorithms (e.g., Stochastic Gradient 

Descent, Adam). 

• Epochs: The process of forward propagation and 

backpropagation [20] is repeated for multiple epochs 

until the network converges to an optimal set of 

weights. 

IV. ACTIVE FUNCTIONS AND CLASSICIFICATIONS 

 

Activation functions are critical in determining the output of 

each neuron and introducing non-linearity into the network. 

Some commonly used activation functions in classification 

tasks include: 

• Sigmoid: Outputs values between 0 and 1, often used 

in binary classification tasks. 

• ReLU (Rectified Linear Unit): Outputs the input 

directly if positive, otherwise zero. Popular due to its 

simplicity and efficiency. 

• Softmax: Used in the output layer for multi-class 

classification tasks to normalize outputs into a 

probability distribution. 

 

Table 1. Most common activation functions used in ANNs. 

 

Function  Expression Application 

Linear 𝑓(𝑧) = 𝑧 Output layers 

Logistic sigmoid 
𝑓(𝑧) =

1

1 + 𝑒−𝑧 
Output and hidden 

layers  

Hyperbolic 

tangent sigboid 
𝑓(𝑧) =

𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧 Hidden layers 

ReLU 𝑓(𝑧) = max(0, 𝑧) Output layers 

 

V. CHALLENGES IN TRAINING ANNS 

 

Training an ANN involves adjusting its weights and biases to 

minimize the difference between predicted outputs and actual 

labels. This process is done through optimization, but several 

challenges arise in this context: 

• Local Minima: The loss function may have multiple 

local minima, making it difficult to find the global 

minimum [21]. 

• Vanishing/Exploding Gradients: During 

backpropagation, gradients can either become too 

small (vanishing) or too large (exploding), which 

hampers learning. 

• Slow Convergence: Without efficient optimization, 

the learning process can be slow, especially for deep 

networks with many layers. 

• Overfitting: ANNs may overfit the training data, 

resulting in poor generalization to unseen data. 

Thus, an effective optimization technique can significantly 

enhance the training process and overall performance of 

ANNs.  

VI. OPTIMIZATION IN ANNS 

 

Optimization in ANNs involves adjusting the model's 

parameters (weights and biases) using a loss function (or cost 

function) and an optimization algorithm. The goal is to 

minimize the loss function through an iterative process. The 

most commonly used optimization algorithm in neural networks 

is Gradient Descent, but there are several variants and 

improvements to this technique that help make the training 

process more efficient. 

 

A. Gradient descent 

Gradient Descent (GD) [22] is an optimization algorithm that 
adjusts the parameters in the direction of the negative gradient 
of the loss function with respect to the parameters. The update 
rule for weights is 

               𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 − 𝜂. ∇𝐿(𝑤)                                    (1) 
where 𝑤𝑛𝑒𝑤is the updated weight, 𝑤𝑜𝑙𝑑 is the current weight, 𝜂is 
the learning rate and ∇𝐿(𝑤) is the gradient of the loss function 
with respect to the weights. There are three main variations of 
gradient descent: 

• Batch Gradient Descent (BGD): Computes the gradient 
of the entire dataset before updating the weights. It can 
be slow for large datasets. 

• Stochastic Gradient Descent (SGD): Updates the 
weights after processing each training example. It’s 
faster but introduces more noise, which can sometimes 
help escape local minima.  

• Mini-batch Gradient Descent: Combines both BGD 
and SGD by using a small batch of data points to 
compute the gradient. This is often the most efficient 
approach. 

 
 

B. Efficient optimization techniques 

While gradient descent is fundamental, several advanced 

optimization techniques [23-26] have been developed to 

improve the convergence speed, stability, and performance of 

ANNs. 

 

1. Momentum 

Momentum helps accelerate the optimization by considering 

past gradients to smooth out the updates, which helps overcome 

local minima and reduce oscillations. The update rule with 

momentum is  

                   𝑣𝑡+1 =  𝛽𝑣𝑡 + (1 − 𝛽)∇𝐿(𝑤)                              (2) 

                   𝑤𝑡+1 =  𝑤𝑡 − 𝜂𝑣𝑡+1                                                (3) 

where 𝑣𝑡  is the velocity (accumulated gradients), 𝛽  is the 

momentum factor (usually set to 0.9), and 𝜂 is the learning rate. 
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2. Adaptive Gradient Algorithms 

These algorithms adapt the learning rate for each parameter 

individually, which helps in speeding up the training process 

and preventing overshooting. 

 

(i) Adagrad 

It adjusts the learning rate based on the frequency of parameter 

updates. Parameters that get updated frequently have smaller 

learning rates. The update rule is: 

                    𝑤𝑡+1 =  𝑤𝑡 −  
𝜂

√𝐺𝑡+𝜖
∇𝐿(𝑤)                                (4) 

where 𝐺𝑡 is the cumulative sum of squared gradients up to time 

step 𝑡, and 𝜖 is a small constant to prevent division by zero. 

 

(ii) RMSprop(Root Mean Square Propagation) 

It is an adaptive learning rate optimization algorithm designed 

to improve the performance and stability of gradient descent. It 

works by maintaining a moving average of the squared 

gradients for each weight and dividing the gradient by the root 

of this average. The moving average is controlled by a decay 

factor (commonly around 0.9), which determines how quickly 

past gradients are forgotten. By adapting the learning rate for 

each parameter based on recent gradient magnitudes, RMSprop 

is particularly effective in scenarios where the cost function 

varies widely across dimensions, such as in recurrent neural 

networks (RNNs) or deep feedforward networks. The update 

rule is  

    𝑤𝑡+1 =  𝑤𝑡 −  
𝜂

√𝐸[𝑔2]𝑡+𝜖
∇𝐿(𝑤)                                           (5) 

where 𝐸[𝑔2]𝑡 is the moving average of the squared gradients. 

(iii) Adam (Adaptive Momemt Estimation) 

Adam combines the benefits of momentum and RMSprop. It 

keeps a moving average of both the gradients and the squared 

gradients. The update rule is  

   𝑚𝑡 = 𝛽1𝑚𝑡−1 +  (1 − 𝛽1)∇𝐿(𝑤)                               

    𝑣𝑡 =  𝛽2𝑣𝑡−1 +  (1 − 𝛽2)(∇𝐿(𝑤))2 

  𝑤𝑡−1 =  𝑤𝑡 −  
𝜂

√𝑣𝑡+𝜖
𝑚𝑡                                                         (6) 

where 𝑚𝑡  and 𝑣𝑡 are moving averages of the gradients and 

squared gradients, respectively. 𝛽1and 𝛽2are decay rates for the 

moving averages (typically 0.9 and 0.999). 

(iv) Levenberg-Marquardt Algorithm 

The Levenberg-Marquardt algorithm [27] is a popular 

optimization technique used to solve nonlinear least squares 

problems. It is often employed in problems where the goal is to 

minimize the sum of the squares of nonlinear functions. It's 

particularly useful when solving problems related to curve 

fitting, machine learning, and parameter estimation, where we 

want to minimize the discrepancy between a model and observed 

data. 

• Nonlinear Least Squares Problem: The algorithm is 

commonly used when the objective function is 

nonlinear and you wish to minimize the sum of the 

squared residuals (errors). 

• Combines Gradient Descent and Gauss-Newton 

Methods:  

o Gradient Descent: This method uses the 

gradient (or derivative) of the function to 

iteratively move toward the minimum. 

o Gauss-Newton Method: This is more specific 

for least squares problems, and it uses second-

order approximations to find the optimal 

parameters. It approximates the Hessian 

(second-order derivative) with the Jacobian. 

• Damping Factor: The Levenberg-Marquardt algorithm 

[28] introduces a damping factor, which adjusts the 

step size during the optimization process. This helps 

balance between the stability of gradient descent and 

the fast convergence of Gauss-Newton. 

• Hybrid Approach: If the algorithm is far from the 

optimal solution, it behaves more like gradient descent. 

If it's closer to the optimal solution, it shifts toward the 

Gauss-Newton method. 

The Levenberg-Marquardt algorithm works by iterating on the 

following steps: 

• Compute the Jacobian Matrix: This matrix contains the 

first derivatives of the residuals (the errors) with 

respect to the model parameters. 

• Compute the Hessian Approximation: The Hessian 

matrix is approximated using the Jacobian. It provides 

information about the curvature of the function. 

• Update Rule: The parameters are updated using a 

combination of the gradient descent step and the 

Gauss-Newton step, adjusting the step size with the 

damping factor. 

The update rule is  

           𝑋𝑘+1 =  𝑋𝑘 − (𝐽𝑇𝐽 + 𝜆𝐼)−1𝐽𝑇𝑟                                    (7) 

where 𝑋𝑘  is the current set of parameters, 𝐽  is the Jacobian 

matrix of residuals, 𝜆 is the damping factor (which is adjusted 

to every iteration), 𝐼  is the identity matrix, 𝑟  is the residual 

vector (the difference between the model predictions and actual 
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data). Damping Adjustment: The damping factor 𝜆is adjusted 

after each iteration:If the new parameters lead to a decrease in 

the objective function, the damping factor is decreased 

(allowing the algorithm to behave more like Gauss-Newton 

[29]).If the new parameters do not lead to a decrease, the 

damping factor is increased (making the algorithm behave more 

like gradient descent). 

 

3. Learning Types and Learning Rate Scheduling 

Learning rate scheduling in Artificial Neural Networks (ANNs) 

is a technique used to adjust the learning rate during training to 

enhance model performance and convergence. The learning rate 

controls how much the model updates its weights based on the 

gradient of the loss function. A high learning rate may lead to 

unstable training, while a low one can slow down convergence. 

Scheduling methods like step decay (reduces the learning rate 

by a factor every few epochs), exponential decay (reduces the 

learning rate exponentially over time), and adaptive techniques 

(e.g., learning rate annealing or adaptive optimizers like Adam 

and RMSprop) help optimize training efficiency. Proper 

learning rate scheduling prevents overshooting, accelerates 

convergence, and improves generalization, making it a crucial 

component of deep learning optimization. Each learning type 

serves different purposes, with supervised learning [30] 

excelling in predictive tasks, unsupervised learning [31] useful 

for data exploration, and reinforcement learning [32] being 

ideal for dynamic decision-making scenarios. Comparisons 

among the three learning types are given in Table 2. 

 

4. Regularization Technique 

 

Regularization techniques in Artificial Neural Networks 

(ANNs) help prevent overfitting, ensuring that models 

generalize well to new data. One common approach is 

L1andL2regularization (Lasso and Ridge regression), which 

adds a penalty to the loss function to constrain the magnitude of 

the weights, preventing excessive complexity. Dropout is 

another widely used technique that randomly deactivates a 

fraction of neurons during training, forcing the network to learn 

more robust features. Batch normalization stabilizes and 

accelerates training by normalizing inputs to each layer, 

reducing internal covariate shifts. Early stopping monitors 

validation loss and halts training when overfitting begins. Data 

augmentation, particularly in image processing, enhances the 

training dataset by applying transformations such as rotation, 

flipping, and scaling, helping the model generalize better. 

Additionally, weight initialization techniques, like Xavier or He 

initialization, ensure stable gradient flow, preventing neurons 

from becoming inactive or dominating the learning process. 

These regularization techniques play a crucial role in improving 

the performance and reliability of ANNs across various 

applications [33]. It prevents overfitting and improve 

generalization by adding penalties to the loss function or 

modifying the network architecture. 

• L1 and L2 Regularization: 

o L1 (lasso) adds the sum of the absolute values 

of the weights to the loss function. 

o L2 (ridge) adds the sum of the squared values 

of the weights. 

• Dropout: Randomly drops a percentage of neurons 

during training, which helps prevent overfitting by 

forcing the network to rely on different combinations 

of neurons. 

• Early Stopping: Monitors the performance on the 

validation set and stops training when the model's 

performance starts degrading, thus preventing 

overfitting. 

 

Table 2. A comparison among supervised, unsupervised and 

reinforcement learning. 

 

VII. APPLIACTIONS OF ANNS 

 
ANNs are widely applied across multiple domain:  

• Healthcare: Disease prediction, medical imaging, drug 

discovery. 

• Finance: Fraud detection, algorithmic trading, risk 

assessment. 

• Automotive: Autonomous vehicles, driver-assist 

systems. 

• Natural Language Processing (NLP): Machine 

translation, sentiment analysis, chatbots. 

Features 
Supervised 

Learning 

Unsupervised 

Learning 

Reinforcement 

Learning 

Definition 
Learns from 
labeled data 

Learns from 
unlabeled data 

Learns through 

trial and error 
with rewards 

and penalties 

Data Type 

Labeled data 

(input-output 

pairs) 

Unlabeled 

data (no 

explicit 

output) 

Interaction with 

an environment 

Goal 

Predict 

outcomes 
based on past 

data 

Discover 

patterns or 

structures 

Maximize 

cumulative 

rewards 

Examples 
Classification, 

Regression 

Clustering, 

Anomaly 

Detection 

Robotics, Game 

AI, Self-driving 

cars 

Training 

Approach 

Direct 

mapping of 

input to 
output 

Finding 

hidden 

relationships 
in data 

Learning by 

taking actions 

and receiving 
feedback 

Supervision 

Requires 

human-

labeled data 

No labeled 

data needed 

Learns 

dynamically 

from rewards 

and penalties 

Use Cases 

Spam 

detection, 

Image 
recognition, 

Stock price 

prediction 

Customer 

segmentation, 
Market basket 

analysis 

Robot 

navigation, 
Chess-playing 

AI, Automated 

trading 
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• Manufacturing: Predictive maintenance, quality 

control. 

• Image Classification: CNNs are widely used in image 

recognition and classification tasks, such as object 

detection, facial recognition, and medical image 

analysis. 

• Speech Recognition: RNNs, particularly Long Short-

Term Memory (LSTM) networks, are used to 

recognize speech patterns and transcribe spoken 

language. 

• Text Classification: ANNs are used for tasks like 

sentiment analysis, topic classification, and spam 

detection in text data. 

• Medical Diagnosis: ANNs can help classify diseases 

based on medical images, patient data, or diagnostic 

tests, improving decision-making in healthcare. 

• Fraud Detection: ANNs are used in finance and e-

commerce for detecting fraudulent transactions or 

behaviours. 

VIII. CHALLENGES IN ANN-BASED CLASSICIFICATION 

The While ANNs have achieved remarkable success, there are 

still several challenges: 

• Overfitting: ANNs, especially deep ones, can overfit 

the training data, resulting in poor generalization to 

unseen data. Techniques like dropout, regularization, 

and early stopping are used to mitigate overfitting. 

• Interpretability: ANNs, particularly deep neural 

networks, are often considered black-box models, 

making it difficult to interpret the rationale behind 

their predictions. 

• Computational Complexity: Training deep neural 

networks requires substantial computational resources, 

including GPUs and large datasets. This can be a 

barrier for organizations with limited resources. 

• Computational Cost: Requires significant processing 

power and memory. 

• Data Quality and Quantity: ANNs require large, 

labeled datasets to perform well. For domains with 

limited labeled data, semi-supervised learning or 

transfer learning may be necessary. Performance 

heavily relies on high-quality, labeled datasets. 

• Hyperparameter Tuning: ANNs have several 

hyperparameters (e.g., learning rate, number of layers, 

number of neurons), and finding the optimal 

combination can be time-consuming and requires 

experimentation. 

• Black Box Nature: Lack of interpretability in decision-

making processes. 

IX. ADVANTAGES OF ANNS 

One of the main strength of ANNs is their ability to learn and 
adapt from data, which allows them to model and recognize 
intricate patterns that are difficult for traditional algorithms to 
capture. They are especially useful for tasks such as image and 

speech recognition, natural language processing, and predictive 
analytics. ANNs are also capable of handling large and noisy 
datasets, making them suitable for real-world applications where 
data is often imperfect. Additionally, once trained, ANNs can 
make predictions or classifications quickly, which is beneficial 
for real-time systems. Their flexibility and scalability further 
enhance their usefulness across a wide range of industries and 
research fields. Point wise we can say the advantage of ANN as 

• Adaptability: Can learn from data without explicit 
programming. 

• Scalability: Handles large datasets efficiently. 

• Pattern Recognition: Excels in image, speech, and text 
recognition tasks. 

• Automation: Reduces the need for manual feature 

engineering. 

X. FUTURE DIRECTIONS 

The field of ANN-based classification continues to evolve, and 

several promising developments are shaping its future:  

• Transfer Learning: Pre-trained models can be fine-

tuned on new tasks with less labeled data, making 

ANNs more accessible in domains with limited data. 

• Explainable AI (XAI): Researchers are working on 

methods to make ANNs more interpretable, helping 

users understand how predictions are made. 

• Neural Architecture Search (NAS): Automated 

techniques to search for the optimal neural network 

architecture could improve the efficiency of model 

design. 

• Quantum Neural Networks: The combination of 

quantum computing and neural networks could open 

up new frontiers in solving complex classification 

problems. 

XI. CONCLUSIONS 

Artificial Neural Networks have proven to be a powerful tool 

for classification tasks across various domains. In this paper, we 

explored artificial neural networks (ANNs) through the lens of 

optimization-driven learning, emphasizing the central role that 

optimization techniques play in enabling ANNs to generalize 

from data and solve complex problems. By framing learning as 

an optimization process, we highlighted how neural networks 

iteratively adjust their parameters to minimize a loss function, 

thereby capturing patterns in high-dimensional spaces. We 

examined key components of this framework, including loss 

function design, gradient-based optimization algorithms, 

regularization techniques, and architecture selection—all of 

which are critical to both performance and stability. The 

synergy between network design and optimization strategy is 

what ultimately drives the success of modern neural networks 

in fields ranging from computer vision to natural language 

processing. Despite their powerful capabilities, ANNs remain 

sensitive to issues like overfitting, local minima, and data 

distribution shifts. These challenges underline the importance 

of continued research in more robust optimization techniques, 

scalable architectures, and learning paradigms such as meta-
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learning and unsupervised learning. In summary, optimization 

not only underpins how ANNs learn but also shapes their 

capacity to adapt, generalize, and evolve. A deeper 

understanding of this interplay offers pathways toward more 

efficient, interpretable, and intelligent learning systems in the 

future. 
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Figure 1. Artificial neural network architectures with feed-forward 
and backpropagation algorithms 
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