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Abstract— Cardiovascular disease remains a leading cause of death worldwide, requiring prompt and accurate diagnosis to 

minimize patient mortality rates. More recent developments in artificial intelligence (AI) applications have demonstrated how to 

enhance prognostic performance and interpretability in clinical diagnosis. This research paper analyzes the application of machine 

and Deep Learning models for heart disease prediction by voting with a selection of models in order to develop a strong classifier. 

A weighted ensemble voting approach is employed and leverage is made from XGBoost, Random Forest, and Multi-Layer 

Perceptron (MLP) model strengths. Further, explainability is offered by SHapley Additive exPlanations (SHAP) to facilitate 

model decisions, allowing feature importance and decision-making insight. The proposed methodology is supported by 

established performance metrics, retaining clinical relevance. Results imply that AI-based approaches can achieve elevated 

predictive accuracy and interpretable diagnoses, informing the creation of automated cardiovascular risk stratification. 

Keywords- Heart Disease prediction, ensemble learning, data preprocessing, wearable devices, dietary recommendations, 

imbalanced datasets, explainable AI, real-time healthcare systems. 

 

 

I.  INTRODUCTION  

Cardiovascular diseases (CVDs) remain the foremost global 

healthcare challenge [1], with high levels of morbidity and 

mortality [2]. There is need to detect disease conditions early in 

the prevention against heart disease development because 

delayed diagnosis poses very catastrophic repercussions. 

Traditional imaging diagnostic tools such as clinical findings, 

medical images, and laboratory test results are promising but in 

some cases are too cumbersome and vulnerable to subjective 

impressions. AI use in medicine has assisted in automating the 

forecast of disease and improving diagnostic accuracy. 

 

Machine Learning (ML) and Deep Learning (DL) algorithms 

have greatly contributed to predictive analytics, enabling them 

to identify subtle patterns in medical data [3]. These algorithms 

present evidence-based insights that inform clinicians, 

complementing conventional diagnostic practices and enhancing 

decision-making. Yet, if AI-based predictions are to prove 

clinically valuable, they need to be not just very accurate but also 

interpretable. One of the main obstacles to medical applications 

of AI is the "black-box" feature of sophisticated models, where 

reasoning behind predictions is not explicit. To overcome this, 

explainable AI (XAI) methodologies like SHapley Additive 

exPlanations (SHAP) have been applied to promote model 

interpretability and trust. 

 

This study takes into account the application of an AI-

predictive model in diagnosing heart disease through the 

combination of ML and DL techniques. A specific ensemble 

learning method is utilized where the strengths of XGBoost, 

Random Forest, and MLP models are combined. Weighted 

voting is utilized to optimize predictive performance, while 

interpretability is derived from SHAP analysis. The objective is 

to develop an AI-based system that yields interpretable, precise, 

and clinically pertinent predictions, thereby supporting 

healthcare practitioners in early diagnosis and risk evaluation. 

 

The sections of this paper are organized as follows: Section 

II presents a brief overview of recent literature on heart disease 

prediction using AI. Section III explains the proposed 

methodology, such as dataset preprocessing, model selection, 

and evaluation metrics. Section IV illustrates the algorithmic 
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implementation, and Section V displays experimental results and 

analysis. Finally, Sections VI and VII report the study's 

limitations and summarize potential future work directions. 

II. LITERATURE REVIEW 

Artificial intelligence (AI)-based early detection and 

prediction of cardiovascular diseases (CVDs) have been a topic 

of interest in the last few years. Because CVDs are still a leading 

cause of mortality worldwide, high demand exists for diagnostic 

tests that are not just accurate but scalable and economical. 

Classical risk prediction models, including the Framingham Risk 

Score and logistic regression models, have been extensively 

applied but tend to fail to explain the sophisticated and nonlinear 

interactions between clinical predictors (Wilson et al., 1998) [4]. 

Machine Learning (ML) and Deep Learning (DL) methods have 

also been investigated in an increasing manner to tackle these 

shortcomings, leveraging enhanced predictive powers by 

detecting obscure patterns in biomedical data. 

 

Several ML algorithms have demonstrated promising results 

in classification of heart disease. Some models, including 

Decision Trees, Random Forest, Support Vector Machines 

(SVM), Naïve Bayes, and K-Nearest Neighbors (KNN), have 

been tested against each other on the basis of predictive accuracy 

in various studies. Amongst these, ensemble-based models such 

as Random Forest have been extremely effective in reducing 

overfitting as well as improving model generalizability (Chen & 

Guestrin, 2016) [5]. Moreover, gradient boosting algorithms 

such as XGBoost and LightGBM have proven to be strong 

methods, improving predictive accuracy even more by further 

optimizing ensembles of decision trees (Ke et al., 2017) [6]. 

Hybrid techniques such as feature selection techniques such as 

Recursive Feature Elimination (RFE) and Principal Component 

Analysis (PCA) have been suggested by scientists to improve 

classification efficiency as well as minimize computational 

complexity (Li et al., 2020) [7]. 

 

Deep Learning methods such as Artificial Neural Networks 

(ANNs) and Convolutional Neural Networks (CNNs) have been 

found to possess tremendous ability in handling massive medical 

data. Murtaza et al. (2022) [8] proved that Multilayer 

Perceptrons (MLPs) can even surpass simpler classifiers if 

trained over properly preprocessed clinical data. Although 

CNNs are classically employed for image-based diagnosis, there 

are recent applications of CNNs in structured medical data with 

promising results (Huang et al., 2019) [9]. However, deep 

learning models are likely to require vast computational 

resources and enormous training data sets to provide maximum 

generalization, making them impractical for application in the 

clinical setting. 

 

A problem with AI-based healthcare applications is that 

black-box models are non-interpretable, and this may discourage 

clinical adoption.Shapley Additive Explanations (SHAP) 

emerged as a high-impact methodology to enhance the 

explainability of models, providing insights into attribute 

significance and making healthcare providers knowledgeable 

about AI-synthesized predictions (Lundberg & Lee, 2017) [10]. 

Analysis with SHAP has been utilized extensively in ML and 

DL models for better medical decision-making transparency 

(Molnar, 2022) [11]. In addition, interpretability of models is 

necessary to ensure compliance with regulatory requirements 

and the ethical use of AI in healthcare (Tjoa & Guan, 2021) [12]. 

 

In spite of these developments, issues persist in achieving the 

generalizability of AI models across populations, reducing bias 

in datasets, and ensuring fairness in AI-based predictions across 

demographic groups. Overcoming class imbalances and 

enhancing predictive model robustness are ongoing research 

areas. Current studies continue to investigate hybrid AI models 

combining ML, DL, and explainability methods to improve 

accuracy and reliability in heart disease prediction. 

III. METHODOLOGY 

The approach used in this study is the construction and 

validation of an AI model to predict heart disease using a 

technique of ensemble learning that combines various machine 

learning algorithms. The following discusses the data used in 

the dataset, preprocessing, model choice, training, evaluation 

metric, and explanation techniques used to report the findings. 

 

A. Dataset Description 

The dataset utilized in this study is an open-available 

Cardiovascular Disease Dataset containing structured patient 

data with some clinical attributes. A few of these are: 

 

• Demographic Details: Age, gender, etc. 

• Physiological Data: Cholesterol level, heart rate, BMI, 

blood pressure. 

• Medical History and Risk Factors: Diabetes, smoking 

status, exercise, history of heart disease in family. 

 

Target variable is binary denoting presence (1) or absence 

(0) of heart disease. 

 

B. Data Preprocessing 

To keep the quality and accuracy of the dataset, the 

following data preprocessing operations were performed: 

1. Handling Missing Values: Missing values were 

imputed with the median for numerical attributes and 
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mode imputation for categorical attributes to avoid 

data loss. 

2. Removal of Outliers: The outliers were removed using 

the Interquartile Range (IQR) method, and 189 outliers 

from the training dataset were deleted. 

3. Feature Scaling and Encoding: 

• Numerical features were standardized (unit 

variance, zero mean) for deep learning models. 

• Categorical variables were one-hot encoded to 

render them machine learning algorithm-

compatible. 

4. Train-Test Split: The data were manually divided into 

611 train samples and 200 test samples prior to any 

preprocessing, to avoid data leakage. 

 

C. Model Selection and Training 

This study employs an ensemble learning technique that 

combines three models—XGBoost, Random Forest, and 

Multilayer Perceptron (MLP)—for the highest possible 

predictive performance. 

 

D. Extreme Gradient Boosting (XGBoost) 

XGBoost is a high-performance gradient-boosting decision 

tree model. It effectively describes the non-linear inter-

correlations of cardiovascular risk factors. Features: 

• Gradient Boosting Framework: Every tree fixes 

the mistake of the previous tree. 

• Regularization (L1 & L2): Avoidance of 

overfitting. 

• Missing Values Handling: XGBoost is capable of 

learning automatic optimal missing values for 

splitting. 

• Tree Pruning: Stops tree growth when it is needed 

to make the algorithm efficient. 

XGBoost Model Training: 

1. Loss Function: Binary Log Loss (appropriate for 

classification). 

2. Hyperparameters Used in Training: 

• Number of Estimators: 100 

• Maximum Depth: 6 

• Learning Rate: 0.1 

• Subsample Ratio: 0.8 

3. Optimization: The model was trained without any 

other hyperparameter optimization. 

 

E. Random Forest (RF) 

Random Forest is an ensemble method [13] that constructs 

many individual decision trees and combines their prediction in 

a manner to enhance generalization. 

 

Principal Features: 

1. Bootstrap Aggregation (Bagging): Minimizes 

variance. 

2. Feature Randomization: Minimizes sensitivity. 

3. Majority Voting Mechanism: Averages prediction of 

many trees. 

 

Random Forest Model Training: 

• Number of Estimators: 100 (instead of 200 as 

originally planned). 

• Maximum Depth: 10 

• Minimum Samples per Split: 2 

• Hyperparameter tuning: Not performed; default scikit-

learn settings for the sake of efficiency. 

 

F. Multilayer Perceptron (MLP) - Neural Network 

MLP is a densely connected learning model and can learn 

high-order feature interactions [14]. 

 

Design: 

1. The number of features in the input layer of the MLP 

architecture is equal. 

2. Layers That Are Hidden: 

• Layer 1: ReLU activation, 128 units, dropout 

(0.3). 

• Layer 2: ReLU activation, 64 units, dropout (0.2). 

• Layer 3: ReLU activation, 32 units. 

3. The output layer uses a sigmoid activation function in 

binary classification. 

 

Training: 

• 32 is used as batch size. 

• 100 epochs exist. 

• A 0.001 learning rate Adam optimizer. 

• Binary Cross-Entropy as the loss function. 

 

G. Ensemble Model Building 

These individual predictions were then aggregated by a 

weighted voting mechanism where the prediction was 

computed as: 

 

Pensemble = 0.4 × PXGBoost + 0.3 × PRandomForest + 0.3 × PMLP 
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Where P is each model's heart disease probability 

prediction. The weights were set up on the basis of individual 

performance of models when validated to strike an optimal 

trade-off. 

 

• If Pensemble > 0.5, the sample is labeled as "Heart 

Disease" (1). 

• Else, it is labeled as "No Heart Disease" (0). 

 

This ensemble strategy improves predictability by using the 

best capabilities of all three models. 

 

H. Evaluation Metrics 

The performance of the model was measured based on 

clinically appropriate metrics: 

1. Accuracy: Refers to the proportion of accurate 

predictions. 

2. Precision: Verifies how many forecasted positive 

cases are indeed positive. 

3. Recall (Sensitivity): It is the prediction of the 

capability to identify true cases of heart disease. 

4. F1-Score: It is the harmonic mean of the recall and 

precision. 

5. AUC-ROC (Area Under the Curve – Receiver 

Operating Characteristic): It is utilized to quantify the 

discriminative ability of the model. 

 

These measures make the clinical utility of the model strong 

and trustworthy. 

 

I. Explainability Using SHAP 

To make the models interpretable, Shapley Additive 

Explanations (SHAP) was employed in analyzing feature 

contribution and individual prediction. SHAP values measure 

how much each feature contributes to making a decision.  

 

SHAP Analysis Steps: 

 

1. Summary Plot: Presenting the summary effect of the 

features on prediction. 

2. Bar Plot: Ranking the contributing factors most 

affected by heart disease risk. 

3. Decision Plot: Showing which individual risk factors 

contribute to exact predictions. 

 

These explanation approaches guarantee the AI model is 

interpretable and transparent, making them comply with one of 

the main clinical decision-making requirements. 

 

 
 

Figure. 1.1 Representation of Methodology 
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(2) 

(3) 

(4) 

(5) 

IV.ALGORITHM 

This project utilizes an ensemble of machine learning and 

deep learning models incorporated into an ensemble learning 

approach [15]. The applied algorithms are Extreme Gradient 

Boosting (XGBoost), Random Forest (RF), and Multilayer 

Perceptron (MLP). All the algorithms have a specific 

contribution to the task of prediction, enhancing general 

accuracy and reliability. 

A. Extreme Gradient Boosting (XGBoost) 

 

𝐿(𝜃) = ∑ 𝑙

𝑛

𝑖=1

(𝑦𝑖 , 𝑦̂𝑖) + ∑ 𝛺(𝑓𝑡)

𝑇

𝑡=1

 

 

Where: 

• l(𝑦𝑖, 𝑦̂𝑖) is the loss function (e.g., log loss for binary 

classification). 

• 𝛺(𝑓𝑡) = 𝛾𝑇 +
1

2
𝜆𝛴𝑗𝜔𝑗

2 is the regularization term to 

control model complexity. 

• T is the number of trees, ωj are the leaf weights. 

Definition: XGBoost is an optimized version of the Gradient 

Boosting algorithm for performance and speed. It develops an 

ensemble of decision trees, each of which corrects the errors 

made by the previous trees through a boosting technique. 

Purpose in this Project: XGBoost is used to serve as one of 

the primary predictive models because it is efficient in handling 

structured medical data. It identifies complex, non-linear 

associations between risk factors and heart disease. 

Key Features: 

• Gradient Boosting Framework: Constructs trees in 

sequence to minimize prediction mistakes. 

• Regularization (L1 & L2): Prevents overfitting by 

penalizing complex models. 

• Handling Missing Values: Can automatically learn the 

best direction in which to split missing data. 

• Pruning of Trees: Stops tree growth when it no longer 

improves performance. 

XGBoost updates predictions using the gradient of the loss 

function, making it a powerful boosting technique. 

B. Random Forest (RF) 

𝐻(𝑥) =
1

𝑇
∑ ℎ𝑡(𝑥)

𝑇

𝑡=1

 

 

Where: 

• H(x) is the final predictions 

• T is the total number of trees. 

• ℎ𝑡(𝑥) is the prediction of the t-th tree. 

 

 

Definition: Random Forest is an ensemble approach that builds 

multiple decision trees and combines their outputs to enhance 

stability and accuracy. 

Purpose within this Project: Random Forest applies to boost 

model generalization and avoid overfitting. It performs 

especially well in structured medical datasets where interactions 

between the features are significant. 

Key Features: 

• Bootstrap Aggregation (Bagging): The trees are trained 

individually on a random subset of the data in order to 

promote diversity. 

• Feature Randomization: Each split considers only a 

subset of features, improving robustness. 

• Majority Voting Mechanism: Consolidates the 

predictions of many trees to produce the final outcome. 

C. Multilayer Perceptron (MLP) – Neural Network 

 

𝑧 = 𝑊𝑥 + 𝑏 

𝑎 = 𝜎(𝑧) 

Where: 

• W represents the weight matrix. 

• x represents the input vector. 

• b represents the bias term. 

• 𝜎(z) represents the activation function (ReLU in 

hidden layers, Sigmoid in output layer). 

 

The final output is computed as: 

𝑦̂ = 𝜎(𝑤𝑜𝑢𝑡 𝑎 + 𝑏𝑜𝑢𝑡) 

Where 𝑦̂  represents the predicted probability of heart 

disease. 

Definition: An MLP or Multilayer Perceptron is a deep model 

which has numerous layers of neurons. MLP learns complex 

patterns through weight updates by backpropagation. 
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(6) 

Role of MLP in the Project: The MLP is incorporated in the 

mixture to identify non-linear relationships among heart disease 

risk factors. It is able to identify deep hierarchical feature 

representations which may not be able to uncover by the tree-

based structures. 

Key Features: 

• Input Layer: It receives structured clinical data. 

• Hidden Layers: Learns transformations with activation 

functions (ReLU). 

• Output Layer: Uses Sigmoid activation to give 

probabilities for binary classification. 

 

D. Ensemble Learning (Weighted Voting) 

 

Pensemble = 0.4 × PXGBoost + 0.3 × PRandomForest + 0.3 × PMLP 

Where: 

• Pensemble is the final probability of heart disease. 

• PXGBoost, PRandomForest, PMLP are the predictions 

from individual models. 

The classification decision is: 

• If Pensemble > 0.5, the sample is labeled as "Heart 

Disease" (1). 

• Else, it is labeled as "No Heart Disease" (0). 

Definition: Ensemble learning refers to the practice of 

combining models to enhance performance. Weighted voting is 

used in aggregating XGBoost, Random Forest, and MLP 

predictions. 

Purpose of this Project: Ensemble technique permits using the 

merits of various models: 

1. XGBoost performs well at capturing non-linear 

patterns. 

2. Random Forest is imparting stability and 

generalization. 

3. MLP enriches high-order feature interactions. 

 

This ensemble method improves overall prediction accuracy 

and reduces bias and variance. 

V. RESULTS AND DISCUSSION 

Here, we compare and evaluate the performance of various 

machine learning models employed for heart disease prediction: 

XGBoost, Random Forest, Multi-Layer Perceptron (MLP), and 

Weighted Voting Ensemble. The models are compared on the 

basis of accuracy, AUC-ROC values, precision, recall, and F1-

score [16]. We also present the trade-offs of each method and 

its clinical relevance [17]. 

A. XGBoost Performance 

XGBoost recorded a 92.50% accuracy and AUC-ROC of 

0.9887, reflecting excellent performance in general. The model 

had an excellent recall rate of 97% in detecting heart disease 

cases so that most people with heart disease were properly 

identified.  

 
Figure. 1.2 Confusion Matrix for XGBoost 

 

Confusion Matrix Explanation: 

• True Positives (TP): 113, Proper classification of heart 

disease cases. 

• False Positives (FP): 12, Misclassification of normal 

patients as heart disease 

• True Negatives (TN): 72, Proper classification of 

healthy people. 

• False Negatives (FN): 3, Misclassification of heart 

disease cases as healthy. 

 

 
Figure. 1.3 ROC Curve for XGBoost 
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ROC Curve Analysis: 

• AUC-ROC: 0.9887, Showing outstanding 

discrimination capacity. 

• The model is good but slightly more false positives 

compared to other models, which indicates a minor 

compromise on precision. 

 

B. Random Forest Performance 

Random Forest provided a more precise (95.00%) and 

improved AUC-ROC (0.9909) classification than XGBoost, 

with a more accurate distinction boundary for patients with and 

without heart disease. Of special note was that its recall value for 

the heart disease cases was 98%, or almost all patients with heart 

disease were picked up. Additionally, precision for the heart 

disease class increased to 93%, fewer false positives than 

XGBoost. 

 
 

Figure. 1.4 Confusion Matrix for Random Forest 

 

Confusion Matrix Interpretation: 

• True Positives (TP): 114, More accurately identified 

heart disease cases than XGBoost. 

• False Positives (FP): 8, Less number of 

misclassification of healthy participants. 

• True Negatives (TN): 76, Improved classification of 

healthy cases. 

• False Negatives (FN): 2, lowest rate of false negatives, 

i.e., few cases were not detected. 

 

 
Figure. 1.5 ROC Curve for Random Forest 

 

ROC Curve Analysis: 

• AUC-ROC: 0.9909, which is higher than XGBoost, 

meaning better overall separation between classes. 

• Compared to XGBoost, Random Forest reduces false 

positives while maintaining high recall. 

 

C. MLP (Multi-Layer Perceptron) Performance 

Among stand-alone models, the MLP achieved the highest 

accuracy rate (96.00%), as a testament to its ability to learn 

complex patterns within the data. AUC-ROC score (0.9888) was 

lower than that of Random Forest, but still very strong predictive 

accuracy indicator. MLP's heart disease instance recall was very 

high (99%), and it predicted almost all heart disease patients. 

Besides, its precision (94%) was the best among individual 

models, with an optimal balance of false positives and false 

negatives. 

 
 

Figure. 1.6 Confusion Matrix for MLP 
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Confusion Matrix Explanation: 

• True Positives (TP): 115, Best possible correct 

classification of heart disease. 

• False Positives (FP): 7, Best possible false positives, 

i.e., Random Forest. 

• True Negatives (TN): 77, Best possible classification of 

healthy cases. 

• False Negatives (FN): 1, Best 1 heart disease case 

misclassified, best among all models. 

 

 
 

Figure. 1.7 ROC Curve for MLP 

 

ROC Curve Analysis: 

• AUC-ROC: 0.9888, comparable to XGBoost and 

Random Forest. 

• MLP achieves highest accuracy (96%) and recall 

(99%), verifying that almost all the cases of heart 

disease are identified. 

 

D. Weighted Voting Ensemble Performance 

In order to utilize the power of each and every model, a 

Weighted Voting Ensemble was employed, which was the 

aggregation of XGBoost, Random Forest, and MLP prediction. 

The method had an accuracy rate of 95.50%, lower than MLP 

but higher than XGBoost and Random Forest. The ensemble 

model was the best AUC-ROC score (0.9928), with the highest 

ability to discriminate heart disease from non-heart disease. 

 

Figure. 1.8 Confusion Matrix for Weighted Voting Ensemble 

Confusion Matrix Interpretation: 

• True Positives (TP): 115, Matches MLP in detecting 

heart disease. 

• False Positives (FP): 8, Similar to Random Forest. 

• True Negatives (TN): 76, Slightly lower than MLP but 

close. 

• False Negatives (FN): 1, Same lowest false negative 

rate as MLP. 

 

Figure. 1.9 ROC Curve for weighted voting ensemble 

ROC Curve Analysis: 

• AUC-ROC: 0.9928, the highest among all models. 
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• The ensemble leverages strengths from all models, 

making it the most robust approach. 

 

The ensemble approach upheld the high recall (99%) 

observed in MLP with the added benefit of improved precision 

(93%), thus a balanced model applicable to medicine. The high 

recall ensures that there are virtually no cases of heart disease 

that escape detection, and improved precision lessens 

misdiagnosis errors. The higher AUC-ROC value of the 

ensemble ensures that it is more stable and hence the most 

reliable among all the models. 

 

Figure. 1.10 ROC Curve for all models 
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SHAP Analysis for the Weighted Voting Ensemble Model 

 

Figure. 1.11 Feature Wise impact on predictions 

The SHAP summary plot provides a detailed breakdown of 

each feature’s influence on individual predictions. The color 

gradient (blue to red) represents feature values, where red 

indicates high values and blue indicates low values. 

• Slope: Large values (red) heavily pull predictions 

toward heart disease, while small values (blue) lower 

the likelihood. 

• Resting Blood Pressure: Slightly elevated values 

slightly increase the risk of heart disease, although 

somewhat variably. 

• Serum Cholesterol & Chest Pain: Elevated levels 

contribute positively to heart disease predictions. 

• Number of Large Vessels: Having more large vessels 

seems to be associated with a lower risk, as in the 

distribution. 
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• Old Peak (ST Depression Induced by Exercise): 

Higher values contribute towards higher disease risk. 

• Age & Gender: These have comparatively lesser 

influence in relation to physiological measures. 

 

Figure. 1.12 Summary of feature importance 

The bar chart is a visualization of the mean absolute SHAP 

values, showing the total contribution of each feature to the 

predictions of the ensemble model. Slope contributes the 

highest (+0.22), followed by restingBP (+0.08), serum 

cholesterol (+0.07), and chest pain (+0.07). Number of major 

vessels, maximum heart rate, resting electrocardiogram results, 

and old peak have moderate contribution, while fasting blood 

sugar and some other minor features have little contribution. 

This indicates that slope is the most significant factor in heart 

disease prediction, having a great impact on the decision-making 

process of the model. The features associated with blood 

pressure, cholesterol, and chest pain are also significant, as per 

existing medical knowledge. 

 

Figure. 1.13 Model Output value 

This SHAP dependence plot illustrates how each feature 

contributes to the ensemble model's output probability of heart 

disease prediction. The x-axis is the model output value 

(probability of heart disease), and the y-axis contains the 

features. The color gradient (blue to red) denotes feature values, 

with blue representing low values and red representing high 

values [18]. 

Key Insights: 

• Slope: The strongest feature, similar to in past SHAP 

plots, distinctly differentiates cases. Greater slope 

values (red) drive the model prediction towards greater 

probabilities of heart disease. In contrast, lower slope 

values (blue) drive predictions to lower probabilities. 

• Resting Blood Pressure (restingBP): Greater resting 

BP values provide a greater probability of heart disease 

but with some fluctuation, as seen from the red and 

blue curve fluctuation. 

• Serum Cholesterol & Chest Pain: Both have good 

positive trends, such that higher figures increase the 

estimated probability of heart disease by the model. 

These are consistent with medical information. 

• Number of Major Vessels (noofmajorvessels): The 

pattern shows a negative correlation—increasing 

numbers of major vessels (red) lead to predictions 

towards low risks of heart disease, suggesting a 

protective factor. 

• Exercise-Induced Angina & Old Peak: Effort-induced 

angina and ST depression (old peak) are positively 

adding towards heart disease prediction. 

• Age & Gender: These are less impactful, with no clear 

distinction between red and blue curves, showing that 

while they are part of the model, their impact is not as 

pronounced as physiological markers. 

VI.CONCLUSION 

This research proposed and tested an AI-based method for 

heart disease prediction using several machine learning models, 

such as XGBoost, Random Forest, Multi-Layer Perceptron 

(MLP), and a Weighted Voting Ensemble. Among them, the 

ensemble model performed best, with an accuracy of 95.50% 

and an AUC-ROC of 0.9928, proving its superiority over single 

classifiers. These results support the strength of ensemble 

methods in enhancing predictive accuracy for sophisticated 

medical classification problems. 

SHAP interpretability analysis validated that there are some 

key clinical parameters used as indicators for heart disease. 

Slope, resting blood pressure, serum cholesterol, and chest pain 

were highlighted as the strongest predictors, out of which slope 

was the strongest. SHAP summary and dependence plots also 
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helped identify interactions among features, attesting to the 

model's applicability in real-world clinical environments, and 

further making it a sound decision-supporting tool for 

diagnosing early stages of heart disease. 

The results of the study indicate that AI-based predictive 

models have the potential to be key in helping medical 

professionals identify individuals at risk for heart disease. 

Through incorporation of explainability methods, e.g., SHAP, 

physicians can better perceive model predictions and ensure that 

these reflect recognized medical risk factors [19]. This will 

improve confidence and acceptance of AI in actual clinical 

practice. 

Notwithstanding its encouraging findings, this study is not 

without its limitations. The data, while publicly available, was 

relatively small, which can influence the generalization ability 

of the model. Besides that, the model has also not been validated 

in real clinical environments yet, so its applicability in practice 

remains doubtful. More research must explore the use of larger 

and more diversified datasets, as well as advanced deep learning 

algorithms, such as transformers, to improve feature learning 

and predictive performance. 

In conclusion, this study emphasizes the promise of AI in 

predicting heart disease and highlights the significance of model 

explainability in AI-based healthcare applications. The findings 

from this study can form the basis for future developments, 

eventually leading to early diagnosis and improved patient 

outcomes in cardiovascular treatment. 

VII. FUTURE SCOPE 

The results of the present study illustrate the capability of 

AI models in predicting heart disease at almost perfect levels. 

Nevertheless, there are a number of directions for future 

research and enhancement: 

• The addition of multimodal data such as 

electrocardiograms (ECG), echocardiography, and 

genetic markers can increase predictive precision [20]. 

• Utilization of the model in health systems to evaluate 

risk for heart disease at a fast pace and with an early 

intervention. 

• Ongoing refinement of SHAP-based explanations 

towards enhancing trust and adoption by doctors. 
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