
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

 1473
IJRITCC | December 2023, Available @ http://www.ijritcc.org

Analyzing Execution Time of Jit4gpu and Jit4opencl

Against CPU Benchmarks
Palyam Nata Sekhar 1

1 Research Scholar, Department of Computer Science, Dr. A. P. J. Abdul Kalam University, Indore, Madhya Pradesh

Dr. Arpana Bharani 2

2 Supervisor, Department of Computer Science, Dr. A. P. J. Abdul Kalam University, Indore, Madhya Pradesh

ABSTRACT

There is a critical need to optimize execution time due to the increasing computing needs of current applications. By optimizing

code dynamically during runtime, JIT compilation provides a dynamic method to code optimization and has the ability to improve

speed for activities that need parallel processing. For very parallel workloads, JIT4GPU is the way to go, and JIT4OPENCL is all

about making the most of the OpenCL framework so that parallel computation may happen on many platforms. To achieve great

performance in jobs demanding heavy calculation, JIT4GPU optimizes code to fully use the parallel processing capabilities of

GPUs, making it particularly designed for GPU architectures. But JIT4OpenCL is all about the OpenCL platform, which means

it's more versatile and can run on a wide range of hardware, including GPUs and CPUs. The experimental assessment compares

the execution time of CPU-optimized benchmarks to those built using jit4GPU and jit4OpenCL.

Keywords: Compilation, Benchmark, Computing, Performance, Python

I.INTRODUCTION

With the introduction of varied hardware designs such as

GPUs (Graphics Processing Units) and multi-core CPUs, the

demand for efficient and high-performance code execution

has grown in importance in the ever-changing computing

environment. While these designs provide tremendous

processing power, optimizing software to fully use them is a

significant task. One effective approach to these problems is

the rise of Just-In-Time (JIT) compilation, which allows

programs to be optimized dynamically and executed in real-

time according to the hardware they are running on. Some of

the most well-known JIT compilation frameworks are

JIT4GPU and JIT4OpenCL, which focus on different areas

of GPU and OpenCL-based programming, respectively. For

code optimization and execution on GPU architectures,

there is a JIT compilation system called JIT4GPU. Graphics

processing units (GPUs) are very parallel processors that

were first developed for visual rendering but are now

extensively used for general-purpose computing jobs

because of how well they handle large-scale parallelism. By

taking use of this parallelism, JIT4GPU generates optimized

machine code that targets the GPU hardware directly,

leading to significant improvements in speed for activities

that need a lot of computation. In scientific simulations,

image processing, and deep learning applications, this

framework shines when the workload can be parallelized.

Conversely, JIT4OpenCL is an extensible JIT compilation

system for the OpenCL (Open Computing Language)

environment. For parallel programming on heterogeneous

platforms, such as CPUs, GPUs, and others, OpenCL is the

open standard to follow. Because it produces code that is

compatible with all devices that support OpenCL,

JIT4OpenCL is a very portable solution. Because it let the

same code to be performed across numerous devices with

few adjustments, this flexibility is especially helpful in

contexts with varied hardware. In contrast to frameworks

like JIT4GPU, which create code with a high degree of

specificity for any given hardware architecture, this generic

approach typically results in subpar performance.

With more and more industries requiring efficient, high-

performance applications, comparing JIT4GPU with

JIT4OpenCL becomes necessary. Although they use distinct

approaches and target platforms, both frameworks strive to

increase program execution efficiency. In contrast to

JIT4OpenCL, which prioritizes adaptability and cross-

platform compatibility to make it work with more devices,

JIT4GPU is dedicated on optimizing performance on GPU

hardware by taking use of its distinctive architectural

characteristics. In order to choose the most appropriate tool

for their unique requirements, researchers and developers

must be familiar with the benefits and drawbacks of each

framework. Using JIT4GPU and JIT4OpenCL as examples,

we thoroughly compare their respective program

performance in this research. We test important performance

indicators across various hardware configurations, including

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

 1474
IJRITCC | December 2023, Available @ http://www.ijritcc.org

execution speed, resource consumption, and scalability. We

want to shed light on the compromises that exist between

supporting many platforms and optimizing performance for

individual hardware. In addition to assisting with

performance-based framework selection, this comparison

will add to our knowledge of how to best use JIT

compilation to handle the demands of today's computing

applications.

II.REVIEW OF LITERATURE

Magni, Alberto et al., (2014) Enabling functional portability

across multi-core systems from various suppliers is a

primary goal of OpenCL's architecture. It is quite difficult to

transfer OpenCL applications' performance since there isn't

a single cross-target optimizing compiler. The lack of

effective portability is caused by the requirement for

programmers to manually adjust apps for each individual

device. We demonstrate that thread-coarsening, a compiler

change tailored to data-parallel languages, may enhance

performance on various GPU devices. Then, we deal with

the issue of choosing an optimal value for the coarsening

factor parameter, which is determining the optimal number

of threads to combine. Our experimental results demonstrate

the difficulty of the problem: optimal configurations are

hard to discover, and naïve coarsening causes significant

performance degradation. We provide a model-based

approach that use machine learning to forecast the optimal

coarsening factor by analyzing static properties of kernel

functions. The model adapts itself to each of the possible

structures without human intervention. We test our method

on 17 benchmarks using four devices: two graphics

processing units (GPUs) from Nvidia and two GPUs from

AMD, spanning two generations. We get speedups

averaging 1.11X to 1.33X using our method.

Garg, Rahul & Amaral, José. (2010) A new compilation

system allows Python programs with heavy numerical

calculations to run in a CPU-GPU hybrid environment. By

itself, this compiler determines which memory addresses

should be sent to the GPU and generates an accurate

mapping between the two address spaces. As a result, a

common address space in the virtual realm is included into

the programming paradigm. The framework is built using

jit4GPU, a just-in-time compiler from C to the AMD CAL

interface, and unPython, an ahead-of-time compiler from

Python/NumPy to C. A number of benchmarks show that

the produced GPU code is fifty times quicker than the

produced OpenMP code, according to experimental

assessment. Optimised CPU BLAS code and GPU

performance for single-precision calculations are often

comparable.

Ryoo, Shane et al., (2008) Modern many-core CPUs, like

the GeForce 8800 GTX, let programmers take use of many

layers of parallelism to speed up their apps. On the other

hand, since the system is complicated, iterative optimization

might result in a local performance maximum. We provide

program optimization carving, a method that takes a whole

optimization space as input and reduces it to a collection of

configurations that potentially include the global maximum.

After that, we may test out the other combinations to see

which one works best. This method successfully finds a

configuration that is close to the best while simultaneously

reducing the number of variants to be assessed by up to

98%. In comparison to randomly selecting search

parameters, we demonstrate that our method is far better for

certain applications.

Greenfield, Perry. (2007) The calibration and interpretation

of data obtained from the Hubble Space Telescope (HST)

have been aided by Python, according to experts. Initial

implementation of this language was as an alternate

scripting tool for the Imaging Reduction and processing

Facility (IRAF) astronomical processing system. In order to

make IRAF tasks perform more reliably and integrate them

with the many libraries and tools available in Python, it is

used for scripting IRAF applications. Introducing PyRAF, a

new scripting environment that streamlines Python

development and enables the addition of more robust

features than first planned. Other applications, including

Numarray in Python, were developed as a result of PyRAF's

popularity. There is also the development of PyFITS, a

library that adds to matplotlib that can read and write the

standard astronomical Flexible Image Transport System

(FITS) data format.

III.EXPERIMENTAL METHODOLOGY

In the studies, a Phenom II X4 925 2.8 GHz CPU was used

in combination with a Radeon 5850 GPU that has 1 GB of 1

GHz GDDR5. We utilized the most recent Catalyst drivers,

10.7 with OpenCL 1.1. Python 2.6 and NumPy 1.2 made up

the software platform, which ran on a 64-bit Linux 2.6.32

kernel. Using the optimization setting -O2, GCC 4.4 was the

C/C++ compiler that was used. All four cores were used

throughout the execution of CPU instructions. We generated

OpenMP by using the -fopenmp option in gcc. This device

is known as the AMD machine. It is also shown that the

OpenCL code generated by jit4OpenCL is portable via

testing conducted on a desktop PC equipped with an NVidia

GTX260 GPU, an Intel Core 2 Duo E5200 (2.5GHz), and

6GB DDR3 RAM. This machine runs Ubuntu 9.10 32-bit

with GCC 4.4 and has the NVidia Computing Software

Development Kit (SDK) 3.2 Beta installed. The

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

 1475
IJRITCC | December 2023, Available @ http://www.ijritcc.org

manufacturer of this machine is NVidia. For each tabled

result, twenty runs of the benchmark were performed. We

provide the mean and the 95% confidence interval here.

IV.RESULTS AND DISCUSSION

Execution timings are shown in seconds in the first rows of

Table 1. The lower half of the table displays the relative

speedups between each compiler and the CPU, as well as the

speedup of jit4GPU over jit4OpenCL. We compare MM to

the BLAS version of matrix multiplication, which is greatly

optimized. On multi-core CPUs, both JIT compilers produce

superior OpenMP code, but jit4GPU code generates far

higher performance (with the exception of MB, where

jit4OpenCL performance is about twice as good as jit4GPU

performance). Compared to jit4GPU, jit4OpenCL has a lot

more overhead due to the intermediate translation to

OpenCL and the extra compilation step to turn the resulting

OpenCL code into native code. The performance

comparison is affected by this cost in benchmarks that run

for short periods of time. As an example, jit4OpenCL yields

a sixfold faster kernel (GPU execution alone) for MB than

jit4GPU.

Table 1 Comparison of JIT4GPU, JIT4OpenCL, and

CPU Performance on an AMD Machine

The primary motivation for re-targeting the compiler to

produce OpenCL code is to provide a compilation

infrastructure capable of producing code for several

platforms. Table 2 displays the results of running the

jit4OpenCL function in the aforementioned NVidia GPU.

The larger speedups are not unexpected, considering that

this is a 2-core CPU (as opposed to the quad-core CPU in

the AMD system). Notwithstanding, these results suggest

that the produced OpenCL code performs well on many

systems.

Table 2 Comparisons Between JIT4OpenCL and CPU

Code Performance on an NVIDIA Machine

CONCLUSION

By comparing JIT4GPU with JIT4OpenCL, we can see how

each JIT compilation system addresses current computing

demands with its own set of benefits and drawbacks. When

it comes to optimizing code for GPU-specific architectures,

JIT4GPU really shines. It provides top-notch performance

for jobs that need a lot of computational intensity and

parallelism. Applications like as deep learning, scientific

simulations, and real-time image processing are well-suited

to its emphasis on using the distinct characteristics of GPUs.

On the other hand, JIT4OpenCL provides a flexible and

portable solution that can operate on many types of

hardware. In GPU-centric jobs, it may not be as fast as

JIT4GPU, but its versatility lets developers use the same

code on numerous devices with few changes, which is its

strongest suit. Because of this, JIT4OpenCL is very useful in

heterogeneous computing settings where interoperability

across platforms is paramount.

In the end, the application's needs and the hardware

environment dictate which of JIT4GPU and JIT4OpenCL is

better. In cases where portability and flexibility are of

utmost importance, JIT4OpenCL is the preferable

alternative, while JIT4GPU is the obvious choice for

developers focusing on GPU performance. The findings of

this research will be invaluable in making these judgments,

which will improve the efficacy and efficiency of software

development for various computer systems.

REFERENCES

1. Çelik, Ahmet & Nie, Pengyu & Rossbach, Christopher

& Gligoric, Milos. (2019). Design, implementation,

and application of GPU-based Java bytecode

interpreters. Proceedings of the ACM on Programming

Languages. 3. 1-28. 10.1145/3360603.

2. Hill, N. & Mooney, Scott & Ryklin, Edward & Prusky,

Glen. (2019). Shady: a Software Engine for Real-Time

Visual Stimulus Manipulation. Journal of

Neuroscience Methods. 320.

10.1016/j.jneumeth.2019.03.020.

3. Kim, Gloria & Hayashi, Akihiro & Sarkar, Vivek.

(2018). Exploration of Supervised Machine Learning

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

 1476
IJRITCC | December 2023, Available @ http://www.ijritcc.org

Techniques for Runtime Selection of CPU vs. GPU

Execution in Java Programs. 10.1007/978-3-319-

74896-2_7.

4. Fumero, Juan & Steuwer, Michel & Stadler, Lukas &

Dubach, Christophe. (2017). Just-In-Time GPU

Compilation for Interpreted Languages with Partial

Evaluation. ACM SIGPLAN Notices. 52. 60-73.

10.1145/3140607.3050761.

5. Fumero, Juan & Steuwer, Michel & Stadler, Lukas &

Dubach, Christophe. (2017). Just-In-Time GPU

Compilation for Interpreted Languages with Partial

Evaluation. 10.1145/3050748.3050761.

6. Zohouri, Hamid Reza & Maruyamay, Naoya & Smith,

Aaron & Matsuda, Motohiko & Matsuoka, Satoshi.

(2016). Evaluating and Optimizing OpenCL Kernels

for High Performance Computing with FPGAs. 409-

420. 10.1109/SC.2016.34.

7. Alvanos, Michail & Tiotto, Ettore & Amaral, José &

Farreras, Montse & Martorell, Xavier. (2016). Using

Shared-Data Localization to Reduce the Cost of

Inspector-Execution in Unified-Parallel-C Programs.

Parallel Computing. 54. 10.1016/j.parco.2016.03.002.

8. Ishizaki, Kazuaki & Hayashi, Akihiro & Koblents,

Gita & Sarkar, Vivek. (2015). Compiling and

Optimizing Java 8 Programs for GPU Execution.

10.1109/PACT.2015.46.

9. Labschutz, Matthias & Bruckner, Stefan & Gröller,

Eduard & Hadwiger, Markus & Rautek, Peter. (2015).

JiTTree: A Just-in-Time Compiled Sparse GPU

Volume Data Structure. IEEE Transactions on

Visualization and Computer Graphics. 22. 1-1.

10.1109/TVCG.2015.2467331.

10. Magni, Alberto & Dubach, Christophe & O'Boyle,

Michael. (2014). Automatic optimization of thread-

coarsening for graphics processors. Parallel

Architectures and Compilation Techniques -

Conference Proceedings, PACT.

10.1145/2628071.2628087.

11. Yan, Wanglong & Shi, Xiaohua & Yan, Xin & Wang,

Lina. (2013). Computing OpenSURF on OpenCL and

general purpose GPU. International Journal of

Advanced Robotic Systems. 10. 1. 10.5772/57057.

12. Yan, Wanglong & Shi, Xiaohua & Yan, Xin & Wang,

Lina. (2013). Computing OpenSURF on OpenCL and

general purpose GPU. International Journal of

Advanced Robotic Systems. 10. 1. 10.5772/57057.

13. Zhang, Yao & Sinclair, Mark & Chien, Andrew.

(2013). Improving Performance Portability in OpenCL

Programs. 136-150. 10.1007/978-3-642-38750-0_11.

14. Ali, Akhtar & Dastgeer, Usman & Kessler, Christoph.

(2012). OpenCL for programming shared memory

multicore CPUs.

15. Demidov, Denis & Ahnert, Karsten & Rupp, Karl &

Gottschling, Peter. (2012). Programming CUDA and

OpenCL: A Case Study Using Modern C++ Libraries.

SIAM Journal on Scientific Computing. 35.

10.1137/120903683.

16. Garg, Rahul & Amaral, José. (2010). Compiling

Python to a hybrid execution environment.

International Conference on Architectural Support for

Programming Languages and Operating Systems -

ASPLOS. 19-30. 10.1145/1735688.1735695.

17. Ryoo, Shane & Rodrigues, Christopher & Stone, Sam

& Stratton, John & Ueng, Sain-Zee & Baghsorkhi,

Sara & Hwu, Wen-mei. (2008). Program optimization

carving for GPU computing. Journal of Parallel and

Distributed Computing. 68(10). 1389-1401.

10.1016/j.jpdc.2008.05.011.

18. Greenfield, Perry. (2007). Reaching for the Stars with

Python. Computing in Science & Engineering. 9(3).

38-40. 10.1109/MCSE.2007.62.

http://www.ijritcc.org/

