International Journal on Recent and Innovation Trends in Computing and Communication
ISSN: 2321-8169 Volume: 11 Issue: 11
Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

Analyzing Execution Time of Jit4gpu and Jit4opencl
Against CPU Benchmarks

Palyam Nata Sekhar !
! Research Scholar, Department of Computer Science, Dr. A. P. J. Abdul Kalam University, Indore, Madhya Pradesh
Dr. Arpana Bharani 2
2 Supervisor, Department of Computer Science, Dr. A. P. J. Abdul Kalam University, Indore, Madhya Pradesh
ABSTRACT

There is a critical need to optimize execution time due to the increasing computing needs of current applications. By optimizing
code dynamically during runtime, JIT compilation provides a dynamic method to code optimization and has the ability to improve
speed for activities that need parallel processing. For very parallel workloads, JIT4AGPU is the way to go, and JIT4AOPENCL is all
about making the most of the OpenCL framework so that parallel computation may happen on many platforms. To achieve great
performance in jobs demanding heavy calculation, JIT4GPU optimizes code to fully use the parallel processing capabilities of
GPUs, making it particularly designed for GPU architectures. But JIT40penCL is all about the OpenCL platform, which means
it's more versatile and can run on a wide range of hardware, including GPUs and CPUs. The experimental assessment compares

the execution time of CPU-optimized benchmarks to those built using jit4GPU and jit4OpenCL.

Keywords: Compilation, Benchmark, Computing, Performance, Python

I.INTRODUCTION

With the introduction of varied hardware designs such as
GPUs (Graphics Processing Units) and multi-core CPUs, the
demand for efficient and high-performance code execution
has grown in importance in the ever-changing computing
environment. While these designs provide tremendous
processing power, optimizing software to fully use them is a
significant task. One effective approach to these problems is
the rise of Just-In-Time (JIT) compilation, which allows
programs to be optimized dynamically and executed in real-
time according to the hardware they are running on. Some of
the most well-known JIT compilation frameworks are
JITAGPU and JIT40penCL, which focus on different areas
of GPU and OpenCL-based programming, respectively. For
code optimization and execution on GPU architectures,
there is a JIT compilation system called JITAGPU. Graphics
processing units (GPUs) are very parallel processors that
were first developed for visual rendering but are now
extensively used for general-purpose computing jobs
because of how well they handle large-scale parallelism. By
taking use of this parallelism, JITAGPU generates optimized
machine code that targets the GPU hardware directly,
leading to significant improvements in speed for activities
that need a lot of computation. In scientific simulations,
image processing, and deep learning applications, this
framework shines when the workload can be parallelized.

Conversely, JIT40penCL is an extensible JIT compilation

IJRITCC | December 2023, Available @ http://www.ijritcc.org

system for the OpenCL (Open Computing Language)
environment. For parallel programming on heterogeneous
platforms, such as CPUs, GPUs, and others, OpenCL is the
open standard to follow. Because it produces code that is
compatible with all devices that support OpenCL,
JITAOpenCL is a very portable solution. Because it let the
same code to be performed across numerous devices with
few adjustments, this flexibility is especially helpful in
contexts with varied hardware. In contrast to frameworks
like JIT4GPU, which create code with a high degree of
specificity for any given hardware architecture, this generic
approach typically results in subpar performance.

With more and more industries requiring efficient, high-
performance applications, comparing JIT4AGPU with
JITAOpenCL becomes necessary. Although they use distinct
approaches and target platforms, both frameworks strive to
increase program execution efficiency. In contrast to
JIT40penCL, which prioritizes adaptability and cross-
platform compatibility to make it work with more devices,
JITAGPU is dedicated on optimizing performance on GPU
hardware by taking use of its distinctive architectural
characteristics. In order to choose the most appropriate tool
for their unique requirements, researchers and developers
must be familiar with the benefits and drawbacks of each
framework. Using JITAGPU and JIT4O0penCL as examples,
we thoroughly compare their respective program
performance in this research. We test important performance
indicators across various hardware configurations, including

1473

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

execution speed, resource consumption, and scalability. We
want to shed light on the compromises that exist between
supporting many platforms and optimizing performance for
individual hardware. In addition to assisting with
performance-based framework selection, this comparison
will add to our knowledge of how to best use JIT
compilation to handle the demands of today's computing
applications.

ILREVIEW OF LITERATURE

Magni, Alberto et al., (2014) Enabling functional portability
across multi-core systems from various suppliers is a
primary goal of OpenCL's architecture. It is quite difficult to
transfer OpenCL applications' performance since there isn't
a single cross-target optimizing compiler. The lack of
effective portability is caused by the requirement for
programmers to manually adjust apps for each individual
device. We demonstrate that thread-coarsening, a compiler
change tailored to data-parallel languages, may enhance
performance on various GPU devices. Then, we deal with
the issue of choosing an optimal value for the coarsening
factor parameter, which is determining the optimal number
of threads to combine. Our experimental results demonstrate
the difficulty of the problem: optimal configurations are
hard to discover, and naive coarsening causes significant
performance degradation. We provide a model-based
approach that use machine learning to forecast the optimal
coarsening factor by analyzing static properties of kernel
functions. The model adapts itself to each of the possible
structures without human intervention. We test our method
on 17 benchmarks using four devices: two graphics
processing units (GPUs) from Nvidia and two GPUs from
AMD, spanning two generations. We get speedups
averaging 1.11X to 1.33X using our method.

Garg, Rahul & Amaral, José. (2010) A new compilation
system allows Python programs with heavy numerical
calculations to run in a CPU-GPU hybrid environment. By
itself, this compiler determines which memory addresses
should be sent to the GPU and generates an accurate
mapping between the two address spaces. As a result, a
common address space in the virtual realm is included into
the programming paradigm. The framework is built using
jitAGPU, a just-in-time compiler from C to the AMD CAL
interface, and unPython, an ahead-of-time compiler from
Python/NumPy to C. A number of benchmarks show that
the produced GPU code is fifty times quicker than the
produced OpenMP code, according to experimental
assessment. Optimised CPU BLAS code and GPU
performance for single-precision calculations are often
comparable.

IJRITCC | December 2023, Available @ http://www.ijritcc.org

Ryoo, Shane et al., (2008) Modern many-core CPUs, like
the GeForce 8800 GTX, let programmers take use of many
layers of parallelism to speed up their apps. On the other
hand, since the system is complicated, iterative optimization
might result in a local performance maximum. We provide
program optimization carving, a method that takes a whole
optimization space as input and reduces it to a collection of
configurations that potentially include the global maximum.
After that, we may test out the other combinations to see
which one works best. This method successfully finds a
configuration that is close to the best while simultaneously
reducing the number of variants to be assessed by up to
98%. In comparison to randomly selecting search
parameters, we demonstrate that our method is far better for
certain applications.

Greenfield, Perry. (2007) The calibration and interpretation
of data obtained from the Hubble Space Telescope (HST)
have been aided by Python, according to experts. Initial
implementation of this language was as an alternate
scripting tool for the Imaging Reduction and processing
Facility (IRAF) astronomical processing system. In order to
make IRAF tasks perform more reliably and integrate them
with the many libraries and tools available in Python, it is
used for scripting IRAF applications. Introducing PyRAF, a
new scripting environment that streamlines Python
development and enables the addition of more robust
features than first planned. Other applications, including
Numarray in Python, were developed as a result of PyRAF's
popularity. There is also the development of PyFITS, a
library that adds to matplotlib that can read and write the
standard astronomical Flexible Image Transport System
(FITS) data format.

111.LEXPERIMENTAL METHODOLOGY

In the studies, a Phenom Il X4 925 2.8 GHz CPU was used
in combination with a Radeon 5850 GPU that has 1 GB of 1
GHz GDDR5. We utilized the most recent Catalyst drivers,
10.7 with OpenCL 1.1. Python 2.6 and NumPy 1.2 made up
the software platform, which ran on a 64-bit Linux 2.6.32
kernel. Using the optimization setting -O2, GCC 4.4 was the
CIC++ compiler that was used. All four cores were used
throughout the execution of CPU instructions. We generated
OpenMP by using the -fopenmp option in gcc. This device
is known as the AMD machine. It is also shown that the
OpenCL code generated by jit4OpenCL is portable via
testing conducted on a desktop PC equipped with an NVidia
GTX260 GPU, an Intel Core 2 Duo E5200 (2.5GHz), and
6GB DDR3 RAM. This machine runs Ubuntu 9.10 32-bit
with GCC 4.4 and has the NVidia Computing Software
Development Kit (SDK) 3.2 Beta installed. The

1474

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

manufacturer of this machine is NVidia. For each tabled
result, twenty runs of the benchmark were performed. We
provide the mean and the 95% confidence interval here.

IV.RESULTS AND DISCUSSION

Execution timings are shown in seconds in the first rows of
Table 1. The lower half of the table displays the relative
speedups between each compiler and the CPU, as well as the
speedup of jit4GPU over jit4OpenCL. We compare MM to
the BLAS version of matrix multiplication, which is greatly
optimized. On multi-core CPUs, both JIT compilers produce
superior OpenMP code, but jitAGPU code generates far
higher performance (with the exception of MB, where
jit4OpenCL performance is about twice as good as jit4dGPU
performance). Compared to jit4GPU, jit4OpenCL has a lot
more overhead due to the intermediate translation to
OpenCL and the extra compilation step to turn the resulting
OpenCL code into native code. The performance
comparison is affected by this cost in benchmarks that run
for short periods of time. As an example, jit4OpenCL vyields
a sixfold faster kernel (GPU execution alone) for MB than
jitdGPU.

Table 1 Comparison of JITAGPU, JIT40penCL, and
CPU Performance on an AMD Machine

Benchmark | CP 3512 NB 768 BS 4096 MB 4096 | MM 4096

Input Size

jit4GPU 0580 6.25+0.01 0.54£001 0.73£0.01 | 0.39£0.01

jit4OpenCL 2320 916+ 0.01 393050 0430 1429 +
0.01

CPU 69.14£0.07 | 40148071 [416+001 2210 201001

jitdGPU = | 124 62 8.1 3.1 34

CPU

jit40penCL x | 31 41 1.1 5.4 0.14

CPU

jitdGPU = [4.1 L5 7.6 0.58 25

jit4OpenCL

The primary motivation for re-targeting the compiler to
produce OpenCL code is to provide a compilation
infrastructure capable of producing code for several
platforms. Table 2 displays the results of running the
jit4OpenCL function in the aforementioned NVidia GPU.
The larger speedups are not unexpected, considering that
this is a 2-core CPU (as opposed to the quad-core CPU in
the AMD system). Notwithstanding, these results suggest
that the produced OpenCL code performs well on many
systems.

IJRITCC | December 2023, Available @ http://www.ijritcc.org

Table 2 Comparisons Between JIT40OpenCL and CPU
Code Performance on an NVIDIA Machine

Benchmark CP NB BS MB MM

jit4OpenCL 1180 [1248+003 1362001 | 06820 [248=0.01

CPU 1980 | 67320 798007 |5.06=0 | 4630

jit4OpenCL x CPU | 167 33 38 78 189
CONCLUSION

By comparing JITAGPU with JIT40penCL, we can see how
each JIT compilation system addresses current computing
demands with its own set of benefits and drawbacks. When
it comes to optimizing code for GPU-specific architectures,
JITAGPU really shines. It provides top-notch performance
for jobs that need a lot of computational intensity and
parallelism. Applications like as deep learning, scientific
simulations, and real-time image processing are well-suited
to its emphasis on using the distinct characteristics of GPUs.
On the other hand, JIT40penCL provides a flexible and
portable solution that can operate on many types of
hardware. In GPU-centric jobs, it may not be as fast as
JITAGPU, but its versatility lets developers use the same
code on numerous devices with few changes, which is its
strongest suit. Because of this, JIT40penCL is very useful in
heterogeneous computing settings where interoperability
across platforms is paramount.

In the end, the application's needs and the hardware
environment dictate which of JITAGPU and JIT4OpenCL is
better. In cases where portability and flexibility are of
utmost importance, JIT40penCL is the preferable
alternative, while JITAGPU is the obvious choice for
developers focusing on GPU performance. The findings of
this research will be invaluable in making these judgments,
which will improve the efficacy and efficiency of software
development for various computer systems.

REFERENCES

1. Celik, Ahmet & Nie, Pengyu & Rossbach, Christopher
& Gligoric, Milos. (2019). Design, implementation,
and application of GPU-based Java bytecode
interpreters. Proceedings of the ACM on Programming
Languages. 3. 1-28. 10.1145/3360603.

2. Hill, N. & Mooney, Scott & Ryklin, Edward & Prusky,
Glen. (2019). Shady: a Software Engine for Real-Time
Visual ~ Stimulus Manipulation. Journal of
Neuroscience Methods. 320.
10.1016/j.jneumeth.2019.03.020.

3. Kim, Gloria & Hayashi, Akihiro & Sarkar, Vivek.
(2018). Exploration of Supervised Machine Learning

1475

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication
ISSN: 2321-8169 Volume: 11 Issue: 11
Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

10.

11.

12.

Techniques for Runtime Selection of CPU vs. GPU
Execution in Java Programs. 10.1007/978-3-319-
74896-2_7.

Fumero, Juan & Steuwer, Michel & Stadler, Lukas &
Dubach, Christophe. (2017). Just-In-Time GPU
Compilation for Interpreted Languages with Partial
Evaluation. ACM SIGPLAN Notices. 52. 60-73.
10.1145/3140607.3050761.

Fumero, Juan & Steuwer, Michel & Stadler, Lukas &
Dubach, Christophe. (2017). Just-In-Time GPU
Compilation for Interpreted Languages with Partial
Evaluation. 10.1145/3050748.3050761.

Zohouri, Hamid Reza & Maruyamay, Naoya & Smith,
Aaron & Matsuda, Motohiko & Matsuoka, Satoshi.
(2016). Evaluating and Optimizing OpenCL Kernels
for High Performance Computing with FPGAs. 409-
420. 10.1109/SC.2016.34.

Alvanos, Michail & Tiotto, Ettore & Amaral, José &
Farreras, Montse & Martorell, Xavier. (2016). Using
Shared-Data Localization to Reduce the Cost of
Inspector-Execution in Unified-Parallel-C Programs.
Parallel Computing. 54. 10.1016/j.parco.2016.03.002.

Ishizaki, Kazuaki & Hayashi, Akihiro & Koblents,
Gita & Sarkar, Vivek. (2015). Compiling and
Optimizing Java 8 Programs for GPU Execution.
10.1109/PACT.2015.46.

Labschutz, Matthias & Bruckner, Stefan & Groller,
Eduard & Hadwiger, Markus & Rautek, Peter. (2015).
JiTTree: A Just-in-Time Compiled Sparse GPU
Volume Data Structure. IEEE Transactions on
Visualization and Computer Graphics. 22. 1-1.
10.1109/TVCG.2015.2467331.

Magni, Alberto & Dubach, Christophe & O'Boyle,
Michael. (2014). Automatic optimization of thread-

coarsening for graphics processors. Parallel
Architectures and Compilation Techniques -
Conference Proceedings, PACT.

10.1145/2628071.2628087.

Yan, Wanglong & Shi, Xiaohua & Yan, Xin & Wang,
Lina. (2013). Computing OpenSURF on OpenCL and
general purpose GPU. International Journal of
Advanced Robotic Systems. 10. 1. 10.5772/57057.

Yan, Wanglong & Shi, Xiaohua & Yan, Xin & Wang,
Lina. (2013). Computing OpenSURF on OpenCL and
general purpose GPU. International Journal of
Advanced Robotic Systems. 10. 1. 10.5772/57057.

IJRITCC | December 2023, Available @ http://www.ijritcc.org

13.

14,

15.

16.

17.

18.

Zhang, Yao & Sinclair, Mark & Chien, Andrew.
(2013). Improving Performance Portability in OpenCL
Programs. 136-150. 10.1007/978-3-642-38750-0_11.

Ali, Akhtar & Dastgeer, Usman & Kessler, Christoph.
(2012). OpenCL for programming shared memory
multicore CPUEs.

Demidov, Denis & Ahnert, Karsten & Rupp, Karl &
Gottschling, Peter. (2012). Programming CUDA and
OpenCL: A Case Study Using Modern C++ Libraries.
SIAM Journal on Scientific Computing. 35.
10.1137/120903683.

Garg, Rahul & Amaral, José. (2010). Compiling
Python to a hybrid execution environment.
International Conference on Architectural Support for
Programming Languages and Operating Systems -
ASPLOS. 19-30. 10.1145/1735688.1735695.

Ryoo, Shane & Rodrigues, Christopher & Stone, Sam
& Stratton, John & Ueng, Sain-Zee & Baghsorkhi,
Sara & Hwu, Wen-mei. (2008). Program optimization
carving for GPU computing. Journal of Parallel and
Distributed Computing. 68(10). 1389-1401.
10.1016/j.jpdc.2008.05.011.

Greenfield, Perry. (2007). Reaching for the Stars with
Python. Computing in Science & Engineering. 9(3).
38-40. 10.1109/MCSE.2007.62.

1476

http://www.ijritcc.org/

