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ABSTRACT 

There is a critical need to optimize execution time due to the increasing computing needs of current applications. By optimizing 

code dynamically during runtime, JIT compilation provides a dynamic method to code optimization and has the ability to improve 

speed for activities that need parallel processing. For very parallel workloads, JIT4GPU is the way to go, and JIT4OPENCL is all 

about making the most of the OpenCL framework so that parallel computation may happen on many platforms. To achieve great 

performance in jobs demanding heavy calculation, JIT4GPU optimizes code to fully use the parallel processing capabilities of 

GPUs, making it particularly designed for GPU architectures. But JIT4OpenCL is all about the OpenCL platform, which means 

it's more versatile and can run on a wide range of hardware, including GPUs and CPUs. The experimental assessment compares 

the execution time of CPU-optimized benchmarks to those built using jit4GPU and jit4OpenCL. 
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I.INTRODUCTION 

With the introduction of varied hardware designs such as 

GPUs (Graphics Processing Units) and multi-core CPUs, the 

demand for efficient and high-performance code execution 

has grown in importance in the ever-changing computing 

environment. While these designs provide tremendous 

processing power, optimizing software to fully use them is a 

significant task. One effective approach to these problems is 

the rise of Just-In-Time (JIT) compilation, which allows 

programs to be optimized dynamically and executed in real-

time according to the hardware they are running on. Some of 

the most well-known JIT compilation frameworks are 

JIT4GPU and JIT4OpenCL, which focus on different areas 

of GPU and OpenCL-based programming, respectively. For 

code optimization and execution on GPU architectures, 

there is a JIT compilation system called JIT4GPU. Graphics 

processing units (GPUs) are very parallel processors that 

were first developed for visual rendering but are now 

extensively used for general-purpose computing jobs 

because of how well they handle large-scale parallelism. By 

taking use of this parallelism, JIT4GPU generates optimized 

machine code that targets the GPU hardware directly, 

leading to significant improvements in speed for activities 

that need a lot of computation. In scientific simulations, 

image processing, and deep learning applications, this 

framework shines when the workload can be parallelized. 

Conversely, JIT4OpenCL is an extensible JIT compilation 

system for the OpenCL (Open Computing Language) 

environment. For parallel programming on heterogeneous 

platforms, such as CPUs, GPUs, and others, OpenCL is the 

open standard to follow. Because it produces code that is 

compatible with all devices that support OpenCL, 

JIT4OpenCL is a very portable solution. Because it let the 

same code to be performed across numerous devices with 

few adjustments, this flexibility is especially helpful in 

contexts with varied hardware. In contrast to frameworks 

like JIT4GPU, which create code with a high degree of 

specificity for any given hardware architecture, this generic 

approach typically results in subpar performance. 

With more and more industries requiring efficient, high-

performance applications, comparing JIT4GPU with 

JIT4OpenCL becomes necessary. Although they use distinct 

approaches and target platforms, both frameworks strive to 

increase program execution efficiency. In contrast to 

JIT4OpenCL, which prioritizes adaptability and cross-

platform compatibility to make it work with more devices, 

JIT4GPU is dedicated on optimizing performance on GPU 

hardware by taking use of its distinctive architectural 

characteristics. In order to choose the most appropriate tool 

for their unique requirements, researchers and developers 

must be familiar with the benefits and drawbacks of each 

framework. Using JIT4GPU and JIT4OpenCL as examples, 

we thoroughly compare their respective program 

performance in this research. We test important performance 

indicators across various hardware configurations, including 
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execution speed, resource consumption, and scalability. We 

want to shed light on the compromises that exist between 

supporting many platforms and optimizing performance for 

individual hardware. In addition to assisting with 

performance-based framework selection, this comparison 

will add to our knowledge of how to best use JIT 

compilation to handle the demands of today's computing 

applications. 

II.REVIEW OF LITERATURE 

Magni, Alberto et al., (2014) Enabling functional portability 

across multi-core systems from various suppliers is a 

primary goal of OpenCL's architecture. It is quite difficult to 

transfer OpenCL applications' performance since there isn't 

a single cross-target optimizing compiler. The lack of 

effective portability is caused by the requirement for 

programmers to manually adjust apps for each individual 

device. We demonstrate that thread-coarsening, a compiler 

change tailored to data-parallel languages, may enhance 

performance on various GPU devices. Then, we deal with 

the issue of choosing an optimal value for the coarsening 

factor parameter, which is determining the optimal number 

of threads to combine. Our experimental results demonstrate 

the difficulty of the problem: optimal configurations are 

hard to discover, and naïve coarsening causes significant 

performance degradation. We provide a model-based 

approach that use machine learning to forecast the optimal 

coarsening factor by analyzing static properties of kernel 

functions. The model adapts itself to each of the possible 

structures without human intervention. We test our method 

on 17 benchmarks using four devices: two graphics 

processing units (GPUs) from Nvidia and two GPUs from 

AMD, spanning two generations. We get speedups 

averaging 1.11X to 1.33X using our method. 

Garg, Rahul & Amaral, José. (2010) A new compilation 

system allows Python programs with heavy numerical 

calculations to run in a CPU-GPU hybrid environment. By 

itself, this compiler determines which memory addresses 

should be sent to the GPU and generates an accurate 

mapping between the two address spaces. As a result, a 

common address space in the virtual realm is included into 

the programming paradigm. The framework is built using 

jit4GPU, a just-in-time compiler from C to the AMD CAL 

interface, and unPython, an ahead-of-time compiler from 

Python/NumPy to C. A number of benchmarks show that 

the produced GPU code is fifty times quicker than the 

produced OpenMP code, according to experimental 

assessment. Optimised CPU BLAS code and GPU 

performance for single-precision calculations are often 

comparable. 

Ryoo, Shane et al., (2008) Modern many-core CPUs, like 

the GeForce 8800 GTX, let programmers take use of many 

layers of parallelism to speed up their apps. On the other 

hand, since the system is complicated, iterative optimization 

might result in a local performance maximum. We provide 

program optimization carving, a method that takes a whole 

optimization space as input and reduces it to a collection of 

configurations that potentially include the global maximum. 

After that, we may test out the other combinations to see 

which one works best. This method successfully finds a 

configuration that is close to the best while simultaneously 

reducing the number of variants to be assessed by up to 

98%. In comparison to randomly selecting search 

parameters, we demonstrate that our method is far better for 

certain applications. 

Greenfield, Perry. (2007) The calibration and interpretation 

of data obtained from the Hubble Space Telescope (HST) 

have been aided by Python, according to experts. Initial 

implementation of this language was as an alternate 

scripting tool for the Imaging Reduction and processing 

Facility (IRAF) astronomical processing system. In order to 

make IRAF tasks perform more reliably and integrate them 

with the many libraries and tools available in Python, it is 

used for scripting IRAF applications. Introducing PyRAF, a 

new scripting environment that streamlines Python 

development and enables the addition of more robust 

features than first planned. Other applications, including 

Numarray in Python, were developed as a result of PyRAF's 

popularity. There is also the development of PyFITS, a 

library that adds to matplotlib that can read and write the 

standard astronomical Flexible Image Transport System 

(FITS) data format. 

III.EXPERIMENTAL METHODOLOGY 

In the studies, a Phenom II X4 925 2.8 GHz CPU was used 

in combination with a Radeon 5850 GPU that has 1 GB of 1 

GHz GDDR5. We utilized the most recent Catalyst drivers, 

10.7 with OpenCL 1.1. Python 2.6 and NumPy 1.2 made up 

the software platform, which ran on a 64-bit Linux 2.6.32 

kernel. Using the optimization setting -O2, GCC 4.4 was the 

C/C++ compiler that was used. All four cores were used 

throughout the execution of CPU instructions. We generated 

OpenMP by using the -fopenmp option in gcc. This device 

is known as the AMD machine. It is also shown that the 

OpenCL code generated by jit4OpenCL is portable via 

testing conducted on a desktop PC equipped with an NVidia 

GTX260 GPU, an Intel Core 2 Duo E5200 (2.5GHz), and 

6GB DDR3 RAM. This machine runs Ubuntu 9.10 32-bit 

with GCC 4.4 and has the NVidia Computing Software 

Development Kit (SDK) 3.2 Beta installed. The 
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manufacturer of this machine is NVidia. For each tabled 

result, twenty runs of the benchmark were performed. We 

provide the mean and the 95% confidence interval here. 

IV.RESULTS AND DISCUSSION 

Execution timings are shown in seconds in the first rows of 

Table 1. The lower half of the table displays the relative 

speedups between each compiler and the CPU, as well as the 

speedup of jit4GPU over jit4OpenCL. We compare MM to 

the BLAS version of matrix multiplication, which is greatly 

optimized. On multi-core CPUs, both JIT compilers produce 

superior OpenMP code, but jit4GPU code generates far 

higher performance (with the exception of MB, where 

jit4OpenCL performance is about twice as good as jit4GPU 

performance). Compared to jit4GPU, jit4OpenCL has a lot 

more overhead due to the intermediate translation to 

OpenCL and the extra compilation step to turn the resulting 

OpenCL code into native code. The performance 

comparison is affected by this cost in benchmarks that run 

for short periods of time. As an example, jit4OpenCL yields 

a sixfold faster kernel (GPU execution alone) for MB than 

jit4GPU. 

Table 1 Comparison of JIT4GPU, JIT4OpenCL, and 

CPU Performance on an AMD Machine 

 

The primary motivation for re-targeting the compiler to 

produce OpenCL code is to provide a compilation 

infrastructure capable of producing code for several 

platforms. Table 2 displays the results of running the 

jit4OpenCL function in the aforementioned NVidia GPU. 

The larger speedups are not unexpected, considering that 

this is a 2-core CPU (as opposed to the quad-core CPU in 

the AMD system). Notwithstanding, these results suggest 

that the produced OpenCL code performs well on many 

systems. 

 

 

 

Table 2 Comparisons Between JIT4OpenCL and CPU 

Code Performance on an NVIDIA Machine 

 

CONCLUSION 

By comparing JIT4GPU with JIT4OpenCL, we can see how 

each JIT compilation system addresses current computing 

demands with its own set of benefits and drawbacks. When 

it comes to optimizing code for GPU-specific architectures, 

JIT4GPU really shines. It provides top-notch performance 

for jobs that need a lot of computational intensity and 

parallelism. Applications like as deep learning, scientific 

simulations, and real-time image processing are well-suited 

to its emphasis on using the distinct characteristics of GPUs. 

On the other hand, JIT4OpenCL provides a flexible and 

portable solution that can operate on many types of 

hardware. In GPU-centric jobs, it may not be as fast as 

JIT4GPU, but its versatility lets developers use the same 

code on numerous devices with few changes, which is its 

strongest suit. Because of this, JIT4OpenCL is very useful in 

heterogeneous computing settings where interoperability 

across platforms is paramount. 

In the end, the application's needs and the hardware 

environment dictate which of JIT4GPU and JIT4OpenCL is 

better. In cases where portability and flexibility are of 

utmost importance, JIT4OpenCL is the preferable 

alternative, while JIT4GPU is the obvious choice for 

developers focusing on GPU performance. The findings of 

this research will be invaluable in making these judgments, 

which will improve the efficacy and efficiency of software 

development for various computer systems. 

REFERENCES 

1. Çelik, Ahmet & Nie, Pengyu & Rossbach, Christopher 

& Gligoric, Milos. (2019). Design, implementation, 

and application of GPU-based Java bytecode 

interpreters. Proceedings of the ACM on Programming 

Languages. 3. 1-28. 10.1145/3360603. 

2. Hill, N. & Mooney, Scott & Ryklin, Edward & Prusky, 

Glen. (2019). Shady: a Software Engine for Real-Time 

Visual Stimulus Manipulation. Journal of 

Neuroscience Methods. 320. 

10.1016/j.jneumeth.2019.03.020. 

3. Kim, Gloria & Hayashi, Akihiro & Sarkar, Vivek. 

(2018). Exploration of Supervised Machine Learning 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 11 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023 

___________________________________________________________________________________________________________________ 
 

 

    1476 
IJRITCC | December 2023, Available @ http://www.ijritcc.org 

Techniques for Runtime Selection of CPU vs. GPU 

Execution in Java Programs. 10.1007/978-3-319-

74896-2_7. 

4. Fumero, Juan & Steuwer, Michel & Stadler, Lukas & 

Dubach, Christophe. (2017). Just-In-Time GPU 

Compilation for Interpreted Languages with Partial 

Evaluation. ACM SIGPLAN Notices. 52. 60-73. 

10.1145/3140607.3050761. 

5. Fumero, Juan & Steuwer, Michel & Stadler, Lukas & 

Dubach, Christophe. (2017). Just-In-Time GPU 

Compilation for Interpreted Languages with Partial 

Evaluation. 10.1145/3050748.3050761. 

6. Zohouri, Hamid Reza & Maruyamay, Naoya & Smith, 

Aaron & Matsuda, Motohiko & Matsuoka, Satoshi. 

(2016). Evaluating and Optimizing OpenCL Kernels 

for High Performance Computing with FPGAs. 409-

420. 10.1109/SC.2016.34. 

7. Alvanos, Michail & Tiotto, Ettore & Amaral, José & 

Farreras, Montse & Martorell, Xavier. (2016). Using 

Shared-Data Localization to Reduce the Cost of 

Inspector-Execution in Unified-Parallel-C Programs. 

Parallel Computing. 54. 10.1016/j.parco.2016.03.002. 

8. Ishizaki, Kazuaki & Hayashi, Akihiro & Koblents, 

Gita & Sarkar, Vivek. (2015). Compiling and 

Optimizing Java 8 Programs for GPU Execution. 

10.1109/PACT.2015.46. 

9. Labschutz, Matthias & Bruckner, Stefan & Gröller, 

Eduard & Hadwiger, Markus & Rautek, Peter. (2015). 

JiTTree: A Just-in-Time Compiled Sparse GPU 

Volume Data Structure. IEEE Transactions on 

Visualization and Computer Graphics. 22. 1-1. 

10.1109/TVCG.2015.2467331. 

10. Magni, Alberto & Dubach, Christophe & O'Boyle, 

Michael. (2014). Automatic optimization of thread-

coarsening for graphics processors. Parallel 

Architectures and Compilation Techniques - 

Conference Proceedings, PACT. 

10.1145/2628071.2628087. 

11. Yan, Wanglong & Shi, Xiaohua & Yan, Xin & Wang, 

Lina. (2013). Computing OpenSURF on OpenCL and 

general purpose GPU. International Journal of 

Advanced Robotic Systems. 10. 1. 10.5772/57057. 

12. Yan, Wanglong & Shi, Xiaohua & Yan, Xin & Wang, 

Lina. (2013). Computing OpenSURF on OpenCL and 

general purpose GPU. International Journal of 

Advanced Robotic Systems. 10. 1. 10.5772/57057. 

13. Zhang, Yao & Sinclair, Mark & Chien, Andrew. 

(2013). Improving Performance Portability in OpenCL 

Programs. 136-150. 10.1007/978-3-642-38750-0_11. 

14. Ali, Akhtar & Dastgeer, Usman & Kessler, Christoph. 

(2012). OpenCL for programming shared memory 

multicore CPUs. 

15. Demidov, Denis & Ahnert, Karsten & Rupp, Karl & 

Gottschling, Peter. (2012). Programming CUDA and 

OpenCL: A Case Study Using Modern C++ Libraries. 

SIAM Journal on Scientific Computing. 35. 

10.1137/120903683. 

16. Garg, Rahul & Amaral, José. (2010). Compiling 

Python to a hybrid execution environment. 

International Conference on Architectural Support for 

Programming Languages and Operating Systems - 

ASPLOS. 19-30. 10.1145/1735688.1735695. 

17. Ryoo, Shane & Rodrigues, Christopher & Stone, Sam 

& Stratton, John & Ueng, Sain-Zee & Baghsorkhi, 

Sara & Hwu, Wen-mei. (2008). Program optimization 

carving for GPU computing. Journal of Parallel and 

Distributed Computing. 68(10). 1389-1401. 

10.1016/j.jpdc.2008.05.011. 

18. Greenfield, Perry. (2007). Reaching for the Stars with 

Python. Computing in Science & Engineering. 9(3). 

38-40. 10.1109/MCSE.2007.62. 

 

http://www.ijritcc.org/

