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Abstract— With growing importance of data in shaping policies, economic strategies, and healthcare systems, securing citizens data has 

become a critical issue for national governments. At the same time, the potential benefits of large-scale collaborative machine learning (ML) 

across countries are undeniable. Federated learning (FL) offers a unique solution to this dilemma by enabling the training of AI models across 
decentralized data sets without requiring data to be shared. This paper explores how different countries can use federated learning to contribute 

to collaborative machine learning while ensuring national data security. We examine the privacy-preserving mechanisms in FL, the technical 

challenges, and propose a framework for cross-country collaboration on a global scale.. 
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I.  INTRODUCTION 

In an era where data serves as the base or both economic and 
social advancement, the need to collaborate on large-scale AI 
models has never been more pressing. However, with this 
increased collaboration comes a heightened sensitivity to data 
privacy, particularly at the national level. Countries are often 
reluctant to share citizens data due to regulatory concerns and 
potential risks to individual privacy. Federated learning (FL)[1] 
provides an innovative approach, allowing multiple entities to 
contribute to a shared machine learning model without exposing 
local data to others. 
This paper aims to explore how countries can leverage FL to 
collaboratively build machine learning models while 
maintaining strict data privacy, focusing on real-world use cases 
such as healthcare, finance, and smart city infrastructures. 

II. FEDERATED LEARNING: AN OVERVIEW 

Federated Learning is a distributed machine learning 
approach that trains models across decentralized data sources 
without transferring the actual data. The main components of FL 
include: 
• Decentralized Model Training: Data remains on local 

servers, with only model updates shared between 
participants. 

• Privacy Mechanisms: Techniques such as differential 
privacy [2] and secure multi-party computation are used to 
safeguard sensitive data during the training process. 

• Global Model Aggregation: A central server aggregates 
the locally trained model parameters without having direct 
access to any dataset 

 

Figure 1: Sequence diagram of FL 

 
The core functionality of federated learning, which involves a 
centralized Aggregator (A) and multiple parties (Pi), each with 
its own distinct dataset (Di).  The Aggregator sends a query (Q) 
to all or a subset of participating parties {P1, P2, …, Pn}. This 
query typically asks the parties to provide information derived 
from their local datasets, such as updated model parameters after 
completing several rounds of local training. Upon receiving the 
query, each party performs the necessary computations on its 
dataset and generates responses {R1, R2, …, Rn}. For example, 
each party may conduct a single training epoch and send back 
the current model parameters. The parties then transmit their 
responses {R1, R2, …, Rn} to the central Aggregator. The 
Aggregator aggregates the information received from the parties. 
Using this aggregated data, the Aggregator updates the global 
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model (M) and initiates the next round by issuing a new query to 
the parties, who continue with the subsequent training steps 

III. BREAKDOWN OF THE FEDERATED LEARNING STEPS 

A. Initialization: 

• Initialize a global model w0  at the server. 

• The server or aggregator defines a query Qt  at 
time t to specify which model parameters or tasks 
should be updated by the clients. 

• Set the total number of clients K. 

• Set the number of communication rounds T. 

• Set the number of local training epochs E and 
learning rate η  for each device. 

• Communication Round t = 0,1, … , T − 1 

B. Aggregator/Server: 

•  Send query Qt and the current global model wt to 
a subset of clients St ⊆ 1,2, … , K, indicating which 
part of the model or specific task to update. 

C. Client-Side Response Generation:  

• For each client pk ∈ St 
• Each client downloads the global model wt and 

the query Qt. 
• Based on the query Qt, the client performs local 

training on the specified portion of the model or 
data using its local dataset Dk. 

• The client minimizes its local loss function on the 
query Qt , which could be represented as  

Lk(wt, Qt) =
1

|𝒟k|
∑  

(xi,yi)∈𝒟k

ℓ(f(xi; wt, Qt), yi) 

 

• Perform E epochs of local training to compute the 

update rk
t+1.  where: 

rk
t+1 = wt − η∇Lk(wt, Qt) 

This update represents the response from the client 
to the query, based on the locally available data. 

D. Server Aggregation: 

• Each client pk sends its update rk
t+1 back to the 

aggregator. 

• The aggregator computes the aggregated response 
Rt by combining the responses from the selected 
clients:  

 Rt = ∑  k∈𝒮t

|𝒟k|

∑  j∈𝒮t
|𝒟j|

rk
t+1

 

• This could represent a weighted sum of the model 
updates, where the weights are typically 
proportional to the size of the local datasets ∣Dk∣. 

E. Global Model Update: 

• The global model is updated based on the 
aggregated response Rt: wt+1 = wt + λRt 
where λ is a step size parameter or aggregation 
factor that controls the influence of the aggregated 
responses on the global model. 

F. Repeat: Repeat the steps above for T communication 

rounds, iteratively refining the global model until convergence 

or achieving satisfactory performance. 

 

Figure 2: Sequence diagram of FL 

 
This iterative process continues until the final global model (M) 
is produced and shared with the parties. It’s important to note 
that the data remains with the parties throughout the entire 
process. However, while this method limits direct data sharing, 
it may not fully safeguard private information in adversarial 
scenarios. 
 

IV. ASYNCHRONOUS FEDERATED LEARNING 

Distributed systems are an effective way to achieve parallel and 
efficient computation [3], offering excellent scalability. In 
asynchronous federated learning, multiple clients (such as 
institutions or countries) independently and simultaneously train 
their local models on their respective datasets. Each client 
processes its data in parallel and periodically sends updates, such 
as model parameters, to a central Aggregator that builds and 
updates the global model. This asynchronous nature means that 
clients do not need to wait for each other to complete their local 
training [4], allowing the global model to be updated faster as 
more clients join the learning process. As a result, the global 
model benefits from quicker iteration cycles, which improves its 
accuracy and convergence speed. The efficiency of this method 
is particularly evident in scenarios where clients have varying 
computational power and data availability. For instance, as more 
clients contribute updates at their own pace, the global model is 
continuously refined, accelerating the learning process even 
when some clients are slower than others [5]. The following 
table provides data points showing how asynchronous federated 
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learning leads to faster model convergence as the number of 
clients increases. 

V. ENSURING DATA SECURITY IN FEDERATED LEARNING 

Federated learning offers a way to develop AI models for 
enterprise clients without directly accessing their data, making it 
a useful approach for addressing privacy regulations such as 
GDPR. It also enables joint training efforts across multiple 
organizations. While this method may work for some cases, 
many enterprise clients require robust privacy and security 
assurances when sharing model parameters with third parties to 
meet regulatory requirements. In particular, if an enterprise 
partner participates in a federated learning consortium, it often 
involves data that is sensitive to its business operations and 
clients. Competitors and external malicious actors are motivated 
to gain access to this data, making it crucial for any federated 
learning platform to safeguard against colluding or malicious 
agents. 

There are several privacy risks in the basic federated learning 
framework, including: 

• The potential for inferring private data during model 
training. 

• The risk of data leakage through the deployment of the final 
predictive model. 

Additionally, we identify two types of potential malicious 
actors: 

• Internal attackers: where one or more parties may collude to 
extract data from other participants. 

• External attackers: who may attempt to extract private 
information from the final model using techniques such as 
membership inference attacks. 

Studies such as have shown that these attacks are possible 
unless proactive steps are taken. To mitigate these risks, 
approaches like multiparty computation are used to secure 
individual responses, and local differential privacy [5] is applied 
to defend against membership inference attacks and prevent data 
leakage in the final model. While differential privacy introduces 
noise to responses sent to the aggregator, reducing the chances 
of data leakage, this noise can also degrade model performance, 
especially in distributed settings. Therefore, achieving the right 
balance between maximizing privacy and maintaining model 
accuracy is a complex challenge. 
 

A. Addressing the Gap in Federated Learning Privacy 
 

 
Figure 3: Federated learning with Noise injection 

 
The AI Security and Privacy Solutions team at IBM Research 
has been developing privacy-preserving techniques that enable 
users to collaboratively train accurate machine learning models 
using federated learning while safeguarding data owners’ 
privacy. To enhance this, the team has designed a new federated 
learning framework, as illustrated in Figure 2, which integrates 
multiparty computation and differential privacy. In this hybrid 
approach, not only does the data remain local, but it is also 
protected against malicious actors through encryption and 
differential privacy. This ensures that all participants in the 
training process benefit from mathematically proven privacy 
guarantees without compromising model performance. 

 
B. A Hybrid Approach to Privacy-Preserving Federated 

Learning 
Using threshold homomorphic encryption based on the 

Paillier cryptosystem, our framework minimizes the amount of 
noise that each participant must introduce while still achieving 
differential privacy guarantees (for a detailed mathematical 
explanation, refer to our paper). Here’s an overview of how our 
private federated learning framework operates: 
• The Aggregator sends a query (Q) to each party {P1, P2, 

…, Pn}, and based on their respective datasets, each party 
computes replies {R1, R2, …, Rn}. 

• Unlike standard federated learning, each party adds noise 
to their responses based on the number of queried parties 
to ensure differential privacy. Before sending these noisy 
replies to the Aggregator, each party encrypts their 
responses using the specified encryption scheme. 

• The Aggregator collects the encrypted replies from all 
parties. 

• The encrypted aggregated result is then sent back to each 
party, who use their partial keys to perform partial 
decryption and send the results back to the Aggregator. 

• The Aggregator combines the partially decrypted results 
from each party to obtain a plaintext version of the 
aggregated noisy replies (e.g., the average of the noisy 
replies) and issues the next query for the following training 
step. 

This iterative process continues until the final model (M) is 
created and shared with all participants. 

 
C. Key Enhancements for Privacy and Security 

We introduced several crucial elements to strengthen the 
privacy and security of this federated learning approach against 
malicious agents: 

• Differential Privacy: An algorithm is considered 
differentially private if the inclusion of a single 
data instance results in only statistically negligible 
changes to its output. By limiting the influence of 
any individual data point on the final model, we 
reduce the ability of adversaries to infer 
membership in the dataset. 

• Additive Homomorphic Encryption [6]: This 
encryption technique allows the Aggregator to 
perform calculations on encrypted data without 
needing to decrypt it [8]. In our framework, an 
additively homomorphic encryption scheme 
ensures privacy by enabling the secure aggregation 
of parties’ responses 
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Crucially, by aggregating noisy models before decryption, 
we can reduce the amount of noise needed per dataset to 
maintain differential privacy. Our goal is to ensure that the final 
decrypted result is differentially private, preventing data 
leakage, while minimizing the noise added during local training 
by each party. In fact, the amount of noise can be reduced in 
proportion to the number of participating parties. 
 

D. Balancing Privacy and Model Performance 
Additive homomorphic encryption allows us to lower the 

noise required per party while ensuring that no single reply is 
decrypted until all responses are combined. As more data parties 
contribute, the overall amount of noise injected remains 
consistent, allowing for the training of machine learning models 
with high accuracy. 

VI. CHALLENGES AND SOLUTIONS FOR INTERNATIONAL 

FEDERATED LEARNING 

While the benefits of federated learning are clear, several 

challenges must be addressed for successful cross-country 

collaboration: 

• Data Heterogeneity: Different countries generate data in 

different formats and structures, which can affect the 

performance of a global model. Solutions such as domain 

adaptation and data harmonization techniques can be 

implemented to standardize the contributions of each 

participant. 

• Communication Overhead: Federated learning requires 

frequent communication between local and central 

servers. Optimizing communication protocols through 

techniques like federated averaging (FedAvg) [7] can 

reduce the overhead and ensure the scalability of FL 

systems. 

• Trust and Governance: For federated learning to be 

successful on an international scale, there must be 

agreements in place regarding data usage, model 

ownership, and intellectual property. Creating a global 

governance framework for federated learning can provide 

clarity on these issues. 

 

VII. PROPOSED BEST PRACTICES IN THE FRAMEWORK FOR CROSS-

NATIONAL FEDERATED LEARNING 

• Standardized Protocols: Establish a global protocol for 

federated learning that can be adopted by countries 

with diverse regulations and technical capabilities. 

• Decentralized Governance: Set up an international 

body to oversee federated learning collaborations, 

ensuring compliance with local laws and promoting 

transparency. 

• Incentivization Models: Develop incentive structures 

to encourage countries to contribute to global models 

while ensuring their national interests are protected 

 

VIII. SYSTEM DESIGN FOR TRAINING A GLOBAL MODEL USING 

FEDERATED LEARNING 

The system for federated learning enables global model training 

through continuous, decentralized client from different country 

participates, each client asynchronously pushes local model 

updates. The system should handle high client utilization, 

asynchronous client participation, and fast model aggregation 

to scale efficiently. The design is structured into several key 

components that handle the training process from client 

selection to global model updates 

 
Figure 4: Federated learning System Design 

 

A. Architecture Overview 

The system is composed of several main components: 

• Clients: Distributed devices or nodes that download 

the global model, train it locally on their own data, and 

send updates to the server. 

• Global Model delivery endpoint: A network for 

distributing the global model, configuration files, and 

other resources to clients, to increase the reliability 

these services can be deployed using Hybrid 

deployment model [10]. 

• Model Aggregators: Responsible for collecting and 

aggregating local model updates from clients and 

updating the global model. Stateful components that 

aggregate client updates and handle individual task-

related model updates 

• Global orchestrator/ coordinator: Manages task 

assignments, client selection, and task redistribution. 

To increase the performance for parallel local model 

updates the orchestrator should be written using highly 

async programming languages [11]. 

• Local Orchestrator: Agents that help assign clients to 

tasks by interacting with the Global orchestrator 

B. Client-Server Interaction in Asynchronous Federated 

Learning 

 

• Client Selection and Task Assignment 

Each client attempts to connect to the system by 

requesting global model metadata and request to train 

using local data. The coordinator sends metadata for 

client based on the model to be trained using local data 

and existing global model metadata. The Selector 

forwards the client to an Aggregator based on client 

demand, where demand is tracked for each task to 

ensure proper task allocation. 

• Local Training on Clients 

Upon being assigned to a task, clients download the 
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global model, configuration, and training instructions 

from the Model deliver APIs. Clients perform local 

training on their datasets asynchronously, , 

independent of other clients, and report the status once 

training is complete. After training, clients upload their 

local model updates to the server, typically after 

compressing or masking the model. 

• Model Aggregation Process 

To efficiently handle the frequent model updates 

generated by clients asynchronously, the system 

employs the following mechanisms: 

Parallel Model Aggregation: Once a client uploads the local 

model, the update is serialized and placed into an in-memory 

queue. A separate set of threads processes the updates, 

deserializing them and performing intermediate aggregations. 

Aggregation across multiple cores is parallelized to speed up 

the process. The thread responsible for intermediate 

aggregation is assigned via a hashing algorithm to reduce 

contention. 

Aggregation Strategy:As updates are received, they are 

aggregated into a global model. Aggregation can be done using 

a weighted average, with each client’s contribution potentially 

weighted by factors such as the amount of data used for training 

or the client’s overall performance. The system performs 

incremental updates, where local updates are integrated into the 

global model as soon as they are received. 

Final Global Model Generation: Once the cumulative number 

of aggregated updates reaches the system’s aggregation goal, 

the final model aggregation is performed, generating a new 

global model. The global model is then redistributed back to 

clients for further rounds of training. 

Asynchronous Update Frequency: Asynchronous model 

learning model updates proceeds as soon as client updates are 

received, leading to a higher frequency of global model updates. 

This asynchronous nature allows the global model to be updated 

up to 30 times more frequently than in synchronous systems 

 

Figure 5: model updates performance with clients 

IX. INCENTIVIZING FEDERATED LEARNING ACROSS 

COUNTRIES/CLIENTS 

Federated learning, where participants from different countries 

contribute to building a shared machine learning model without 

sharing raw data, provides a unique opportunity to drive global 

AI collaboration. However, one key challenge is how to 

incentivize participants, especially when some countries or 

institutions may contribute more than others. One approach to 

incentivizing participants is by creating a reward system based 

on their contributions to the overall model’s performance. This 

can be done by tracking the value added by local models to the 

global model. A simple formula to measure contribution could 

be based on the improvement in model performance, such as: 

𝐶𝑖 =
Δ𝑃𝑖

∑ Δ𝑃𝑗
𝑛

𝑗=1

 

Where Ci is the contribution of participant ii, Δ𝑃𝑖 is the 

improvement in performance (e.g., accuracy, precision) brought 

by the local model of participant ii, and nn is the total number 

of participants. Countries that contribute more to improving the 

global model would thus receive higher rewards, creating an 

incentive for more active participation. 

 

A. Contribution-Based Reward Models 

Another approach is to implement a contribution-based reward 

model [11] that gives countries or participants a direct incentive 

based on their level of participation. For instance, countries 

contributing more data or computational resources can receive 

a proportional share of model ownership or future model usage 

rights. This can be implemented using a reward function: 

𝑅𝑖 = 𝛼 ⋅ 𝐷𝑖 + 𝛽 ⋅ 𝐶𝑖 

Where Ri is the total reward for participant ii, Di represents the 

amount of data contributed, Ci represents the contribution to 

model performance, and 𝛼, 𝛽 are weights assigned to data and 

model improvement respectively. Countries with more 

resources and higher quality datasets can therefore be 

incentivized to participate more, as they would receive larger 

rewards. These rewards can be monetary or in the form of 

preferential access to the trained global model. 

B. Performance-Based Model Allocation 

A performance-based model allocation system [12] could also 

be implemented, where countries that contribute more get 

access to a better version of the global model. For example, 

instead of all participants receiving the same version of the 

trained model, those who have contributed more could receive 

a version of the model that is fine-tuned to their local data. The 

performance score Pi of each country’s local model could be 

factored into the allocation: 
𝑀𝑖 = 𝑀 + 𝛾 ⋅ 𝑃𝑖 

Where Mi is the allocated model for country i, M is the global 

model, and γ is a tuning parameter that adjusts the model based 

on the country’s local performance Pi. This incentivizes 

countries to invest in improving their local models, as their 

reward will be a more tailored version of the global model. 

C. Collaborative Research Incentives 

Lastly, collaboration between countries can be incentivized by 

providing joint ownership or intellectual property (IP) rights to 

the model developed through federated learning. Countries that 

contribute more to the development of the global model could 
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receive a higher share of the IP or profit generated from the 

deployment of the model. A simple collaborative research 

incentive [13] can be designed as: 

𝐼𝑖 =
𝐶𝑖 ⋅ 𝑆

∑ 𝐶𝑗𝑛
𝑗=1

 

Where 𝐼𝑖 is the incentive (e.g., IP rights, profits) for participant 

i, Ci is the contribution score, and S is the total IP or profits 

generated. This ensures that countries with higher contributions 

receive a greater share of the rewards, encouraging them to 

actively participate and contribute to global AI research efforts. 

 

X. OFF THE SHELF POPULAR FRAMEWORKS TO IMPLEMENT 

FEDERATED LEARNING 

A. TensorFlow Federated 

Developed by Google, TensorFlow [14] Federated (TFF) is 

a Python-based, open-source framework for training machine 

learning models on decentralized data. This framework has 

been pioneering the experimentation with federated learning as 

an approach.TFF performs in two main API layers: 

Federated Learning (FL) API offers high-level interfaces that 

enable developers to plug existing machine learning models to 

TFF without the need to dive deeply into how federated learning 

works. Federated Core (FC) API offers low-level interfaces that 

provide opportunities to build novel federated algorithms. 

B. OpenFL 

Developed by Intel, OpenFL[15] (Open Federated Learning) is 

an open-source framework that leverages the data-private 

federated learning paradigm for training ML algorithms. The 

framework comes with a command-line interface and a Python 

API. Open FL can work with training pipelines built 

with PyTorch and TensorFlow while it can go beyond and work 

with other frameworks. 

C. IBM Federated Learning 

IBM Federated Learning [16] is a framework that promises data 

scientists and machine learning engineers an easy integration of 

federated learning workflows within the enterprise 

environment. This federated learning framework supports a 

variety of algorithms, topologies, and protocols out-of-the-box, 

including Linear classifiers/regressions, Deep Reinforcement 

Learning algorithms, Naïve Bayes, Decision Tree, and Models 

written in Keras, PyTorch, and TensorFlow, to name a few. 

Not to mention that researchers in the field of federated learning 

can use the existing functionality of the framework to fit the 

specific needs of their organization or the application domain. 

XI. CONCLUSION 

Federated learning presents a powerful opportunity for 

countries to collaborate on machine learning projects while 

preserving the privacy and security of their citizens’ data. By 

implementing privacy-preserving mechanisms and establishing 

international protocols, we can foster cross-national 

collaborations in critical sectors such as healthcare, finance, and 

smart cities. Future research should focus on refining the 

technical aspects of federated learning and developing 

governance models that promote trust and cooperation on a 

global scale. 
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