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Abstract – Cloud/edge computing systems play a crucial role in providing a wide range of services for Internet users. 

Despite their numerous advantages, providers of these systems face certain challenges, such as accurately predicting large-

scale workloads and resource usage traces. The complexity of cloud computing environments makes it difficult for traditional 

models to accurately predict these traces due to their highly variable nature. Traditional models struggle to handle nonlinear 

characteristics and long-term memory dependencies. To address this issue, this study proposes an integrated prediction 

method that combines Bi-directional and Grid Long Short-Term Memory network (BGLSTM) models to predict workload 

and resource usage traces. The proposed method first smooths the traces using a Savitzky-Golay filter to eliminate extreme 

points and noise interference. Subsequently, an integrated prediction model is established to achieve accurate predictions for 

highly variable traces. The effectiveness and adaptability of the BG-LSTM model for different traces are demonstrated 

through extensive experiments using real-world workload and resource usage traces from Google Cloud data centers. The 

performance results indicate that BG-LSTM outperforms typical prediction methods in accurately predicting highly variable 

real-world cloud systems. 
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1. Introduction  

In recent times, there has been a surge in the popularity 

and adoption of cloud computing among numerous large-

scale organizations. This technology seamlessly integrates 

various components such as data center networks, servers, 

storage, application software, and services to create a flexible 

and shareable pool of computing resources. For instance, 

network bandwidth and storage resources, both internal and 

external, are allocated based on the specific requirements of 

users. Major players in the cloud computing industry, 

including Google, Facebook, Amazon, and Alibaba, have 

established extensive data centers where users can rent 

computing resources. Cloud computing has experienced a 

significant surge in demand and has been widely embraced 

by numerous large-scale organizations in recent years. It 

encompasses the integration of data center networks, servers, 

storage, application software, services, and various other 

resources to establish a pool of computing resources that can 

be shared and configured [1]–[3]. This entails the distribution 

of network bandwidth and internal and external storage 

resources based on the specific requirements of users. 

Prominent cloud providers such as Google, Facebook, 

Amazon, and Alibaba have constructed expansive data 

centers that allow users to rent their computing resources 

[4]–[6]. However, as the user base continues to expand, 

cloud computing providers face the challenge of managing a 

substantial volume of user requests while ensuring the 

Quality of Services (QoS) for all users, which inevitably 

leads to a significant increase in costs. 

Cloud Data Centre (CDC) providers do proactive resource 

provisioning [7], [8] to ensure on-demand availability of 

resources and to meet Service-Level Agreements (SLAs). 

They need to anticipate future server load behaviour and 

make adequate resource reservations to satisfy the CDC 

workload. However, the workload is dynamic and highly 

volatile, and the consumption of resources changes with task 

execution making it hard to predict. This way, most users 

pay unneeded expenses in default. It also entails a colossal 

wastage of resources thereby reducing the revenue of CDC 

providers. Additionally, if inadequate resources are chosen 

by the users, they might experience task delays or even 

failure to complete. Thus, users’ QoS requirements for their 

services are not adequately met, which may force them out. 

If CDC providers can estimate how many resources users 

might need in future time slots based on historical workload 

and resource data, then they will be better able to control 

their CDC resources and earn more money. 

Various prediction techniques are currently used in the time 

series domain. While Back-Propagation Neural Network 

(BPNN) [9], Support Vector Machine (SVM)[10], and 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 10 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

________________________________________________________________________________________________________________ 
 

 

    1159 
IJRITCC | October 2023, Available @ http://www.ijritcc.org 

Autoregressive Integrated Moving Average model 

(ARIMA)[11] are common methods for traditional time 

series prediction, they may fall short in capturing nonlinear 

characteristics of workload time series.  

a) Calheiros [12] employed the ARIMA model to tackle 

workload prediction in cloud service providers but failed 

to address the nonlinear aspects. Previous work proposed 

[13] an integrated forecasting approach for future 

workload prediction. 

b) The introduction of deep learning methods like Deep 

Belief Networks (DBN) and Long Short-Term Memory 

(LSTM) neural network models has revolutionized high-

accuracy time series prediction, effectively overcoming 

the gradient disappearance issue experienced in 

traditional Recurrent Neural Networks (RNN). 

c) Recent studies by Zhang et al. and Chen et al. have 

introduced efficient deep learning models for cloud 

workload prediction, aiming to enhance prediction 

algorithms for cloud workloads.  

d) Bidirectional Long Short-Term Memory (BiLSTM) and 

Grid Long Short-Term Memory (GridLSTM) have been 

developed as variants that alter the external model 

structures of LSTM, capturing two-directional 

dependence characteristics and different dimension 

information. 

e) Recognizing the limitations of traditional prediction 

methods in predicting large-scale data due to changing 

workload and resource usage characteristics, a novel deep 

RNN method is proposed in our work to integrate the 

strengths of BiLSTM and GridLSTM for enhanced 

prediction performance. 

 

The following outlines the contributions made by this study: 

• The Savitzky-Golay (S-G) filter [21] is identified as the 

most effective smoothing method for removing extreme 

points and noise interference from the original time 

series. The most effective one to do so among the tested 

ones. 

• The combination of BiLSTM and GridLSTM models, 

known as BG-LSTM, is utilized to construct a workload 

and resource usage time series prediction model. This 

approach enables the extraction of intricate features 

within the series, resulting in a high level of prediction 

accuracy. 

 

Numerous empirical investigations conducted on real-

world datasets provide compelling evidence that BG-LSTM 

surpasses various benchmark techniques in terms of 

prediction accuracy, especially when forecasting relatively 

longer time series. The rest of the paper is organised as: 

Section 2 discusses the model framework for the proposed 

work. The implementation and results along with analysis is 

reported in section 3. The paper is concluded along with a 

discussion on future work in section 4. 

 

2. Materials and Methods   

 

2.1. B-LSTM: The Bidirectional Long Short-Term 

Memory Network  

Bidirectional Long Short-Term Memory (B-LSTM) 

networks are a type of recurrent neural network (RNN) 

architecture designed to capture dependencies in sequential 

data in both forward and backward directions. Let us break 

down the components: 

1. Long Short-Term Memory (LSTM): LSTMs are a type of 

RNN that is well suited for learning long-term 

dependencies in sequential data. They consist of memory 

cells and gates that regulate the flow of information. 

LSTMs can remember information over long sequences, 

making them effective for tasks like natural language 

processing (NLP), time series prediction, and speech 

recognition. 

2. Bidirectional: Unlike traditional LSTMs that process 

input sequences in only one direction (from past to 

future), B-LSTMs process sequences in both forward and 

backward directions simultaneously. This allows them to 

capture information from both past and future contexts. 

For example, in NLP tasks like sentiment analysis, 

understanding the context before and after a word can be 

crucial for determining its meaning. 

 

By processing sequences bidirectional, B-LSTMs can 

capture dependencies that may not be apparent from a 

unidirectional processing approach. Each time step in a B-

LSTM is computed by concatenating the output of the 

forward LSTM and the output of the backward LSTM for 

that time step. Applications of B-LSTMs include tasks such 

as named entity recognition, part-of-speech tagging, 

sentiment analysis, and machine translation, where 

understanding the context in both directions can improve 

performance. 

Here is a summary of how B-LSTMs work: 

 

• Input sequences are fed into both forward and backward 

LSTMs simultaneously. 

• The outputs of both LSTMs at each time step are 

concatenated. 

• The concatenated outputs are then fed into subsequent 

layers of the neural network for further processing or 

prediction. 

 

Overall, B-LSTMs are powerful tools for capturing complex 

dependencies in sequential data and have been widely 

adopted in various domains due to their effectiveness in 

capturing bidirectional context information. 
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2.2. Grid- LSTM 

Grid LSTM (GLSTM) is a neural network architecture 

introduced to address the limitations of traditional LSTM 

networks in capturing spatial dependencies in data, 

particularly in tasks such as image processing and language 

modeling. The Grid LSTM was proposed by Google 

DeepMind researchers in 2016. 

Here's a breakdown of Grid LSTM: 

 

1. Motivation: Traditional LSTM networks are effective for 

capturing temporal dependencies in sequential data, but 

they may not be well suited for tasks where spatial 

dependencies are crucial, such as in images or structured 

grids of data. Grid LSTM was designed to extend the 

capabilities of LSTM to better capture spatial 

dependencies. 

2. Architecture: In Grid LSTM, the memory cells are 

arranged in a grid-like structure, rather than being 

arranged sequentially as in traditional LSTMs. This grid 

structure allows the model to capture spatial relationships 

between adjacent elements in the data. 

3. Computation within the Grid: Each cell in the grid 

computes its hidden state and memory cell using inputs 

from neighboring cells in addition to inputs from the 

current time step. This allows the model to capture both 

local and global dependencies within the data. 

4. Applications: Grid LSTM has been primarily applied to 

tasks where spatial dependencies are important, such as 

image captioning, scene labeling, and video processing. 

By leveraging the grid structure, Grid LSTM can 

effectively model the spatial relationships between pixels 

or other elements in the data. 

 

Overall, Grid LSTM extends the capabilities of traditional 

LSTM networks to capture spatial dependencies, making it 

well-suited for tasks involving structured data or data with 

spatial relationships. It has shown promising results in 

various applications and remains an active area of research in 

deep learning. 

  

2.3. BG- LSTM 

Traditional RNNs, such as LSTM, can only analyze past 

context information. Schuster et al. [22] developed a Bi-

directional RNN (BRNN) to address this issue. To train a 

model in two temporal directions, use forward and backward 

hidden layers. Graves et al. [19] introduced the B-LSTM, a 

combination of BRNN and LSTM. Grid-LSTM [20] 

organizes LSTM cells in one or more dimensions. A Grid-

LSTM network differs from traditional LSTMs by utilizing 

recurrent connections along the depth dimension to enhance 

learning capabilities. Fei et al. [23] provide a strategy that 

considers context-sensitivity and gradient issues. The authors 

developed BiGrid-LSTM, a unique bidirectional structure 

based on Grid-LSTM.  

In contrast to [23], this study combines B-LSTM and 

Grid-LSTM models to create a new integrating model termed 

BG-LSTM, as illustrated in Fig. 1. This model improves 

prediction accuracy and captures context and depth 

characteristics. The output of the BG-LSTM is detailed 

below. B-LSTM and Grid-LSTM are upgraded versions of 

LSTM, with identical computations for intermediate outputs. 

Eq. 1, below represents the basic structure of computations in 

the BG-LSTM. 

 

 
This study uses a loss function in the BG-LSTM training 

phase to optimize prediction accuracy. Workload and 

resources are highly trafficked and have significant variances 

in size. Common network performance metrics, such as 

Mean Square Error (MSE), may not accurately reflect 

forecast accuracy. Large changes in the order of magnitude 

sequences have a greater influence on performance functions 

than smaller ones.  

 

To reduce the impact of magnitude differences, we employ 

logarithms for both actual and forecasted data. The 

evaluation metric is the Root Mean Squared Logarithmic 

Error. The loss function for the sequence [I1;::: ; In] is as 

follows: 

  

 

 

(2) 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 10 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

________________________________________________________________________________________________________________ 
 

 

    1161 
IJRITCC | October 2023, Available @ http://www.ijritcc.org 

 

 
 

 
 

Fig. 4.  BG-LSTM structure 

 

Results and Discussions   

 

3.1. Data Processing   

This section analyses workload and resource utilization 

statistics from Google's production compute clusters, which 

include over 12,000 computers. The workload trace spans 15 

days and includes 672,003 jobs and 25,462,157 tasks. Our 

study creates a prediction model based on workload and 

resource utilization sequences. We initially split 15 days into 

20880 time slots. Each time slot lasts for two minutes. We 

count the number of processes and record resource utilization 

statistics, including CPU and RAM consumption, for each 

time slot based on their timestamps.  

The initial workload and resource use time series contain 

noise due to actual machine failures in CDCs or other 

atypical instances, such as the number of anomalies. 

Unexpected actions led to increased effort and resource 

utilization. This makes it challenging to make reliable 

predictions. By using the nature logarithm before smoothing, 

we significantly lower the size of the overall effort and 

resource utilization time series. We examine several filtering 

techniques to remove outliers and noise. The studies consist 

of four series: the original without smoothing, two treated 

using median and average filters, and smoothed one using 

the Savitzky–Golay filter. We collect workload, CPU, and 

RAM data from Google cluster traces and conduct tests. The 

evaluation metric is RMSLE. For median, average, and 

Savitzky–Golay filters, the window size must be selected 

first. 

 Table I shows that Savitzky–Golay filters outperform 

median and average filters across different window widths. 

The Savitzky–Golay filter smoothes the processed workload 

time series, eliminating outliers and noise. The model is 

established with a size of 10 and a rank of six, which 

minimizes the change to the original form of the data. In our 

procedure, a rank of six is chosen from a list, and the size of 

the window is 10.  
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Table 1. Performance Evaluation of Different Filters used 

for smoothening data 

 

Window 

Size 

CPU 

No 

Filter 

Median 

Filter 

Moving 

Average 

Filter 

Savitzky–
Golay 
Filter 

3 0.73 0.54 0.57 0.28 

4 0.73 0.545 0.58 0.26 

5 0.73 0.55 0.59 0.23 

6 0.73 0.56 0.59 0.21 

7 0.73 0.57 0.58 0.18 

8 0.73 0.58 0.60 0.175 

9 0.73 0.59 0.62 0.17 

10 0.73 0.61 0.60 0.175 

11 0.73 0.62 0.58 0.16 

 

 

Window 

Size 

Memory 

No 

Filter 

Median 

Filter 

Moving 

Average 

Filter 

Savitzky–

Golay 

Filter 

3 0.75 0.67 0.70 0.22 

4 .075 0.64 0.755 0.20 

5 0.75 0.61 0.79 0.18 

6 0.75 0.60 0.695 0.165 

7 0.75 0.59 0.60 0.15 

8 0.75 0.64 0.64 0.155 

9 0.75 0.69 0.68 0.16 

10 0.75 0.69 0.69 0.15 

11 0.75 0.68 0.69 0.14 

 

2.4. Forecasting Results 

 

Multiple trials and experiments are conducted to 

determine the optimal hyper-parameters for the BG-LSTM. 

Tables 2 and 3 illustrate the parameter settings for BG-

LSTM for workload and resource time series. Figures on the 

left display expected and actual data, while figures on the 

right display errors between the two. Figure 5 depicts 

workload prediction findings. Table 4 displays BG-LSTM's 

performance on several Google cluster trace datasets in the 

experimental test set. The three data sets include workload, 

CPU use, and RAM usage. The assessment criteria are MSE, 

RMSLE, and R2. 

To test the efficacy and resilience of BG-LSTM, we did 

tests using random data from workload and resource 

utilization time series (Table 5). RMSLE is used as an 

assessment criterion for several models.  Traditional 

approaches like ARIMA and SVM, as well as deep learning 

techniques like LSTM, Bi-LSTM, Grid-LSTM, SG-LSTM, 

SG-Bi-LSTM, and SG-Grid-LSTM, are used. The term "SG" 

refers to employing the Savitzky–Golay filter to analyze data 

before applying the model for prediction. Table 5 shows that 

deep learning outperforms standard approaches. The SG 

filter approach dramatically improves RMSLE for all 

methods.  BG-LSTM, a combination of Bi-LSTM and Grid-

LSTM, outperforms other models in terms of RMSLE. 

BG-LSTM, which combines Bi-LSTM and Grid-LSTM 

layers, outperforms LSTM layers and other enhanced LSTM 

models in Google Cluster Trace.  Bi-LSTM layers can 

explicitly represent time series near the current interval. The 

Grid-LSTM layer may model time series using the depth 

dimension. This complements the implicit modeling of 

LSTMs. BG-LSTM outperforms LSTM and other enhanced 

LSTMs with similar settings due to its increased modeling 

capacity.   

 

Table 2. BG-LSTM Parameter Set for Workload 

 

Parameter Value Description 

Structure [60,45,30,15,1] Network Structure 

X 60 Network Input 

Y 1 Network Output 

Batch Size 5000 Batch Size 

Epochs 40000 Iteration Time 

Optimiser Adams Optimization Function 

 

Table 3. BG-LSTM Parameter Set for Resources 

 

Parameter Value Description 

Structure [60,45,30,15,1] Network Structure 

X 60 Network Input 

Y 1 Network Output 

Batch Size 4000 Batch Size 

Epochs 40000 Iteration Time 

Optimiser Adams Optimization Function 

 

Table 4. BG-LSTM Performance Comparison of Google 

Datasets 

 

Performance Memory 

(RAM) 

CPU Workload 

R
2
 0.9999 0.9997 0.9991 

MSE 131.29 128.89 13934.54 

RMSLE 0.14 0.16 0.15 

 

Table 5. Performance Comparison of Various Methods 

with RMSLE 

 

        Methods Memory 

(RAM) 

CPU Workload 

ARIMA 0.81 0.77 0.93 
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SVM 0.78 0.67 0.86 

LSTM 0.61 0.56 0.83 

Bi-LSTM 0.75 0.63 0.80 

G-LSTM 0.69 0.58 0.77 

SG-LSTM 0.22 0.23 0.74 

SG-Bi-LSTM 0.16 0.20 0.17 

SG-G-LSTM 0.15 0.19 0.19 

BG-LSTM 0.14 0.16 0.14 

 

 

Fig. 6. Performance Analysis of various 

methodsConclusions 

Predicting complicated workloads and resource 

consumption trails accurately is crucial for effective 

resource allocation in cloud data centers (CDCs). Accurate 

prediction is tough due to their complex properties. We 

introduce BG-LSTM, an integrated prediction model that 

combines Bi-directional and Grid LSTMs. This study uses 

a Savitzky-Golay filter to forecast workload and resource 

utilization. The suggested BG-LSTM extracts feature from 

the workload and resource utilization traces, enabling 

adaptive and accurate prediction in cloud data centers 

(CDCs) with high variability. Using real-world datasets, the 

suggested model outperforms existing techniques in terms 

of prediction accuracy. We plan to expand our work in two 

areas:  

 

1. Using intelligent optimization methods to train model 

parameters for faster training and improved 

performance  

2. Exploring an adaptive resource provisioning method 

with reinforcement learning for the dynamic and 

complex environment of cloud systems. 
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