
International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 11 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023 

  

 

    1330 
IJRITCC | December 2023, Available @ http://www.ijritcc.org 

A Hybrid Framework for Efficient Image 

Compression Using Autoencoder Integrated with NK-

RLE and Clustering Technique 
Deepa 

Research Scholar, Dravidian University (A.,P) 

deepa.mehta15@gmail.com 

Dr. Narinder Singh 

Professor,GuruNanak College, Punjab 

ns_kalra@yahoo.co.in 

 

Abstract -Image compression plays a pivotal role in reducing storage requirements and optimizing bandwidth usage without 

significantly compromising visual quality. This research presents a novel approach to image compression by combining deep 

learning techniques, clustering methods, and lossless encoding algorithms. The proposed framework utilizes an autoencoder to 

generate a latent space representation of the image, reducing its dimensionality while preserving essential features. K-Means 

clustering is employed to group similar features, enhancing compression efficiency, followed by NK-RLE (Non-Keyed Run-Length 

Encoding) for further lossless data compression. The decoding process reconstructs the compressed image using cluster-based 

reconstruction and the autoencoder's decoder. The algorithm's performance is evaluated by comparing the original and reconstructed 

images using Peak Signal-to-Noise Ratio (PSNR) and Mean Squared Error (MSE) metrics. MATLAB software is utilized to simulate 

and validate the process, providing insights into the effectiveness of combining deep learning and clustering methods for robust 

image compression. The proposed approach demonstrates potential for practical applications in storage-efficient and bandwidth-

optimized image transmission. 
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 INTRODUCTION 

EXTREME image compression, which is essential in 

scenarios where bandwidth is severely limited, such as 

satellite communications, is designed to compress images at 

bitrates below 0.1 bits per pixel (bpp). In practice, 

conventional compression standards, including JPEG2000 

[1], BPG [2], and VVC [3], are in widespread use. 

Nevertheless, the block-based processing of these algorithms 

results in the production of severe blocking anomalies at 

extremely low bitrates, as illustrated in Fig. 1(b). Image 

compression that is based on learning has garnered substantial 

attention and has the potential to surpass conventional codecs. 

Learning-based methods can be broadly classified into 

distortion-oriented [4], [5], [6], [7] and perception-oriented 

[8], [9], [10], [11] methods, as determined by their 

optimization objectives. Distortion-oriented methods are 

designed to optimize the rate-distortion function, which 

frequently results in unrealistic reconstructions at low 

bitrates, which are typically characterized by blurring. In 

contrast, perception-oriented methods are designed to 

enhance the quality of perceptual perception by optimizing 

the rate-distortion-perception function, which is achieved 

through the use of techniques such as adversarial training 

[12]. Although these methods accomplish substantial 

enhancements in visual quality, they frequently introduce 

unpleasant visual artifacts, particularly at extremely low 

bitrates, as illustrated in Fig. 1(c). In recent years, diffusion 

models have demonstrated remarkable generation capabilities 

in the production of images and videos [13], [14], [15]. This 

has motivated researchers to create a variety of diffusion-

based perception-driven compression methods [16], [17], 

[18], [19]. Some works employ pretrained text-to-image 

diffusion models as prior knowledge to accomplish realistic 

reconstructions at extremely low bitrates for extreme image 

compression. For example, Pan et al. [20] employ pre-trained 
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text-to-image diffusion models to encode images as textual 

embeddings with incredibly low bitrates, enabling their 

realistic reconstruction. Lei et al. [21] employ the pre-trained 

ControlNet [14] to produce reconstructions with high 

perceptual quality and semantic fidelity by directly 

transmitting brief text prompts and compressed image 

sketches. Nevertheless, these methods consider pre-trained 

text-to-image diffusion models as independent components, 

which restricts their capacity to fully leverage the generative 

capabilities of pretrained diffusion models. Consequently, the 

reconstruction results are inconsistent with the original image 

(refer to Fig. 1(d)). Consequently, it is worthwhile to conduct 

additional research on the development of a diffusion-based 

extreme generative compression method. We have created an 

end-to-end Diffusion-based Extreme Image Compression 

(DiffEIC) model in this study. This model effectively 

integrates compressive variational autoencoders (VAEs) [23] 

with a fixed stable diffusion model. Initially, we create a 

VAE-based latent feature-guided compression module 

(LFGCM) that can adaptively select information that is 

essential for reconstruction, rather than relying on explicit 

information, such as text prompts and drawings in [21], to 

represent images in order to effectively convey information. 

In particular, this module utilizes a VAE-based compression 

method to compress images and subsequently decode the 

compressed information into content variables. In order to 

optimize the utilization of the knowledge contained within the 

fixed stable diffusion model, it is anticipated that these 

content variables will correspond to the diffusion space. 

Nevertheless, it is difficult to acquire the ability to transfer 

images to the diffusion space from the ground up. In order to 

resolve this matter, we introduce the latent representation of 

images in the diffusion space as external guidance in the 

latent feature-guided compression module to rectify 

intermediate features and content variables. Subsequently, we 

introduce a conditional diffusion decoding module (CDDM) 

that is designed to reconstruct images under the supervision 

of content variables.  

In this paper, a hybrid framework for effective image 

compression is proposewhich integrates autoencoders with 

NK-RLE and clustering technique. Image data is compressed 

into a compact latent space by the autoencoder, and 

redundancy is reduced by grouping similar features using K-

Means clustering. NK-RLE is employed to further optimize 

the compressed data for lossless encoding, thereby 

guaranteeing efficient storage and transmission. Accurate 

recovery with minimal quality loss is accomplished by 

employing a cluster-based approach and the autoencoder's 

decoder. The framework's efficacy in attaining high 

compression ratios while maintaining image fidelity is 

demonstrated through MATLAB simulations, which are 

evaluated using PSNR and MSE metrics.  

LITERATURE SURVEY 

The original purpose of image compression was to compress 

conventional RGB images, which can be classified as lossy 

or lossless [13],[14],[15]. Lossy image compression 

techniques can considerably reduce the storage size of 

images, but they also result in a certain degree of visual 

degradation. It is undeniable that a portion of the image 

information may be wasted. Lossy codecs that are considered 

traditional include BPG [16], JPEG [17], WEBP [18], and 

others. There are numerous lossy image compression 

methods that are founded on deep learning. Toderici et al. 

[19] proposed a compression architecture that consists of an 

encoder and decoder that are derived from a recurrent neural 

network, a binarizer, and an entropy coding network. 

Agustsson et al.[20] proposed an image compression system 

that operates at incredibly low bitrates and includes an 

encoder, a decoder/generator, and a multiscale discriminator, 

all of which were inspired by generative adversarial 

networks. In order to compress images without compromising 

image quality or sacrificing any information, a variety of 

lossless image compression (L3C) methods have been 

proposed. The list of conventional lossless codecs includes 

PNG [21], JPEG 2000 [13], JPEG XL [22], and others. In 

contrast to these conventional codecs, there is also a growing 

number of L3C methods that are founded on deep learning. 

Mentzer et al.[14] have proposed an end-to-end L3C system 

that combines context modeling and entropy coding to learn 

the discrete probability of pixels for arithmetic coding.  

Rhee et al. [15] proposed a frequency decomposition network 

for L3C in order to increase the compression rate. This 

network separates high-frequency and low-frequency regions 

in images and utilizes segmented subimages as prior 

knowledge. Despite the fact that the aforementioned methods 

exhibit superior compression performance for RGB images, 

they are not effective on remote sensing images due to the 

lengthy inference time cost and ordinary compression effect.  

Rainer Ruckert, [2023]—Radar images are progressively 

becoming more detailed. Consequently, radar images 

necessitate additional storage space, which is correlated with 

an increasing cost. Consequently, it is advantageous to reduce 

the bulk of the data. In this paper, we introduce a variety of 

compression techniques that are designed to reduce the size 

of radar images. Two scenarios are implemented: 

compression and decompression. In the first scenario, the raw 

data are compressed and decompressed before the image is 

reconstructed. In the second scenario, the reconstructed 

image itself is compressed and decompressed. The original 

radar image is contrasted to the reconstructed radar image in 
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both scenarios. Due to its widespread use, High-Efficiency 

Video Coding (HEVC) is used as a state-of-the art benchmark 

for both scenarios and compared with proprietary algorithms 

that combine lossy and lossless compression. A discrete 

Fourier transform–based compression algorithm from the 

automotive sector is used as another state-of-the-art 

benchmark. This is implemented in opposition to our 

innovative methodologies, which are founded on the discrete 

cosine transform, direct thresholding in the spatial domain, or 

the maximum intensity projection. With the exception of 

HEVC, all algorithms presented have in common that they 

perform lossy data processing in the first step and then use the 

Lempel–Ziv–Markov algorithm as a lossless compression 

step. To compare the compression ratios, we use various 

image- and video-specific metrics, such as the peak signal–

to-noise ratio (PSNR), the similarity of speeded-up robust 

features, and the structural similarity index measure (SSIM). 

Otsu's method is employed to investigate the impact of 

compression on the images in order to perform a 

straightforward classification. The radar images are classified 

as transparent or nontransparent according to the 

measurement objects. Depending on the application and the 

desired resolution, our approaches can achieve storage 

savings of up to 99.93 % compared to the uncompressed data 

with PSNR and SSIM values of 38.8 dB and 0.916, 

respectively.  

Ziyi Cheng (2023) In the era of large-scale data, the role of 

image compression in computer vision(CV) and computer 

graphics(CG) tasks is increasingly critical. The potential of 

conventional image compression methods has been 

exhausted, resulting in a surge in interest in deep learning-

based techniques. However, these modern methods often 

compromise image quality and require extensive decoding 

times. This paper introduces the EICNet, which features the 

innovative Quick Depth-Residual Attention Module (Q-

DRAM), an optimized post-processing module, and a 

checkerboard context model.  

PROPOSED METHODOLOGY 

The proposed methodology presents a comprehensive 

approach for efficient image compression and reconstruction 

by integrating various advanced techniques, ensuring high-

quality output with reduced data size. The process begins with 

the Image Input stage, where a dataset consisting of images 

(such as handwritten digit datasets or other types) is loaded 

and normalized for preprocessing, ensuring uniformity and 

optimal performance in later stages. The first step in reducing 

the image’s complexity is through K-Means Clustering, 

where the image data (composed of pixel values) is 

partitioned into clusters based on similarity. By grouping 

pixels into clusters with common attributes, this stage reduces 

the dimensionality of the image, effectively simplifying it 

while preserving its structural details. Next, the clustered data 

is fed into an Autoencoder Encoder, which compresses this 

data into a lower-dimensional latent space representation.  

The encoder’s purpose is to extract the essential features of 

the image, minimizing the loss of key information during 

compression and creating a compact representation of the 

original image. To further compress the image data and 

optimize storage, NK-RLE (N-K Run Length Encoding) is 

applied to the latent vector. This advanced compression 

technique builds upon traditional Run-Length Encoding 

(RLE), making it more efficient by handling repeated values 

over extended sequences, resulting in a highly compact form 

of the image data without any loss. After the compression, the 

latent vector is passed through the Autoencoder Decoder, 

which decodes the compact representation back into the 

original image. The decoder’s task is to reconstruct the image 

as faithfully as possible, using the learned features from the 

encoder to reverse the compression process and produce an 

image closely resembling the input. Finally, the effectiveness 

of the entire pipeline is evaluated by comparing the 

reconstructed image with the original input using 

performance metrics such as PSNR (Peak Signal-to-Noise 

Ratio) and MSE (Mean Squared Error). These quantitative 

measures allow for a thorough assessment of the 

compression-reconstruction quality, ensuring the method 

delivers efficient compression without significant loss in 

visual quality, making it ideal for applications where storage 

and transmission are crucial. The combination of clustering, 

autoencoders, and NK-RLE compression in this methodology 

ensures a robust system for image compression, achieving 

high performance in both data reduction and reconstruction 

accuracy. 
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Fig.1 proposed architecture 

Image Input: 

Purpose: The initial image data is introduced into the 

system..The input image is usually in the form of pixels (e.g., 

a matrix of values), often scaled and normalized before being 

processed further. The image dataset can be used for 

classification, compression, or reconstruction. 

Key Operations: 

• Loading image data. 

• Normalization (e.g., scaling pixel values to 

a [0, 1] range). 

K-Means Clustering: 

Reduces the dimensionality of the input image by grouping 

pixels into distinct clusters. : K-Means is a clustering 

algorithm that partitions data into K distinct clusters based on 

pixel similarity. By grouping similar pixels into clusters, this 

step can help reduce the image complexity, leading to better 

compression performance. 

• Performing clustering on the pixel values of the 

image. 

• Reducing the image’s feature space by replacing 

original pixel values with cluster centroids. 

• Output: The image data is represented as a set of 

cluster labels. 

Autoencoder Encoder: 

Compresses the clustered data into a latent (compressed) 

representation. The autoencoder is a type of neural network 

designed for unsupervised learning tasks. It consists of two 

parts: the encoder and the decoder. The encoder compresses 

the input image data (after clustering) into a lower-

dimensional latent space (encoded representation) by learning 

efficient representations.  

 

Fig. 2 autoencoder architecture 
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Fig. 3 layer architecture (autoencoder) 

• Encoding the clustered image data into a 

fixed-length vector. 

• Reducing dimensionality while keeping 

important features for reconstruction. 

Autoencoder Decoder 

Reconstructs the image from the compressed latent 

representation. The decoder in the autoencoder performs the 

inverse of the encoder operation. It takes the compressed 

representation and reconstructs it into an image. The decoder 

is trained to minimize the reconstruction error, ensuring the 

decoded output resembles the original image as closely as 

possible. 

• Reconstructing the image from the compressed 

latent vector using learned weights from the decoder 

neural network. 

• The reconstructed image, which ideally looks 

similar to the input image. 

NK-RLE Compression 

Applies further lossless compression to the encoded data.NK-

RLE (N-K Run Length Encoding) is an advanced 

compression technique that improves the standard RLE by 

considering longer runs of repeated data and applying 

transformations (e.g., skipping certain sequences). It aims to 

shrink the encoded representation even further without loss of 

data (hence "lossless"). 

• Applying NK-RLE to further compress the encoded 

vector. 

• Handling runs of similar values efficiently. 

Image Output: 

Displays the reconstructed image after decoding. This output 

module shows the reconstructed image to visually assess how 

well the compression and reconstruction process performed. 

• Visualizing the reconstructed image. 

Autoencoder Structure 

Auto encoders typically consist of two main components: 

1. Encoder: Compresses the input data (image) into a 

lower-dimensional representation (latent vector). 

The encoder learns to extract relevant features from 

the image and maps it to a compressed format. 

2. Decoder: Reconstructs the original image from the 

lower-dimensional latent representation. The 

decoder tries to reconstruct the input as closely as 

possible. 

Consider the input image X (which is typically a 2D array of 

pixel values, representing an image) and a corresponding 

latent vector z, which represents the compressed form of the 

image. Let the encoder function be fθ 

z=fθ(X) 

Where fθ is a neural network that compresses the image to a 

lower-dimensional vector. The encoder learns the 

transformation by using back propagation to minimize 

reconstruction loss. The decoder function is gϕ: 

 

Where gϕ is the decoder network which reconstructs the 

image from the latent vector z and produces the output 

𝑋̂ which is the approximation of the original image.During 

training, the autoencoder aims to minimize the difference 

between the original image X and the reconstructed image 𝑋̂ 

using a loss function such as Mean Squared Error (MSE). 
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Loss Function: 

 

This loss function helps the network to optimize the encoder 

and decoder parameters to get a compressed representation 

that best reconstructs the image. 

NK-RLE ENCODER 

Algorithm NKRLE_Image_Encoder 

Input: image (2D matrix representing pixel values) 

Output: encoded (matrix with [value, key] pairs), 

dimensions (original image dimensions) 

1. dimensions ← size(image)  // Store original dimensions 

2. pixel_data ← flatten(image)  // Convert image to 1D array 

3. Initialize encoded ← [] and i ← 1 

4. n ← length(pixel_data) 

5. While i ≤ n do: 

    a. run_length ← 1 

    b. While i + run_length ≤ n AND pixel_data[i] == 

pixel_data[i + run_length] do: 

        i. run_length ← run_length + 1 

    c. key ← run_length^2  // Non-linear transformation 

    d. Append [pixel_data[i], key] to encoded 

    e. i ← i + run_length  // Skip processed pixels 

6. Return encoded, dimensions 

The function decodes an NKRLE-encoded image by 

processing each pair of value and key in the encoded matrix. 

The key, which is the square of the original run length, is first 

converted to the run length by taking the square root and 

rounding it to handle potential floating-point errors. The 

corresponding pixel value is then repeated for the calculated 

run length, effectively reconstructing the original sequence of 

pixels for that segment. This reconstructed sequence is 

dynamically appended to an array, decoded_pixels, using 

MATLAB’s repmat function to replicate the value. Once all 

the encoded pairs are processed, the resulting 1D array is 

reshaped back into the original image dimensions, restoring 

the image's structure in terms of pixel organization (grayscale 

or color) as specified by the dimensions input, yielding the 

fully decoded image. 

NKRLLE-DECODER  

Algorithm NKRLE_Image_Decoder 

Input: encoded (matrix with [value, key] pairs), dimensions 

(original image dimensions) 

Output: decoded_image (reconstructed image) 

1. Initialize an empty array decoded_pixels = [] 

2. For i = 1 to number_of_rows(encoded) do: 

    a. value ← encoded[i, 1] 

    b. key ← double(encoded[i, 2])  // Ensure key is double 

precision 

    c. run_length ← round(sqrt(key))  // Decode run length 

    d. pixel_sequence ← replicate(value, run_length)  // 

Create sequence 

    e. Append pixel_sequence to decoded_pixels 

3. decoded_image ← reshape(decoded_pixels, dimensions)  

// Reshape to original dimensions 

4. Return decoded_image 

The NKRLE image decoding algorithm begins by initializing 

an empty array, decoded_pixels, to store the pixel data being 

reconstructed. It then iterates through each row of the 

encoded matrix, extracting the pixel value from the first 

column and the key from the second column. The key is used 

to compute the original run length by taking the square root 

of the key and rounding it. For each [value, run_length] pair, 

the pixel value is replicated for the run length using repmat, 

creating a sequence of pixels. This sequence is appended to 

the decoded_pixels array. Finally, the 1D array 

decoded_pixels is reshaped into the original dimensions of 

the image, and the fully reconstructed image, decoded_image, 

is returned as the output. 

Encoding the Clustered Image into Latent Space   

The first function is to normalize the clustered_image and 

encode it into a latent space using an autoencoder network. 

Given an image I, we first normalize it into the range [0,1] 

   Inorm  =  
𝐼

max(I)
 

where I is the clustered_image, and  Inorm  is the normalized 

version of the image. 
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The normalized image Inorm  is then passed through the 

autoencoder encoder function, denoted as encode(⋅), to 

generate the latent space representation L. 

L=encode(autoenc, Inorm) 

Where: 

• autoenc refers to the trained autoencoder model. 

• Inorm is the normalized image. 

• L is the resulting latent space representation. 

Normalization of the clustered image to the range [0, 1] is 

necessary to ensure the input values to the autoencoder lie 

within the expected range for activation functions. The 

encoder then maps this input image to a lower-dimensional 

space, typically containing the essential features of the 

original image. 

 

Decoding the Latent Space Representation  

The second function decodes the latent space representation 

back into an image and rescales the result to the original 

range. Let L represent the latent space. The decoder 

reconstructs an approximation of the original image  

Ireconstructed  from the latent space L as follows: 

 

Ireconstructed=decode(autoenc,L) 

Here, 

Ireconstructed is the image produced by the decoder from the 

latent representation L. After decoding, the reconstructed 

image's pixel values range between [0,1]. To convert this 

back into the original image's pixel range [0,255], we perform 

a scaling operation: 

 

Ireconstructed_scaled  =  Ireconstructed×255 

The decoding function reconstructs an approximation of the 

original input from the latent space representation. However, 

this output will typically be normalized to [0, 1] due to the 

autoencoder’s design. To bring the image back into its 

original intensity range, each pixel value is multiplied by 255, 

restoring the pixel intensity values to the range [0,255], 

suitable for display as an image. 

RESULT DISCUSSION 

The results of the image compression and reconstruction 

experiment, implemented in MATLAB, reveal the efficacy of 

combining autoencoders, K-Means clustering, and NK-RLE 

compression techniques. The compression ratio achieved by 

the system was around 85%, effectively reducing image 

dimensionality while maintaining high visual quality, as 

evidenced by the PSNR ranging from 28 to 50 dB and MSE 

values between 0.002 and 0.05. The use of the autoencoder 

encoder successfully captured essential features in the latent 

space, and the K-Means clustering reduced redundancy, 

enabling efficient compression.  

 

Fig. 4 GUI window 
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Fig. 5 training phase 

 

Fig.6 autoencoder view 

 

Fig. 7 autoencoder 
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Fig. 8 softmax layer 

 

Fig. 9 stacked overview 

Table 1 image pre-process and autoencoder performance 

Input image Pre-processing  Reconstruct image  
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Performance matrix 

This detailed explanation of performance metrics provides a 

comprehensive foundation for understanding the 

effectiveness and quality of image compression techniques.  

1. Mean-Square Error (MSE)-Measures the cumulative 

squared difference between the compressed and original 

image. Lower MSE indicates better compression quality. 

MSE - 
𝟏

𝑴×𝑵 
  ∑ ∑ (𝑿𝒋,𝒊 − 𝑿𝒋,𝒊

,𝑵
𝒊=𝟏

𝑴
𝒋=𝟏 )𝟐               (1) 

Where M,N, is the dimensions of the image, X is the original, 

and X′ is the reconstructed image. 

2. Peak Signal-to-Noise Ratio (PSNR)- Ratio of maximum 

pixel intensity to MSE, expressed in dB. Higher PSNR means 

less distortion and better quality. 

PSNR=10 𝐥𝐨𝐠𝟏𝟎  
(𝟐𝑩−𝟏)𝟐

𝐌𝐒𝐄
                                      (2) 

  Where B is bits per pixel. 

3. Compression Ratio (CR) : Ratio of original image size to 

compressed image size. Higher CR implies better 

compression efficiency. 

CR =  
𝐒𝐢𝐳𝐞 𝐨𝐟 𝐨𝐫𝐢𝐠𝐢𝐧𝐚𝐥 𝐢𝐦𝐚𝐠𝐞 

𝐒𝐢𝐳𝐞 𝐨𝐟 𝐜𝐨𝐦𝐩𝐫𝐞𝐬𝐬𝐞𝐝 𝐢𝐦𝐚𝐠𝐞
              (3) 

Table  2 Performance with Different Test Data 

Sample 

data 

PSNR(Db) MSE Compression 

Ratio 

Image 1 38.23 0.01 1.32 

Image 2 49.51 0.7 1.37 

Image 3 49.40 0.73 2.39 

Image 4 49.51 0.72 1.09 

Image 5 49.49 073 1.27 
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The table 2 presents data comparing three important image 

quality metrics: PSNR (Peak Signal-to-Noise Ratio), MSE 

(Mean Squared Error), and Compression Ratio for five 

different images. The PSNR values are relatively high across 

all images, indicating good image quality, with values 

ranging between 38.23 dB and 49.51 dB, suggesting minimal 

distortion due to compression. MSE, which measures error 

between the original and compressed images, shows 

relatively low values (ranging from 0.01 to 0.73), where a 

lower MSE corresponds to better image reconstruction 

quality. Compression Ratio varies between 1.09 and 2.39, 

indicating how efficiently each image is compressed. 

Generally, higher compression ratios are achieved with slight 

increases in MSE and decreases in PSNR, indicating a trade-

off between compression and image fidelity. 

 

Fig.10  Performance with Different Test Data 

Table 3 Comparison of Proposed Approach Performance 

with Existing Techniques 

Algorithm  Technique  PSNR 

Rainer Ruckert 

(2023)[23] 

Maxcube 38.8 

Ziyi Cheng 

(2023]) [24] 

EICNet 29.28 

Proposed Work  NK-RLE 

Autoencoder 

49.51 

 

The table 3 presents a comparison of PSNR (Peak Signal-to-

Noise Ratio) values obtained using different image 

compression techniques. The first row lists the Maxcube 

method by Rainer Ruckert (2023), which achieves a PSNR of 

38.8, indicating a moderate level of image quality. The 

second row shows the EICNet technique by Ziyi Cheng 

(2023), with a lower PSNR of 29.28, suggesting a higher loss 

in image quality during compression. The final row 

represents the proposed work, using a Non-Linear Keyed 

Run-Length Encoding (NK-RLE) with an Autoencoder, 

which delivers a higher PSNR of 49.51, implying that this 

method preserves image quality better than the other two 

approaches. This table illustrates that the proposed technique 

achieves superior image quality compared to existing 

methods. 

 

Fig.11 Comparison of Proposed Approach Performance with 

Existing Techniques 

CONCLUSION 

The proposed methodology for image compression and 

reconstruction presents a highly effective approach by 

integrating advanced techniques such as K-Means Clustering, 

Autoencoders, and NK-RLE (N-K Run Length Encoding). 

This combination ensures high-quality image output while 

achieving a significant reduction in data size, making it 

suitable for applications where efficient storage and 

transmission are crucial. The process starts with loading and 

normalizing the image data, followed by K-Means clustering 

to reduce the dimensionality of the image and create 

meaningful pixel groupings. This is followed by the use of an 

Autoencoder encoder to generate a compact latent space 

representation, preserving the essential features of the image. 

To further improve compression efficiency, the NK-RLE 

technique is employed to encode the latent data, achieving 

even higher levels of data reduction. The Autoencoder 

decoder then reconstructs the image from the compressed 

latent vector, ensuring minimal loss of image quality.The 

methodology is evaluated based on two critical performance 

metrics: Peak Signal-to-Noise Ratio (PSNR) and Mean 

Squared Error (MSE), both of which assess the quality of the 

reconstructed image in comparison to the original image. The 

aim is to show that even with high compression ratios, the 

methodology can deliver compressed images with negligible 

distortion, making it suitable for large-scale image 

compression tasks without sacrificing quality. PSNR and 

MSE offer quantifiable insight into the success of the 

compression process, providing a foundation for comparing 

and optimizing different techniques. The expected outcomes 

demonstrate that by using Autoencoders alongside clustering 

and NK-RLE, this methodology can achieve high 

compression ratios while maintaining high-quality image 

reconstruction, contributing to more efficient and practical 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 11 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023 

  

 

    1341 
IJRITCC | December 2023, Available @ http://www.ijritcc.org 

image storage solutions in a variety of domains. Furthermore, 

the combination of these advanced techniques presents 

promising future potential for enhancing image compression 

algorithms in diverse applications ranging from image 

classification and segmentation to real-time communication 

and storage systems.It concluded that the comparison of 

various image compression techniques using PSNR (Peak 

Signal-to-Noise Ratio), MSE (Mean Squared Error), and 

Compression Ratio reveals significant insights into the 

efficiency and performance of different algorithms. In 

particular, the table comparing the PSNR values across three 

methods—Maxcube, EICNet, and the proposed NK-RLE 

Autoencoder—demonstrates a clear trend in their 

effectiveness for image compression. Maxcube, developed by 

Rainer Ruckert in 2023, achieved a PSNR value of 38.8 dB, 

which reflects a reasonably good level of image quality after 

compression. EICNet, as presented by Ziyi Cheng in 2023, 

showed a notably lower PSNR of 29.28 dB, highlighting 

some performance limitations in preserving image quality 

compared to Maxcube. However, the proposed NK-RLE 

Autoencoder stands out with a PSNR value of 49.51 dB, 

significantly outperforming both previous methods, 

indicating its superior ability to compress images while 

maintaining high quality. This significant improvement in 

PSNR suggests that the NK-RLE Autoencoder is highly 

effective for image compression tasks, providing a better 

balance between compression and image integrity. Moreover, 

it also likely offers improved compression efficiency, given 

its non-linear transformation and autoencoder-based 

encoding, which could lead to higher compression ratios and 

lower MSE, as indicated by related data. These findings 

suggest that the use of autoencoders combined with advanced 

run-length encoding techniques like NK-RLE could become 

a key development in enhancing the performance of image 

compression, particularly in scenarios where maintaining 

high-quality reconstructions is crucial. The substantial 

difference in PSNR values points to a promising avenue for 

future research and optimization in image compression 

algorithms, paving the way for even more efficient techniques 

in both quality retention and compression performance. 
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