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Abstract: Image denoising plays a critical role in enhancing the quality of digital images by removing unwanted noise while 

preserving important image details. Among various noise types, color image denoising presents unique challenges due to the 

complex correlation between color channels. This paper explores conventional denoising approaches specifically tailored for color 

images, focusing on well-established techniques such as median filtering, Gaussian smoothing, bilateral filtering, Non-Local Means 

(NLM), and wavelet-based denoising. Each method is analyzed for its effectiveness in suppressing noise while maintaining image 

integrity. We perform a comparative study to evaluate the performance of these techniques across different noise models, including 

Gaussian, salt-and-pepper, and speckle noise. Objective metrics such as Peak Signal-to-Noise Ratio (PSNR) and Root Mean Square 

Error (RMSE) are used to assess image quality post-denoising. Our results highlight the strengths and limitations of each method, 

offering insights into which conventional approaches are most suitable for specific noise types and image content. This comparative 

analysis serves as a foundation for further research and development of advanced denoising techniques. 
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1. Introduction 

Image denoising is a fundamental problem in the field of 

image processing and computer vision, where the objective 

is to remove noise from an image while preserving its 

important details. The presence of noise, whether introduced 

during image acquisition, transmission, or storage, can 

degrade the visual quality and hamper subsequent processing 

tasks like segmentation, recognition, and compression. 

Denoising becomes particularly challenging in color images, 

as there is an intricate correlation between the three-color 

channels (Red, Green, and Blue), and improper handling can 

result in color artifacts or loss of details [1,2]. 

Over the years, numerous denoising techniques have been 

developed, ranging from simple filtering operations to more 

advanced approaches. Conventional methods, which form 

the backbone of early denoising efforts, continue to serve as 

benchmarks for evaluating modern algorithms [3]. These 

methods include spatial domain techniques such as median 

filtering, Gaussian smoothing, and bilateral filtering, as well 

as frequency domain approaches like wavelet-based 

denoising [4-8]. Each of these techniques offers distinct 

advantages and drawbacks depending on the nature of the 

noise and image content. For instance, while median filtering 

is highly effective in reducing impulse noise (salt-and-pepper 

noise), it may blur fine details. Gaussian smoothing is 

suitable for Gaussian noise but may not perform well for 

other types of noise, such as speckle or impulse noise. In 

addition to spatial and frequency domain methods, more 

advanced approaches such as Non-Local Means (NLM) 

filtering have gained significant attention for their ability to 

exploit redundancy in image structures. NLM filtering has 

proven particularly effective in reducing noise while 

preserving details by averaging similar patches in an image, 

rather than just pixels in the local neighborhood [9-12]. 

In this paper, we conduct a comprehensive comparative study 

of these conventional denoising methods, focusing on their 

performance in removing various types of noise, including 

Gaussian noise, salt-and-pepper noise, and speckle noise, 

from color images. Using widely accepted objective metrics 

such as Peak Signal-to-Noise Ratio (PSNR) and Structural 

Similarity Index (SSIM), we evaluate the efficacy of each 

approach in terms of noise suppression and detail 

preservation. Our study aims to provide insights into the 

suitability of different conventional techniques for color 

image denoising, guiding researchers and practitioners in 

selecting the appropriate method for specific noise scenarios 

[13-14]. This comparative analysis not only highlights the 

strengths and weaknesses of traditional methods but also sets 

the stage for future research into more advanced and hybrid 

techniques, as well as their potential applications in real-

world scenarios where image quality is paramount. 

The rest of the paper is organized as follows: Section 2 

describes different types of noise and their mathematical 

models, providing a detailed understanding of the various 

noise characteristics encountered in color images. Section 3 

reviews conventional denoising methods, including their 

principles and applications for mitigating different noise 

types. Section 4 presents a comprehensive study of these 

denoising methods, comparing their effectiveness and 

performance in practical scenarios. Finally, Section 5 

concludes the paper, summarizing the findings and offering 

insights into future research directions. 
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2. Noise Models 

Noise in color images refers to unwanted variations or 

distortions in pixel values, often introduced during image 

acquisition, transmission, or compression. In mathematical 

terms, noise is typically modeled as a random process added 

to the original signal (image). Below is an overview of 

common types of noise in color images and their 

corresponding mathematical representations. 

 

2.1. Gaussian Noise 

Gaussian noise is one of the most common noise types in 

images and is usually caused by sensor imperfections, heat, 

or other environmental conditions [2]. It is modeled as 

independent, identically distributed random variables with a 

normal distribution. 

Let the observed noisy pixel ( ), ,X i j c  at position ( , )i j  

in a color channel c where  , ,c R G B  

1,2,..........,i M=  and 1,2,.........,j N= . M represents 

number of rows and N represents number of columns as: 

( ) ( ) ( ), , , , , ,i j c X i j c cN iY j= +  (1) 

( ), ,X i j c is the original pixel value, 

2( ) ), 0,(,N i j c N  is Gaussian noise, where 

2( )0,N  represents a normal distribution with mean 

typically assumed for zero-mean Gaussian noise and 

variance 𝜎2 controls the noise intensity. Each pixel in the 

image has noise added from the Gaussian distribution 

independently, and this noise affects each color channel 

(Red, Green, Blue) independently or collectively. The 

probability density function (PDF) for Gaussian noise is 
2

22

1

22
( )

N
p N exp



 −
=  

 
  (2) 

2.2 Speckle Noise (Multiplicative Noise) 

Speckle noise is often found in images obtained via coherent 

imaging systems, such as radar, ultrasound, and synthetic 

aperture radar (SAR) [15]. It is multiplicative, meaning the 

noise intensity is proportional to the pixel value. 

( ) ( ) ( ), , , , , ,i j c X i j c cN iY j=   (3) 

( ), ,N i j c  is multiplicative noise, often modeled as a 

random variable with a gamma distribution 

( ), , ,( )i j C GammaN     (4) 

where 𝛼 and 𝛽 are shape and scale parameters, respectively. 

Increases with pixel intensity, making bright regions more 

affected than darker ones. It is common in medical and 

remote sensing images. Requires specialized denoising 

techniques such as wavelet or homomorphic filtering to 

handle this multiplicative nature. 

 

 

 

2.3 Poisson Noise (Shot Noise) 

Poisson noise, or shot noise, is commonly observed in 

photon-limited imaging systems, such as low-light 

photography or medical imaging [16]. It arises from the 

quantization of image signals, where the number of photons 

detected by a sensor follows a Poisson distribution. For each 

pixel, the observed intensity is modeled as 

( ) ( )( ), , , ,Y Possi j c Xn i co ji  (5) 

Where Poisson(λ) is the Poisson distribution with parameter 

( )( ), ,X i j c = , representing the mean and variance of 

the distribution. Noise variance is proportional to the pixel 

intensity, with brighter regions having higher variance. 

Poisson noise often observed in low-light conditions or high-

sensitivity cameras. Non-Gaussian, making standard filtering 

techniques less effective. 

 

2.4 Uniform Noise 

Uniform noise is less common but can arise from 

quantization errors or uniform random fluctuations during 

image acquisition [17]. Uniform noise is modeled as 

( ) ( ) ( ), , , , , ,i j c X i j c cN iY j= +  (6) 

Where ( ) ), , ,(iN j c U a b  a uniform distribution with 

bounds a and b. The noise values are distributed uniformly 

within the range [a, b]. Uniform noise generally simpler to 

handle due to its uniform nature, making basic filters 

effective in removing this noise. The probability density 

function for uniform noise is 

1
, ,( ) [ ]p N N a b

b a
= 

−
  (7) 

2.5 Salt-and-Pepper Noise (Impulse Noise) 

Salt-and-pepper noise, also known as impulse noise, 

typically appears as randomly occurring white and black 

pixels in the image, representing extreme pixel values 

(minimum and maximum) [18]. It is common in scenarios 

with sharp signal disturbances or transmission errors. 

Let us considering 

, , 1,2,......., , 1,2,..........i jx i M j N= =  containing MN  

pixels, with originally unsigned integers in the interval (0, 

255), to be scaled as real values in the interval (0, 1) so that 

a zero represents the lowest intensity and a one represents the 

highest. 

Let ( , 1,..., , 1,...., )i M j N= = =i, jZ z  be the image 

corrupted by impulse noise. As discussed earlier, impulse 

noise is mainly classified in to two types, fixed valued 

impulse noise (a.k.a. salt and pepper noise) and random 

valued impulse noise. In the fixed valued impulse noise, a 

pixel is corrupted with probability p∈ (0,1). A corrupted pixel 

implies that one of its red, green, or blue components gets 

corrupted by a railing to 0 (full black) or 255 (full white) with 

uniform probability across the color components. 
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One standard formulation of the Fixed Valued Impulse Noise 

is where a pixel is considered to be noisy with probability   

and all three-color channels in that noisy pixel predicted to 

be either one or zero with equal probability represented as 

,

1
(0,0,0) ,

2

1
(1,1,1) ,

2

i jx if q p

if q p r

if q p r


 



=  



 

i, jz  (8) 

The formulation of the Random Valued Impulse Noise model 

is described as 

, , , ,

, , , ,

, , , ,

1
( , , ) ,

3

1 2
( , , ) ,

3 3

2
( , , ) ,

3

i j r i j g

i j r i j b

i j g i j b

if q p

x x a if q p r

x a x if q p r

a x x if q p r



  



= 
  


  


i, j

i, j

x

z  

     (9) 

where  
1 0.5, (1,0)

0

if s s
a

otherwise

 
= 


  
 

Impulse noise, such as salt-and-pepper noise, appears as 

random black and white pixels in an image, often caused by 

transmission errors or sensor faults. It is more difficult to 

remove because it affects only a few isolated pixels while 

leaving others intact, making it challenging to distinguish 

between noise and fine details. Conventional filters may blur 

important image structures while attempting to remove the 

noise. Additionally, its random occurrence complicates the 

denoising process without losing significant image features. 

 

3. Conventional Methods 

Conventional methods like median filtering, Gaussian 

smoothing, bilateral filtering, and wavelet-based denoising 

each offer unique strengths and weaknesses, making them 

suitable for different types of noise and image content. The 

choice of technique depends heavily on the noise 

characteristics and the application requirements, with more 

advanced techniques like Non-Local Means and modern 

hybrid approaches offering improved performance in 

complex scenarios. Over time, image denoising has evolved 

significantly, beginning with relatively simple methods and 

advancing to more sophisticated algorithms. Simple 

methods, such as linear filtering, were among the first to be 

applied in image denoising. However, these methods often 

suffer from limitations, such as blurring edges and fine 

details, which led to the development of more advanced 

techniques. Conventional methods remain relevant as they 

offer insights into the behavior of noise and image structures, 

providing benchmarks for more modern and complex 

algorithms. 

 

3.1. Spatial Domain Techniques 

Mean filtering: Mean Filtering works by replacing the value 

of each pixel in an image with the average value of its 

neighboring pixels. This process smooths the image and 

helps in reducing noise, particularly in images with Gaussian 

noise. It’s one of the simplest types of spatial filters. 

( )
( , ) ( , )

1
( ), ,

m n W i j

Y Xj i ji
N 

=    (10) 

Where ( , )X i j  is the original image, ( ),Y i j  is the filtered 

image, (m, n) is the window centered at (i, j), and 𝑁 is the 

number of pixels in (i,j). 

Median Filtering: Median filtering is a non-linear technique 

that replaces each pixel value with the median of its 

surrounding neighbors. It is particularly effective in handling 

impulse noise, such as salt-and-pepper noise, where 

individual pixels may take extreme values. Median filtering 

can remove these noisy pixels while preserving the overall 

structure of the image. However, one major drawback is that 

it may also remove fine details in the image, especially if the 

filter window size is too large. As a result, textures and small 

image features can be lost, leading to over smoothing. 

( ) { ( , ) | ( , ) ,, ( )}Y Median X m n m n w ii j j=   

     (11) 

where Median {⋯} denotes the median value within the 

window 𝑊(i,j). 

Gaussian Smoothing: Gaussian smoothing is a linear filter 

that applies a Gaussian kernel to average the intensity values 

of surrounding pixels. This method is highly effective at 

removing Gaussian noise, which is a common type of noise 

characterized by a normal distribution. The Gaussian filter’s 

strength lies in its simplicity and efficiency. However, one of 

its main limitations is its tendency to blur edges, as it does 

not discriminate between noise and important image 

structures like sharp edges. Additionally, Gaussian 

smoothing is not particularly effective for non-Gaussian 

noise types, such as speckle noise or impulse noise, which 

may require more specialized filters. 

( )
( , ) ( , )

( , ). ( , ),
m n W i j

Y X i j G ji j i m n


= − −  

     (12) 

where 𝐺(i,j) is the Gaussian kernel defined by 
2 2

2 2

1
( , ) exp

2 2

i j
G i j

 

 +
= − 

 
 (13) 

where 𝜎 is the standard deviation of the Gaussian 

distribution. 

Bilateral Filtering: Bilateral filtering is an edge-preserving 

technique that considers both spatial proximity and intensity 

similarity when averaging neighboring pixels. This means 

that it smooths the image while preserving important edges, 

which are crucial in maintaining the visual quality of the 
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image. Bilateral filtering is more advanced than median or 

Gaussian filters because it adapts to the image content and 

can handle both Gaussian noise and low-level impulse noise. 

However, it is computationally more expensive and may 

introduce artifacts when dealing with high levels of noise. 

 

( )

2 2 2

2 2
( , ) ( , )

2 2 2

2 2
( , ) ( , )

( ) ( ) ( , ) ( , )
( , ) exp .exp

2 2

( ) ( ) ( ,
,

) ( , )
exp .exp

2 2

m n W i j s r

m n W i j s r

i m j n X m n X i j
X i j

Y
i m j n X m n j

i j
X i

 

 





   − + − +
− −   

  =
   − + − +
− −   

  





  (14) 

 

where 𝜎𝑠 and 𝜎𝑟 are the spatial and range (intensity) standard 

deviations, respectively. 

 

3.2. Frequency Domain Approaches 

Wavelet-Based Denoising: Wavelet-based denoising is a 

frequency domain approach where an image is transformed 

into the wavelet domain, decomposing it into different 

frequency components. Noise typically appears in high-

frequency components, while image structures like edges are 

captured in both low and high frequencies. Wavelet-based 

techniques apply thresholding to the high-frequency 

coefficients to suppress noise while maintaining important 

image features. One of the key advantages of wavelet 

denoising is its ability to localize features both in space and 

frequency, which allows it to preserve edges better than 

spatial domain methods like Gaussian smoothing. However, 

determining the optimal thresholding strategy can be 

challenging, and over-thresholding may lead to loss of detail 

or introduce artifacts. 

 

Wavelet Transform: 

The wavelet transform decomposes an image into multiple 

frequency bands, capturing both spatial and frequency 

information. It does so by applying wavelet filters at different 

scales. The mathematical model represented by 
1 1

, ,

0 0

( , ) ( , ). ( , )
M N

n k n k

m n

W i j X m n m n
− −

= =

=  (15) 

Where , ( , )n kW m n  represents the wavelet coefficients at 

scale n and position 𝑘. ( , )X m n  is the original image, and 

, ( , )n k m n  are the wavelet functions. 

Denoising Process: 

Thresholding: In the wavelet domain, noise can be 

effectively removed by thresholding the wavelet coefficients. 

This involves setting small coefficients to zero or reducing 

their magnitude, assuming they are noise. 

Hard Thresholding: 

, ,

,

 | |>

0

n k n k

n k

W if W
W

otherwise


= 


  (16) 

Soft Thresholding: 

, , ,sgn( ).max(0,| | )n k n k n kW W W = −  (17) 

where 𝜆 is the threshold parameter, and sgn denotes the sign 

function. 

Inverse Wavelet Transform: 

After thresholding, the image is reconstructed from the 

modified wavelet coefficients using the inverse wavelet 

transform. 

, ,( , ) ( , ) ( , )n k n k

n k

Y i j W i j i j=  (18) 

Where , ( , )n kW i j  are the thresholded coefficients, and 

, ( , )n k i j  are the wavelet functions. 

 

3.3. Advantages and Drawbacks of Conventional Methods 

Each of these conventional methods has distinct advantages 

and disadvantages, making them suitable for specific noise 

models and image types: 

Median Filtering: Advantage: Highly effective at removing 

impulse noise (salt-and-pepper noise) without affecting the 

majority of pixels. Disadvantage: Can lead to loss of fine 

details and texture, especially with large filter windows. 

Gaussian Smoothing: Advantage: Simple and effective for 

reducing Gaussian noise, commonly used in various 

applications. Disadvantage: Blurs edges and may not handle 

other types of noise effectively. 

Bilateral Filtering: Advantage: Smooths the image while 

preserving edges, making it a good choice for applications 

where detail retention is important. Disadvantage: 

Computationally expensive and may introduce artifacts at 

higher noise levels. 

Wavelet-Based Denoising: Advantage: Efficient at handling 

both global and local noise, particularly effective for 

Gaussian noise while preserving sharp features. 

Disadvantage: Complex implementation, requires careful 

tuning of parameters, and may introduce artifacts if 

thresholding is not done properly. 

 

3.4. Suitability for Different Noise Types 

Noise in images can take various forms, and no single 

denoising technique is universally optimal for all noise types. 

Here’s how the conventional methods handle different noise 

models: 

Gaussian Noise: Gaussian smoothing, bilateral filtering, and 

wavelet-based denoising are often applied to reduce 

Gaussian noise, but edge-preserving techniques like bilateral 
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filtering or wavelet denoising may provide better results than 

Gaussian smoothing, which tends to blur details. 

Impulse Noise (Salt-and-Pepper Noise): Median filtering 

remains one of the most effective techniques for reducing 

impulse noise. Bilateral filtering can also be adapted for low 

levels of impulse noise but may not perform as well at higher 

noise levels. 

Speckle Noise: Speckle noise is more challenging to handle, 

as it is multiplicative and often found in radar and medical 

imaging. Wavelet-based approaches are commonly 

employed for reducing speckle noise, though they require 

advanced thresholding techniques. 

 

3.5. Toward Advanced Denoising Techniques 

While conventional methods offer solid performance for 

many denoising tasks, they also pave the way for more 

advanced methods like Non-Local Means (NLM), which go 

beyond the local neighborhood of a pixel. NLM algorithms 

average similar patches across the entire image, not just the 

immediate neighborhood, significantly improving denoising 

performance while preserving fine details. Similarly, more 

advanced techniques, including deep learning-based 

methods, are now commonly used in modern image 

denoising tasks. 

For a given pixel i in the image, the denoised value ( )X i  is 

computed as a weighted average of all pixels in the image, 

where the weights are determined by the similarity of the 

patches around each pixel to the patch around i. 

( , ) ( )

( )
( , )

j

j

w i j X j

X i
w i j





=




  (19) 

Where ( )X i  is the denoised value at pixel i, ( )X j  is the 

observed pixel value at pixel j. ( , )w i j  is the weight 

assigned to the pixel j based on the similarity of the patches 

centered at i and j. Ω is the set of all pixels in the image (or a 

large enough neighborhood). Here ( , )w i j  is given by 

2

2

( ) ( )
( , ) exp

patch patchX i X j
w i j

h

 −
 =
 
 

(20) 

( )patchX i  and ( )patchX j  are the image patches centered at 

i and j, respectively. .  denotes the Euclidean distance 

between the patches. h is a parameter controlling the decay 

of the weights (similarity threshold). 

 

4. Comprehensive study of denoising methods 

In this section, we compare the proposed IMF-KM with 

state-of-the-art vector median filters using three test 

statistics. 

The first is the root mean square error (RMSE) defined as 

. 
2

1 1

1
( )

M N

i j

RMSE
MN = =

= − i, j i, j
X, Y X Y (21) 

where X , Y  respectively are the original and filtered 

images. A small RMSE value indicates that the error between 

the filtered image and the original is minimal, reflecting high 

accuracy in image restoration. This low error signifies that 

the filtering process effectively preserves the original image's 

details while reducing noise. Consequently, achieving small 

RMSE values is desirable, as it demonstrates the method's 

efficiency in maintaining image quality. The closer the 

RMSE value is to zero, the better the filtered image matches 

the original. Thus, low RMSE values are a key objective in 

image filtering and restoration processes. The second 

measure is the peak signal-to-noise ratio (PSNR) defined as 

. 
2

10log
( )

( ) 10
( )

Max

MSE
PSNR

 
=  

 
,

,

X
X Y

X Y
 (22) 

where   is the mean square error of the filtered image. A high 

PSNR value indicates that the filtered image is very similar 

to the original image, demonstrating effective noise 

reduction and preservation of image quality. The PSNR 

(Peak Signal-to-Noise Ratio) measures the ratio between the 

maximum possible power of a signal and the power of 

corrupting noise, with higher values representing better 

image restoration. A high PSNR value suggests that the 

filtering process has successfully minimized distortion and 

artifacts. Consequently, achieving high PSNR values is 

desirable, as it reflects the method's ability to produce a high-

quality, clear image. The third measure is the structural 

similarity index (SSIM) defined as 

1 , 2

2 2 2 2
1 2

(2 )(2 )
( , )

( )( )

x y X Y

x y x y

c c
SSIM

c c

  

   

+ +
=

+ + + +
X Y   (23) 

where the image means are 

1 1

1
M N

i j
x N


= =

=  i, jX      

      (24) 

1 1

1
M N

i j

Y
y N


= =

=  i, j    (25) 

and 𝜎𝑥
2 , 𝜎𝑦

2  denotes the variance and 𝜎𝑥 ,𝑦 denotes the 

covariance between the original and filtered images. The 

SSIM value denotes the similarity between two images, the 

original and the filtered in our case, by incorporating 

perceptual features including luminance and contrast. A high 

value of SSIM indicates accurate reconstruction of the 

original image. 

Image noise is an inevitable aspect of digital imaging, arising 

from various sources such as sensor imperfections, 

transmission errors, or environmental conditions. Among the 

different types of noise, random-valued impulse noise—

often referred to as salt-and-pepper noise—is particularly 

challenging due to its disruptive nature and the complexity it 

introduces in image denoising. This type of noise manifests 
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as isolated, randomly distributed bright or dark pixels within 

an image. Unlike Gaussian or Poisson noise, which alters 

pixel values according to a statistical distribution, impulse 

noise appears as distinct, anomalous pixels scattered 

throughout the image. The random distribution of noise 

presents significant challenges in distinguishing between 

noisy pixels and actual image content. Salt-and-pepper noise 

can severely degrade image quality, making noise reduction 

essential. Linear filters, such as mean and Gaussian filters, 

attempt to reduce noise by averaging pixel values. While 

these methods can smooth out noise, they often blur 

important details and edges, making them less effective at 

preserving sharp features when dealing with impulse noise. 

Non-linear filters, such as median and Non-Local Means 

(NLM) filters, perform much better in this context. Median 

filters replace noisy pixels with the median value of their 

neighboring pixels, which is especially effective against salt-

and-pepper noise [19-20]. Non-Local Means filters further 

enhance noise reduction by utilizing similarities across the 

entire image, offering robust denoising while preserving 

important image details. These non-linear approaches 

provide a balance between noise removal and detail 

preservation, making them superior for handling impulse 

noise. The conventional impulse noise filtering methods in 

brief as follows. 

The filtering process in general uses a sliding window  W  

containing n   pixels and of size n n . For convenience 

we donate the set of pixels contained in the window as 

{ , 1,....., }W i n= =ix     (26) 

where the joint vector is , , ,{ , , }i r i g i bx x x=ix . With this 

notation, the digital color image is now modified as 

{ , 1,......, }i MN= =iX x     (27) 

The filtering methods operate by detecting and processing 

the center pixel within the test window W. An example of the 

test window is shown in Fig. 1. The most prominent 

 

 
Fig. 1: An example 3× 3 test window. The center pixel is 

the test pixel. 

 

of all filtering, schemes are the Vector Median Filter (VMF) 

method [21-22]. Here the aggregated distance of each pixel 

from every other pixel is computed as 

1

1, 2, ...,( - ),
n

j

i nd
=

==i j
i

S x x    (28) 

Where ( )d −i jx x  is the Minowski’s distance between two 

joint pixels ix  and jx , and reorder the aggregate as 

ˆ ˆ ˆ ˆ ˆ1,..., 1,..., 1 2
: ...

i n i n i i i n= = = = =
   S x S S S       (29) 

Then the center pixel is replaced with the pixel having the 

minimum aggregate distance from all other pixels as 

1i−=cx x      (30) 

The BVDF, on the contrary, uses the aggregate angular 

distance between the pixels as [23-24]

1

1

1, 2, ...,cos ,
n

j

i n
−

=

=

 
 =
 
 


i j

i j

i

x x

x x
 (31) 

and replaces the center pixel with the pixel that minimizes as 

described in (29) and (30). The DDF uses the weighted 

product of Minkowski’s distance and the angular distance as 

[25] 
(1 )

1, 2,...,, i n
 −

==
i i iA G     (32) 

Where (0,1)  . The Directional Vector Median Filter 

(DVMF) filter operates by taking the VMF of the pixels lying 

in degrees to the center pixel and then taking the VMF of the 

resultant [26]. The Vector Median Filter with Directional 

Distance (VMFDD) approach takes the sum of the distances 

along with four different directions and then selects those 

pixels that lie in the angle that minimizes the sum from the 

center pixel and VMF is performed over those pixels. The 

alpha-trimming approach trims the distances by a chosen 

trimming factor ∝ while the Adaptive Switching Trimmed 

(AST) method applies a switching condition for the trimming 

process [27]. 

In all these methods the focus is on reducing the noise by 

applying the VMF mechanism in different variants. There is 

little work in identifying pixels that correspond to noise and 

mitigating their effect in the filtering process. The recently 

proposed Adaptive Rank Weighted Switching Filter 

(ARWSF) ranks combine the process of identifying good 

pixels (those that contribute to the signal/information) by 

first computing the distances of the pixels d(.) in the sliding 

window and then scaling the distances using a decaying 

function [28]. The peer group filter attempted this approach 

but was limited to grayscale images [29-30]. This scaling 

gives high weighting to those pixels having minimum 

aggregate distance. Performing VMF over pixels using the 

scaling results in improved noise reduction as the most 

informative pixels are weighted highly in the filtering 

process. In the Isolated Vector Median Filter with K-Means 

Clustering (IMF-KM) method which improves the ARWSF 

method and fully marginalizes the noise pixels for improved 

noise reduction [31-33]. This section provides a 

comprehensive study of various methods developed to 

address impulse noise in digital images. These methods are 

categorized based on their approaches and techniques, each 

with its own advantages and limitations [34-35]. 

Table 1, which presents the RMSE (Root Mean Square Error) 

values for various conventional denoising methods when 
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applied to images corrupted by impulse noise with varying 

noise probabilities.

 

Table 1: RMSE Values of Conventional Methods at Different Noise Probabilities. 

p 0.1 0.3 0.5 0.65 0.75 0.85 0.95 

MF 0.08468 0.08719 0.09127 0.09357 0.1038 0.1005 0.09628 

VMF 0.08544 0.0888 0.09565 0.10134 0.1285 0.1194 0.10889 

BVDF 0.09605 0.10228 0.11193 0.1211 0.1499 0.1392 0.12925 

DDF 0.08591 0.08893 0.09603 0.10281 0.1291 0.1199 0.1099 

DVMF 0.06229 0.07527 0.09247 0.10681 0.1402 0.1291 0.11628 

VMFDD 0.08539 0.08874 0.09562 0.10134 0.1285 0.1194 0.10889 

ARWSF 0.095 0.09745 0.10398 0.11021 0.1484 0.1353 0.11917 

-TRIM 0.09732 0.0984 0.103 0.10785 0.142 0.1309 0.11694 

AST 0.0976 0.09917 0.10596 0.11227 0.1513 0.1379 0.12126 

PGF 0.20387 0.22028 0.2422 0.25416 0.2837 0.2738 0.26192 

IVMF 0.07059 0.1131 0.15055 0.17032 0.203 0.1934 0.18242 

IVMF-KM 0.09904 0.10023 0.10399 0.10547 0.1185 0.113 0.10784 

VMF-KM 0.08503 0.08771 0.09278 0.09789 0.1201 0.1127 0.10378 

 

Comprehensive Study on RMSE Values for Various 

Denoising Methods Across Different Noise Probabilities 

This study examines the performance of various denoising 

methods across different impulse noise probabilities, using 

RMSE (Root Mean Square Error) as the performance metric. 

The results are analyzed in two phases: low noise probability 

(0.1 to 0.3) and high noise probability (0.5 to 0.95). 

 

Performance at Low Noise Probability (P = 0.1 to 0.3) 

At lower noise probabilities, most methods demonstrate 

strong denoising capabilities, with relatively low RMSE 

values. DVMF (Directional Vector Median Filter) is the best 

performer, with RMSE values of 0.06229 at P = 0.1 and 

0.07527 at P = 0.3. This shows its robustness and ability to 

preserve details while removing impulse noise, even at 

moderate noise levels. 

IVMF (Isolated Vector Median Filter) also performs well at 

P = 0.1 with an RMSE of 0.07059. However, its performance 

deteriorates significantly at P = 0.3, rising to 0.1131. This 

suggests that while IMF is effective at low noise levels, it 

struggles as the noise increases. Median Filter (MF) and 

Vector Median Filter (VMF) maintain competitive 

performance, with RMSE values around 0.08468 to 0.0888 

at both noise levels. These filters provide steady noise 

reduction and maintain image quality. BVDF (Basic Vector 

Directional Filter), ARWSF, and α-TRIM exhibit slightly 

higher RMSE values at low noise levels, with RMSE values 

ranging from 0.09732 to 0.10228, indicating that their 

performance is moderate but not as effective as DVMF or 

MF. PGF (Peer Group Filter) consistently performs poorly 

across both noise levels, with RMSE values around 0.20387 

to 0.22028, indicating that it is not suitable for impulse noise 

reduction. 

 

Performance at High Noise Probability (P = 0.5 to 0.95) 

As noise probability increases, the performance of most 

methods deteriorates, with RMSE values rising significantly. 

DVMF continues to outperform other methods at high noise 

levels, although its RMSE increases to 0.09247 at P = 0.5 and 

further to 0.11628 at P = 0.95. Despite this increase, DVMF 

remains the most effective method for impulse noise removal 

even in challenging conditions. MF and VMF also maintain 

steady performance at high noise probabilities, with RMSE 

values ranging from 0.09127 at P = 0.5 to 0.09628 at P = 

0.95. These filters show consistent noise reduction, making 

them reliable even at higher noise levels. IVMF sees a sharp 

increase in RMSE at higher noise probabilities, reaching 

0.15055 at P = 0.5 and 0.18242 at P = 0.95. This shows that 

iterative approaches become less effective as noise intensity 

increases. BVD, ARWSF, and α-TRIM exhibit significantly 

higher RMSE values at P = 0.5 and above, with RMSE values 

exceeding 0.12 at high noise levels. This indicates that these 

methods struggle to maintain effectiveness under extreme 

noise conditions. PGF performs the worst across all noise 

levels, with RMSE values exceeding 0.26 at P = 0.95, 

confirming its inadequacy for impulse noise. 

Table 2, which presents the PSNR (Peak Signal-to-Noise 

Ratio) values for various conventional denoising methods 

when applied to images corrupted by impulse noise with 

varying noise probabilities. 

 

Table 2: PSNR Values of Conventional Methods at Different Noise Probabilities. 

P 0.1 0.3 0.5 0.65 0.75 0.85 0.95 

MF 21.445 21.191 20.793 20.576 19.6628 19.9534 20.327 

VMF 21.367 21.032 20.383 19.878 17.7767 18.4346 19.247 
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BVDF 20.348 19.803 19.019 18.333 16.477 17.1203 17.767 

DDF 21.319 21.019 20.348 19.753 17.7443 18.4059 19.166 

DVMF 24.111 22.466 20.656 19.41 17.0124 17.7488 18.666 

VMFDD 21.372 21.037 20.386 19.879 17.7767 18.4346 19.247 

ARWSF 20.445 20.225 19.659 19.154 16.542 17.3669 18.472 

-TRIM 20.236 20.14 19.742 19.342 16.9309 17.652 18.634 

AST 20.21 20.072 19.494 18.993 16.3731 17.1993 18.321 

PGF 10.634 10.525 10.323 10.187 9.7907 9.9344 10.09 

IVMF 22.898 18.885 16.357 15.304 13.7731 14.2003 14.717 

IVMF-KM 20.083 19.979 19.66 19.537 18.5157 18.9359 19.342 

VMF-KM 21.408 21.139 20.649 20.182 18.3736 18.9498 19.671 

 

Comprehensive Study of PSNR Values for Various 

Denoising Methods Across Different Noise Probabilities: 

This study evaluates the performance of several conventional 

and advanced denoising methods based on their PSNR (Peak 

Signal-to-Noise Ratio) values at varying impulse noise 

probabilities. The PSNR values provide a measure of the 

image quality after denoising, with higher values indicating 

better noise removal and less distortion. The table compares 

methods across noise probabilities ranging from 0.1 to 0.95. 

 

1. Performance at Low Noise Probability (P = 0.1) 

At a low noise probability of 0.1, the Directional Vector 

Median Filter (DVMF) shows the highest PSNR of 24.111 

dB, indicating its effectiveness at noise reduction with 

minimal loss of image details. The IVMF also performs well 

at 22.898 dB, followed closely by methods like the Median 

Filter (MF) and Vector Median Filter (VMF), which are 

standard techniques commonly used for impulse noise 

removal. 

Other methods like α-TRIM, ARWSF, and BVDF show 

slightly lower PSNR values but still maintain good 

performance, with PSNR values in the range of 20.2 - 21.4 

dB. The PGF performs the worst at this noise level, with a 

very low PSNR of 10.634 dB, likely due to its inability to 

handle impulse noise effectively. 

 

2. Performance at Moderate Noise Probability (P = 0.3) 

As the noise probability increases to P = 0.3, the overall 

PSNR values for all methods decrease. The DVMF still 

maintains the highest performance, with a PSNR of 22.466 

dB, followed by IVMF with a notable drop to 18.885 dB. 

This drop suggests that iterative approaches like IVMF 

become less effective as noise levels rise, possibly due to 

over-smoothing or inability to preserve finer details in highly 

noisy images. 

The Median Filter (MF) and Vector Median Filter (VMF) 

remain competitive, with PSNR values around 21 dB. 

However, methods such as BVDF, ARWSF, and α-TRIM 

show a more significant drop in PSNR, indicating their 

decreasing ability to handle noise at higher probabilities. The 

PGF, designed for Gaussian noise, continues to struggle, 

showing a PSNR of only 10.525 dB. 

 

3. Performance at High Noise Probability (P = 0.5) 

At a noise probability of P = 0.5, noise corruption becomes 

more significant, and most denoising methods start to show 

signs of degradation. The DVMF still performs the best 

among the methods, although its PSNR value has dropped to 

20.656 dB. Median Filter (MF) and VMF still maintain 

reasonably good performance, with PSNR values of 20.793 

dB and 20.383 dB, respectively, reflecting their robustness 

even as noise levels increase. 

However, filters such as DDF (20.348 dB) and VMFDD 

(20.386 dB) exhibit comparable performance, suggesting 

that decision-based detection in DDF and hybrid methods 

like VMFDD help maintain image quality. More basic 

methods, like α-TRIM and ARWSF, start to show larger 

performance gaps, with PSNR values below 20 dB, 

indicating that they are less suited for high levels of noise. 

The PGF remains the worst performer. 

4. Performance at Very High Noise Probability (P = 0.75 - 

0.95) 

At noise probabilities P = 0.75 and above, the noise level is 

severe, and many denoising methods struggle to maintain 

PSNR above 20 dB. For P = 0.75, the DVMF still leads the 

performance at 17.0124 dB, but even this value is a 

significant drop compared to its performance at lower noise 

levels. Other methods like IMF drop significantly to 13.7731 

dB, demonstrating the challenges of removing noise at such 

high corruption levels while maintaining image structure. 

At P = 0.95, where most of the image is corrupted by noise, 

the overall PSNR for all methods declines further. The 

Median Filter (MF) still manages to provide a reasonable 

PSNR of 20.327 dB, while DDF and VMF-KM maintain 

around 19.166 dB and 19.671 dB respectively. The lowest-

performing methods include PGF, with a PSNR below 10 dB 

throughout all noise levels, confirming its inadequacy for 

impulse noise removal. 

5. Key Observations Across Methods 

DVMF consistently outperforms the other methods across all 

noise probabilities, showcasing its ability to handle both low 

and high noise with a reasonable balance between noise 

removal and detail preservation. IMF performs well at low 

noise probabilities but loses effectiveness as noise levels 

increase, indicating a potential limitation in iterative 

approaches under high noise conditions. Median Filters (MF 
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and VMF) and DDF perform steadily across most noise 

levels, making them reliable choices for a wide range of noise 

conditions, though they too suffer from performance 

degradation at high noise probabilities. PGF is the least 

effective method for impulse noise, as it is designed 

primarily for Gaussian noise, leading to very poor PSNR 

values across all noise levels. Advanced hybrid methods, 

such as VMFDD, demonstrate consistent performance but do 

not surpass DVMF, especially at extreme noise levels. 

We demonstrate the superiority of state-of-the-art filtering 

methods. In Figure 2, we present the test case image used for 

this evaluation. This figure serves as the reference image for 

assessing the effectiveness of various denoising methods. In 

Figure 3, we showcase the results of applying these methods 

to the noisy image at different noise probabilities. The figure 

includes the noisy image alongside the filtered results 

obtained using various methods. By comparing these images, 

it is possible to visually assess the performance of each 

filtering technique and observe how well each method 

mitigates the noise across varying levels of noise probability. 

 

 
Fig 2: Original test image 
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Fig 3: Top to bottom: (a) Noisy image, (b) MF, (c) VMF, (d) BVDF, (e) DDF, (f) DVMF, (g) VMFDD, (h) ARWSF, (i) - 

trim, (j) AST, (k) PGF, (l) IVMF, (m) IVMF-KM, (n) VMF-KM. Left to right: Noise probability p = 0.1, 0.3, 0.5, 0.75, 

0.95. 

 

5. Conclusion 

This paper provides a comprehensive evaluation of 

conventional denoising methods for impulse noise in color 

images, focusing on their effectiveness as measured by 

RMSE (Root Mean Square Error) and PSNR (Peak Signal-

to-Noise Ratio). The analysis reveals that Directional Vector 

Median Filter (DVMF) consistently delivers the best 

performance across various noise probabilities, with the 

lowest RMSE and highest PSNR values. At lower noise 

levels (P = 0.1), DVMF achieves an RMSE of 0.06229 and a 

PSNR of 24.111 dB, demonstrating its superior capability in 

noise reduction while preserving image quality. Even at 

higher noise levels (P = 0.95), DVMF maintains robust 

performance with an RMSE of 0.11628 and a PSNR of 

18.666 dB. Median Filter (MF) and Vector Median Filter 

(VMF) also show strong performance at low noise 

probabilities but exhibit less effectiveness as noise increases. 

At P = 0.1, MF has an RMSE of 0.08468 and a PSNR of 

21.445 dB, while VMF has an RMSE of 0.08544 and a PSNR 

of 21.367 dB. At higher noise levels (P = 0.95), these 

methods maintain moderate performance, with RMSE values 

around 0.09628 and PSNR values close to 20 dB. IVMF is 

effective at lower noise levels but shows significant 

performance degradation as noise increases, with an RMSE 

of 0.07059 at P = 0.1 and an increased RMSE of 0.18242 at 

P = 0.95, and a corresponding PSNR drop. BVDF and 

ARWSF show higher RMSE and lower PSNR values 

compared to DVMF and median-based filters, indicating 

their reduced effectiveness in handling noise. For instance, 

BVDF has an RMSE of 0.09605 at P = 0.1 and a PSNR of 

20.348 dB, while ARWSF has an RMSE of 0.095 and a 

PSNR of 20.225 dB at the same noise level. PGF consistently 

exhibits the highest RMSE and lowest PSNR values, 

reflecting its ineffectiveness for impulse noise reduction. In 

conclusion, DVMF stands out as the most reliable denoising 

method across various noise levels, while other methods such 

as MF and VMF offer stable but less optimal performance. 

Traditional median-based methods are generally effective, 

but DVMF proves to be the most robust solution for impulse 

noise reduction in color images. 
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