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Abstract –Adopting more intelligent and targeted weed management strategies enables farmers to reduce their dependence on 

chemical treatments, save valuable time and resources, and improve crop yields, all while lessening negative effects on the 

environment and human health. To address these urgent issues, it is essential to pursue a more sophisticated agricultural approach 

that incorporates automated technologies and leverages machine learning algorithms. This study presents an innovative weed 

detection system aimed at differentiating crops from weeds by integrating various feature extraction techniques with advanced 

machine learning capabilities. At the core of this system is the application of hybrid features, coupled with an effective feature 

selection method based on neighborhood component analysis. These distinctive features are utilized by a particle swarm 

optimization and gravitational search algorithm (PSO-GSA) optimized random forest classifier, which effectively categorizes 

images into either crops or weeds. The results demonstrate that our method, which combines hybrid feature extraction with the 

PSO-GSA-RF classification approach, significantly outperforms other techniques. Furthermore, this system can be integrated into 

agricultural robots, allowing for the precise application of herbicides only where necessary, thereby minimizing the introduction 

of harmful chemicals into the food supply and reducing the risk of human exposure to dangerous substances. 
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I. INTRODUCTION 

Weeds pose a significant challenge in agriculture, as they can 

adversely affect crop production and yield. Competing with 

crops for essential resources such as nutrients, water, and 

sunlight, weeds also act as hosts for pests and diseases that can 

further damage crops. Effective weed management is crucial 

for sustaining crop productivity and ensuring food security. 

Proper weed control not only helps in reducing yield losses but 

also improves crop quality, while reducing the reliance on 

costly and environmentally harmful herbicides. 

Various weed management techniques are available, including 

cultural, mechanical, and chemical methods. Cultural methods 

focus on modifying the environment or adjusting crop 

management practices to inhibit weed growth and competition. 

Mechanical methods involve physically removing or 

destroying weeds through practices like tilling, mowing, or 

manual weeding. Chemical methods utilize herbicides to 

suppress or eliminate weeds [1]. 

Nevertheless, a well-planned and carefully implemented weed 

management strategy is essential to avoid negative outcomes, 

such as the development of herbicide-resistant weed species or 

environmental degradation. An integrated approach that 

combines multiple control methods is often the most effective 

and sustainable solution for managing weeds [2]. 

Automation and digitization present significant opportunities 

for enhancing weed detection and management in agriculture. 
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Technologies such as IoT, image processing, and data-driven 

techniques enable real-time weed monitoring and can assist 

farmers in making more informed decisions regarding crop 

management [3].  

Despite these advancements, the task of weed detection and 

identification remains challenging and requires sophisticated 

computer vision algorithms. Traditional image processing 

techniques may lack the accuracy required to distinguish 

between various weed species in a complex agricultural 

setting. As a result, advanced methods like deep learning and 

neural networks are being developed to enhance the precision 

of weed detection. Leveraging these technologies allows for 

more efficient weed management, ultimately boosting crop 

productivity and sustainability. 

For weed detection in specific agricultural contexts, computer 

vision systems that utilize a combination of conventional 

image processing techniques and deep learning algorithms can 

be employed [4]. Classical image processing methods rely on a 

variety of image analysis tools to extract significant features 

from visual data, such as plant shape, color, texture, and size. 

Classification algorithms can then use these features to 

differentiate between different weed species and other plants, 

contributing to the development of more accurate and reliable 

weed detection systems tailored to specific domains. 

This research introduces a novel method for weed 

identification in row crops, combining geometric and spectral 

data through automated image processing. The approach 

assumes that any plant growing between crop rows is a weed, 

and weeds within crop rows share spectral properties with 

those between rows. This technique, tested using multispectral 

images captured by a sensor mounted on a 3-meter pole, is 

capable of detecting weeds in both inter-row and intra-row 

areas. 

The first key contribution of this study is the development of a 

classification method that integrates spatial and spectral 

information while automatically building the training dataset 

for a supervised classifier, eliminating the need for manual 

pixel labeling of crops, weeds, or soil. The second contribution 

is an in-depth analysis of the impact of using either spatial 

data, spectral data, or both on the classification accuracy for 

images taken in maize and sugar beet fields. 

By combining spatial and spectral information and utilizing 

spatial data to construct training datasets, this method offers a 

promising tool for weed detection in row crops. Additionally, 

the study provides valuable insights into the significance of 

spatial and spectral data for achieving high-quality 

classification in weed detection tasks. 

 

II. LITERATURE REVIEW 

The application of machine vision technology in developing 

sustainable and integrated weed management systems holds 

great promise. By utilizing imaging sensors and sophisticated 

computer algorithms, these systems can effectively 

differentiate between crops and weeds, identify specific weed 

species, and provide targeted weed control measures. This 

level of precision is instrumental in minimizing the use of 

herbicides, which is vital for mitigating the problem of 

herbicide resistance in weeds. 

The rise of machine vision-based robotic systems for in-season 

weed management in crops like cotton is gaining traction. 

Once weeds are identified and located, various control 

methods such as targeted herbicide spraying, mechanical 

cultivation, or thermal techniques can be applied. The use of 

such technologies in weed management offers the potential for 

more sustainable farming practices, with reduced herbicide 

dependency and enhanced crop productivity [5]. 

Significant research has been conducted on image processing 

and analysis techniques for weed detection. Various color 

indices that highlight plant greenness have been proposed to 

improve weed segmentation and separation from soil 

backgrounds. However, these methods are often unreliable 

under varying natural light conditions. To overcome this, deep 

learning techniques, particularly convolutional neural 

networks (CNNs), have been adopted, providing improved 

weed detection accuracy and more reliable classification 

results [6]. Key features for accurate weed identification 

include morphology, texture, and spectral reflectance. A real-

time computer vision-based weed detection framework was 

proposed by authors in [7], employing grayscale segmentation 

for weed classification from a contextual perspective. In this 

study, weeds were categorized into broad, narrow, and small-

leaf classes using thresholding and sample variance 

calculations. In [8], improved weed classification performance 

was achieved by utilizing enhanced visual features such as 

local shape and texture. Their segmentation algorithm 

(AdaBoost combined with Naïve Bayes) successfully adapted 

to different lighting conditions. Numerous weed control 

strategies aimed at reducing herbicide use and boosting crop 

yield have been proposed [9-12]. In [13], a technique for 

detecting and classifying citrus diseases was introduced, using 

a color difference algorithm to isolate diseased areas and 

employing color histograms and textural features for 

classification, achieving high accuracy. 

Weed detection can be enhanced by integrating both spatial 

and spectral data. In a study by [14], combining spatial and 

spectral information led to improved crop-weed 
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differentiation, yielding promising visual results. For invasive 

weed species in natural environments, the authors of [15] 

presented a feature-learning technique based on color, edge, 

and texture information. This approach was expanded in [16] 

to include spectral, shape, spatial, and texture data. Object-

based image analysis (OBIA) was utilized by [17] to classify 

linear vegetation objects that were difficult to identify using 

spatial information alone. Their classification was based on the 

degree of spectral similarity, such as NDVI or ExG values. In 

[18], a novel approach to weed classification was introduced 

using OBIA along with a Support Vector Machine (SVM) 

classifier. This method integrated additional spectral 

information, shape features, and vegetation indices, which the 

classifier used to enhance classification results. The study 

achieved 96% accuracy in sunflower fields, using 90 manually 

labeled items per class (soil, weeds, and crop), surpassing 

older pixel-based methods that relied solely on spectral data. 

This technique successfully identified weeds both between and 

within crop rows, demonstrating its versatility. 

A diverse and extensive dataset of high-quality images is 

crucial for training accurate and reliable weed recognition 

models. However, collecting such datasets presents challenges, 

especially in agricultural contexts where environmental 

variables can significantly alter the appearance of weeds. 

Moreover, the process of manually labeling large datasets is 

often labor-intensive and costly. 

Additionally, the performance of weed recognition algorithms 

plays a significant role in the overall effectiveness of these 

systems. While traditional computer vision methods—such as 

image processing, segmentation, and feature extraction—can 

be effective, they often face limitations when dealing with 

variations in weed appearance and environmental factors. 

More advanced machine learning approaches, particularly 

CNNs, show greater potential for improving weed recognition 

performance but require substantial amounts of labeled data 

and can be computationally intensive. 

 

III. MATERIALS AND METHOD  

3.1 Dataset 

The food crop species chosen for the dataset were selected 

based on their popularity among consumers in Latvia and the 

necessity for intensive weed management techniques. The 

dataset contains two types of images: (i) images of crops and 

weeds grown in controlled greenhouse conditions, and (ii) 

images of crops and weeds captured in open field settings. The 

greenhouse images were taken at the Scientific Institute for 

Plant Protection Research "Agrihorts" at the University of Life 

Sciences and Technologies of Latvia in Jelgava, Latvia. Field 

condition images were captured from three distinct locations in 

Latvia: Kekava, Rujiena, and Krimulda. All images were taken 

using a perspective projection over the plants [19]. 

To construct the dataset, six food crops and eight common 

weed species were grown in vegetation pots within a 

greenhouse environment, where conditions were controlled. 

The plants were cultivated in peat-based substrate, and the 

seeds were sown in one to two rows with a spacing of 2.0–5.0 

cm. Watering occurred once or twice per week, and 

temperatures were maintained at +20°C during the day and 

+15°C at night, with humidity levels kept below 50%. LED 

lamps were used in conjunction with natural sunlight, 

providing illumination from 6:00 a.m. to 8:00 p.m. The dataset 

was compiled using a variety of cameras, including Canon 

EOS 800D, Sony W800 digital cameras, and Intel RealSense 

D435 cameras. 

The dataset comprises 1,118 JPEG images, accompanied by 

7,853 XML files with manual annotations. The images are in 

bitmap color format, using RGB with three samples per point, 

and are primarily designed to facilitate the identification of 

food crops and weeds in digital images. The images vary in 

resolution and size, with common dimensions including 

720×1280×3, 1000×750×3, 640×480×3, 640×360×3, and 

480×384×3. The dataset is categorized into two main classes: 

food crops (411 annotations) and weeds (7,442 annotations). 

Each annotation provides detailed information about the 

location and size of objects in the image, aiding the 

development of computer vision algorithms for weed detection 

and classification. 

The diversity of the camera equipment used and the variability 

in image resolutions and sizes accurately represent real-world 

scenarios where crops and weeds are encountered. This 

ensures the dataset is suitable for training and evaluating 

machine learning models for crop management and weed 

detection. 

The weed species selected for the dataset include: goosefoot 

(Chenopodium album), catchweed (Galium aparine), field 

pennycress (Thlaspi arvense), shepherd’s purse (Capsella 

bursa-pastoris), field chamomile (Matricaria perforata), wild 

buckwheat (Polygonum convolvulus), field pansy (Viola 

arvensis), and quickweed (Galinsoga parviflora). 

The six chosen food crops are: beetroot (Beta vulgaris), carrot 

(Daucus carota var. sativus), zucchini (Cucurbita pepo subsp. 

pepo), pumpkin (Cucurbita pepo), radish (Raphanus sativus 

var. sativus), and black radish (Raphanus sativus var. niger). 

This dataset is versatile and can be used for various research 

applications, including weed-crop interactions, plant 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 9 Issue: 6 

Article Received: 25 March 2021 Revised: 12 April 2021 Accepted: 30 May 2021 

___________________________________________________________________________________________________________________ 

 
    9 
IJRITCC | June 2021, Available @ http://www.ijritcc.org 

development, weed management techniques, and the influence 

of environmental conditions on plant growth. 

 

3.2 GLCM 

The Gray Level Co-occurrence Matrix (GLCM) is a statistical 

approach used to extract texture characteristics from images, 

which is particularly relevant in weed detection. Initially 

developed as a method for texture analysis, the GLCM 

captures the joint probability distribution of two pixel 

intensities at a specific spatial distance and direction. Each 

element in the matrix indicates how often a pair of gray-level 

values occurs at a given relative position within the image. The 

matrix is symmetrical, meaning that the probability of a value 

pair at position (𝑖, 𝑗) is equivalent to that at (𝑗, 𝑖). 

Constructing a GLCM involves four key steps. First, the image 

undergoes preprocessing to eliminate any noise or artifacts that 

might distort the calculation of the matrix. Next, the image is 

quantized into a discrete set of gray-levels, typically using 8 or 

16 levels. Then, a distance (d) and direction (θ) are selected to 

define the spatial relationship between pixel pairs. Common 

directions used are 0°, 45°, 90°, and 135°, across various 

distances. Finally, the co-occurrence matrix is computed by 

counting the occurrences of pixel pairs (𝑖, 𝑗) at the specified 

distance and direction. The resulting matrix is then normalized 

by dividing each value by the total number of pairs at that 

distance and direction. 

The GLCM can be utilized to derive several texture features, 

including contrast, energy, homogeneity, and entropy, which 

are computed as follows: 

• Contrast: Measures the intensity difference between 

neighboring pixels. It is defined as: 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑(𝑖 − 𝑗)2𝑃(𝑖, 𝑗)

𝑖,𝑗

 

(1) 

Where 𝑃(𝑖, 𝑗) is the normalized co-occurrence matrix. 

• Energy: Quantifies the uniformity of pixel values and 

is calculated as: 

𝐸𝑛𝑒𝑟𝑔𝑦 =  ∑ 𝑃(𝑖, 𝑗)2

𝑖,𝑗

 

(2) 

• Homogeneity: Reflects how close the distribution of 

pixel values is to the diagonal of the GLCM. It is 

defined as: 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  ∑
𝑃(𝑖, 𝑗)

(1 + |𝑖 − 𝑗|)
𝑖,𝑗

 

(3) 

• Entropy: Measures the randomness or 

unpredictability of the pixel intensity distribution. It 

is given by: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝑃(𝑖, 𝑗) log2(𝑃(𝑖, 𝑗))

𝑖,𝑗

 

(4) 

GLCM provides a straightforward yet effective means of 

extracting texture features from images and is widely applied 

in fields such as medical imaging, remote sensing, and 

computer vision. 

3.3 Shi-Tomasi Corner Detector 

Corner detection in images is often achieved using the Shi-

Tomasi method, a variant of the Harris corner detector. This 

method evaluates the eigenvalues of the image's second 

moment matrix to identify corners. The Shi-Tomasi corner 

detector calculates a numerical score for each pixel by 

analyzing the eigenvalues of a matrix 𝑀, which is computed 

as: 

Let 𝐼(𝑥, 𝑦) be the intensity of a pixel at location (𝑥, 𝑦) in the 

image. The corner detection method known as Shi-Tomasi 

calculates a numerical value for every pixel (𝑥, 𝑦) by 

analyzing the eigenvalues of the matrix 𝑀. This matrix is 

specifically defined as follows: 

𝑀 =  ∑ 𝑤(𝑥, 𝑦)[∇𝐼(𝑥, 𝑦)∇𝐼(𝑥, 𝑦)𝑇] 

(5) 

Where ∇𝐼(𝑥, 𝑦) is the gradient of the image at (𝑥, 𝑦) and 

𝑤(𝑥, 𝑦) is a window function that assigns weights to pixels in 

the neighborhood of (𝑥, 𝑦). 

The eigenvalues of the matrix 𝑀 are given by: 

𝜆1, 𝜆2 =
1

2
[𝑡𝑟𝑎𝑐𝑒(𝑀) ± √(𝑡𝑟𝑎𝑐𝑒(𝑀)2 −  4 ∗ 𝑑𝑒𝑡(𝑀))] 

(6) 

Where 𝑡𝑟𝑎𝑐𝑒(𝑀) = 𝜆1 + 𝜆2 is the sum of the eigenvalues and 

𝑑𝑒𝑡(𝑀) = 𝜆1𝜆2 is the determinant of the matrix. 

The Shi-Tomasi corner detector computes a score for each 

pixel (𝑥, 𝑦) based on the smaller of the two eigenvalues: 

ℝ = min(𝜆1, 𝜆2) 

(7) 

This score helps in identifying the strong corner points in the 

image. 

IV. PROPOSED METHODOLOGY 

4.1 Image Pre-Processing 

Contrast Limited Adaptive Histogram Equalization (CLAHE) 

is a sophisticated image processing technique designed to 

improve the contrast of an image. It serves as an enhancement 

over the conventional Histogram Equalization method. 
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The primary principle of Histogram Equalization involves 

redistributing pixel intensities across an image to achieve a 

more uniform intensity distribution, thereby enhancing the 

overall contrast. However, this method can sometimes lead to 

drawbacks, such as the amplification of noise and the loss of 

important details within the image. 

CLAHE addresses these limitations by applying contrast 

enhancement in a localized manner. It accomplishes this by 

segmenting the image into smaller regions known as tiles, 

performing histogram equalization on each tile independently. 

By doing so, CLAHE limits the contrast enhancement to local 

areas, which helps maintain the details in the image. 

 

 
Figure 1: Flow diagram of proposed methodology 
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Furthermore, CLAHE introduces a parameter to limit the 

amount of contrast enhancement applied to each tile. This 

parameter ensures that the enhancement remains controlled, 

preventing excessive contrast adjustments that could lead to 

noise amplification. 

In summary, CLAHE is an effective technique for improving 

image contrast, especially in cases where traditional histogram 

equalization does not yield satisfactory results. Its applications 

are widespread, including medical imaging, satellite imagery, 

and other domains where contrast enhancement is crucial. 

 

4.2 Feature Extraction 

Texture features represent specific characteristics of an image 

or signal that convey its visual texture. These features are 

typically obtained through various mathematical methods, 

including filtering and statistical analysis techniques. 

Local features are used in computer vision and image 

processing to represent specific regions of an image that are 

distinct from their surroundings. They are often used for tasks 

such as object recognition, image matching, and tracking. 

Local features are typically identified through a process called 

feature detection, which involves searching for patterns in the 

image that meet certain criteria, such as having high contrast 

or being locally unique. Once detected, these features are often 

described using feature descriptors, which provide a 

quantitative representation of the feature's properties, such as 

its location, orientation, and scale. 

Local features include blobs, which are regions of an image 

that have a roughly circular shape and a uniform intensity; 

corners, which are points where the image gradient changes 

sharply in two or more directions; and edge pixels, which are 

points along the boundary between regions of differing 

intensity or texture. 

Local features are important because they provide a way to 

represent complex visual patterns in a way that is both 

computationally efficient and robust to changes in image 

conditions, such as variations in lighting or viewpoint 

4.2.1 Maximally Stable Extremal Regions (MSER) 

MSER is a method for feature extraction in images that can be 

used for various applications including object recognition, 

detection, and tracking. In the context of weed image feature 

extraction, MSER can be used to extract distinctive features that 

can be used to distinguish between weeds and crops. 

MSER works by detecting regions of the image that are stable 

with respect to intensity changes. These regions are called 

extremal regions, and they correspond to connected components 

of the level sets of the image. An extremal region is a region of 

the image that has the property that it remains connected for all 

threshold values of the image intensity. 

The MSER algorithm starts by computing the intensity gradient 

of the image. The extremal regions are then obtained by 

thresholding the gradient at different levels and extracting 

connected components of the resulting binary image. The 

threshold level is increased gradually from 0 to 255, and at each 

level, the extremal regions are extracted and added to a list of 

candidate regions. 

The final set of regions is obtained by selecting the regions that 

are stable over a range of threshold levels. The stability is 

measured by the relative size of the region at different threshold 

levels. The regions that remain relatively stable over a range of 

threshold levels are considered to be maximally stable. 

The MSER algorithm can be expressed mathematically as 

follows: 

1. Compute the intensity gradient of the image: 

𝐺(𝑥, 𝑦) = √(𝐼𝑥
2(𝑥, 𝑦) + 𝐼𝑦

2(𝑥, 𝑦) 

(8) 

Where 𝐼𝑥 and 𝐼𝑦 are the first-order derivatives of the image 

intensity with respect to 𝑥 and 𝑦, respectively. 

2. Threshold the gradient at different levels to obtain a 

binary image: 

𝐵(𝑥, 𝑦, 𝑡) = {
1 𝑖𝑓 𝐺(𝑥, 𝑦) ≥ 𝑡
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(9) 

Where 𝑡 is the threshold level. 

3. Extract connected components of the binary image to 

obtain candidate extremal regions. 

4. Compute the relative size of each candidate extremal 

region at different threshold levels: 

𝑟(𝐵, 𝑖, 𝑗) = |
𝐵(𝑖, 𝑗, 𝑡)

𝐵(𝑖, 𝑗, 𝑡 − 1)
| 

(10)  

Where 𝑖 and 𝑗 are the coordinates of the pixel, 𝑡 is the current 

threshold level, and 𝑡 − 1 is the previous threshold level. 

5. Select the regions that are maximally stable over a range 

of threshold levels: 

𝑀(𝐵)

= { 𝑅 |𝑅 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝐵 𝑎𝑛𝑑 𝑟(𝐵, 𝑖, 𝑗)

≤ 𝑐 ∀ 𝑡 } 

(11) 

Where 𝑐 is a constant that controls the stability threshold, and 𝑅 

is a maximally stable extremal region. 

In the context of weed image feature extraction, the MSER 

algorithm can be used to extract distinctive regions that 

correspond to the leaves or other parts of the weed. These 
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regions can then be used to distinguish between weeds and crops 

in the image. The MSER algorithm has been shown to be 

effective for weed detection in various crop fields, and it has the 

advantage of being computationally efficient and robust to 

variations in lighting and image noise. 

4.2.2 Shi-Tomasi Corner Detector 

The score ℝ measures the corner response at the pixel (𝑥, 𝑦) and 

is used to determine whether the pixel is a corner or not. A high 

score indicates that the pixel is a corner, while a low score 

indicates that the pixel is not a corner. 

To extract features from an image using the Shi-Tomasi corner 

detector, the following steps can be performed: 

1. Compute the gradient of the image using a derivative 

filter. 

2. Compute the matrix 𝑀 for each pixel using the gradient 

information and a window function. 

3. Compute the eigenvalues of the matrix 𝑀 for each 

pixel. 

4. Compute the corner response ℝ for each pixel based on 

the eigenvalues. 

5. Apply a threshold to the corner response to determine 

which pixels are corners. 

6. Extract the corner locations and use them as features for 

further processing. 

In the context of weed image feature extraction using the Shi-

Tomasi corner detector, the extracted corner features can be 

utilized to identify and classify several types of weeds 

established on their unique corner structures. The corner features 

can also be used for object detection and tracking, as well as for 

image registration and stitching in applications such as precision 

agriculture. 

4.3 Feature Selection 

Neighborhood Component Analysis (NCA) is a distance-based 

feature selection algorithm that can be applied to weed images 

to select the most informative features for classification tasks. 

The goal of NCA is to learn a linear transformation of the input 

features that maximizes the classification accuracy on a training 

set. The transformation is learned in such a way that the features 

that are most relevant for the weed classification task are 

emphasized, while the irrelevant features are suppressed. 

The mathematical formulation for NCA for feature selection for 

weed images is as follows: 

Let 𝑋 be an 𝑛 × 𝑑 matrix of input features, where n is the 

number of weed images and d is the number of features. 

Let 𝑦 be an 𝑛 × 1 vector of class labels, where each 𝑦𝑖  is an 

integer indicating the class of the 𝑖𝑡ℎ weed image. 

Let 𝑤 be a 𝑑 × 𝑘 matrix of weights, where 𝑘 is the desired 

number of selected features. 

The objective of NCA is to maximize the leave-one-out 

classification accuracy on the training set, which is defined as: 

𝐽(𝑤) = ∑ 𝑝𝑖(𝑦𝑖|𝑥𝑖, 𝑋\𝑖, 𝑤)

𝑖

 

(12) 

Where 𝑝𝑖(𝑦𝑖|𝑥𝑖, 𝑋\𝑖, 𝑤) is the probability that the 𝑖𝑡ℎ weed 

image is correctly classified when the 𝑖𝑡ℎ feature is removed 

from 𝑋, and 𝑋\𝑖 is the matrix 𝑋 with the 𝑖𝑡ℎ row removed. The 

probability 𝑝𝑖(𝑦𝑖|𝑥𝑖, 𝑋\𝑖, 𝑤) is computed using the softmax 

function: 

𝑝𝑖(𝑦𝑖|𝑥𝑖, 𝑋\𝑖, 𝑤) =
𝑒𝑥𝑝(𝑤𝑖

𝑇𝑥𝑖)

𝑥𝑝(𝑤𝑗
𝑇𝑥𝑖)

 

(13) 

where 𝑤𝑖 is the 𝑖𝑡ℎ column of the matrix 𝑤, and 𝑥𝑖 is the 𝑖𝑡ℎ row 

of the matrix 𝑋. 

The input features for weed images can include color, texture, 

shape, and other characteristics. The exact features used will 

depend on the specific classification task and the available data. 

For example, color features can be extracted using color 

histograms, texture features can be extracted using Gabor filters 

or local binary patterns, and shape features can be extracted 

using morphological operations or geometric descriptors. 

The optimization problem can be solved using gradient descent 

or other optimization methods. The derivative of the objective 

function in relation to the weights 𝑤 can be expressed as: 

𝛻𝑤𝐽(𝑤) =  ∑ 𝑝𝑖(𝑦𝑖 |𝑥𝑖, 𝑋\𝑖, 𝑤)

𝑖

− ∑ 𝑝𝑖(𝑦𝑖|𝑥𝑖, 𝑋\𝑖, 𝑤)𝑝𝑗(𝑦𝑗|𝑥𝑗, 𝑋

𝑗

\𝑖, 𝑤))𝑥𝑖𝑥𝑖
𝑇𝑤 

(14) 

The weight matrix 𝑤 is updated iteratively by taking small steps 

in the direction of the negative gradient, until convergence is 

reached. 

Finally, the 𝑘 features that have the highest absolute weights in 

the learned weight matrix 𝑤 are selected as the most informative 

features for the weed classification task. These features can then 

be used as inputs to a classification algorithm to classify new 

weed images. 

4.4 Classification 

The machine learning algorithm called Random Forest is 

commonly used for carrying out classification and regression 

tasks. It functions by constructing numerous decision trees 

during the training phase and then provides the class that 

represents the modal value of the classes (in the case of 

classification) or the mean prediction (in the case of regression) 

of the individual trees. Metaheuristics optimization algorithms 
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such as PSO and GSA are utilized to discover the optimal 

solution for a specified problem. 

To optimize the accuracy of a Random Forest model using PSO-

GSA optimization, the following procedures can be undertaken: 

1. Define the objective function: The objective function is 

the measure utilized to assess the performance of the 

Random Forest model. In this instance, classification 

accuracy is utilized as the objective function. 

2. Define the search space: The search space pertains to the 

range of values explored by the PSO-GSA algorithm to 

determine the optimal solution. In the case of a Random 

Forest model, the search space includes the number of 

trees, the depth of each tree, and the number of features 

used for each split. 

3. Initialize the PSO-GSA algorithm: The PSO-GSA 

algorithm necessitates initializing the population size, the 

maximum number of iterations, and the initial positions 

of the particles. 

4. Evaluate the fitness of the particles: The fitness of each 

particle is assessed by training a Random Forest model 

utilizing the particle's position within the search space 

and determining its accuracy using the objective 

function. 

5. Update the position of the particles: The position of each 

particle is updated using the PSO-GSA algorithm, which 

considers the particle's best position, the swarm's best 

position, and the current position of the particle. 

6. Repeat steps 4 and 5 until convergence: The PSO-GSA 

algorithm is repeated until either the maximum number 

of iterations is attained or a satisfactory accuracy is 

achieved. 

The PSO-GSA algorithm is a hybrid swarm algorithm that 

combines the advantages of two existing swarm algorithms: 

PSO and GSA. The hybridization is achieved by using a low-

level co-evolutionary heterogeneous hybrid, in which the two 

algorithms work together in parallel. 

The main objective of the PSO-GSA algorithm is to add the 

social thinking ability (𝑔𝑏𝑒𝑠𝑡) of PSO to the local search ability 

of GSA. This is accomplished through the following equation: 

𝑋(𝑖, 𝑗) = 𝑋(𝑖, 𝑗) + 𝑉(𝑖, 𝑗) 

(15) 

Where 𝑋(𝑖, 𝑗) is the 𝑗𝑡ℎ dimension of the position vector of 

particle 𝑖, and 𝑉(𝑖, 𝑗) is the 𝑗𝑡ℎ dimension of the velocity vector 

of particle 𝑖. The velocity of each particle is updated using the 

following equation: 

𝑉(𝑖, 𝑗) ∗ 𝑤𝑉(𝑖, 𝑗) + 𝑐1𝑟1 ∗ (𝑝𝑏𝑒𝑠𝑡(𝑖, 𝑗) − 𝑋(𝑖, 𝑗))

+ 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡(𝑗) − 𝑋(𝑖, 𝑗)) + 𝑎 ∗ 𝐺(𝑗) 

(16) 

Where 𝑤 is the inertia weight, 𝑐1 and 𝑐2 are the cognitive and 

social acceleration coefficients, respectively. 𝑟1 and 𝑟2 are 

random numbers between 0 and 1. 𝑝𝑏𝑒𝑠𝑡(𝑖, 𝑗) is the best 

position of particle i up to the current iteration in the 𝑗𝑡ℎ 

dimension, and 𝑔𝑏𝑒𝑠𝑡(𝑗) is the best position of all particles up 

to the current iteration in the 𝑗𝑡ℎ dimension. 𝐺(𝑗) is the 

gravitational force in the 𝑗𝑡ℎ dimension, which is calculated 

using the following equation: 

𝐺(𝑗) = ∑ 𝐺(𝑖, 𝑗) 

(17) 

Where 𝐺(𝑖, 𝑗) is the gravitational force between particle 𝑖 and 

the other particles in the 𝑗𝑡ℎ dimension. The PSO-GSA 

algorithm uses the gravitational constant (𝐺) to regulate the 

search behavior of the particles. The value of 𝐺 is adjusted 

dynamically during the search process using the following 

equation: 

𝐺 = 𝐺0𝑒−𝑎𝑡 

(18) 

Where 𝐺0 is the initial gravitational constant, 𝑡 is the current 

iteration, and 𝑎 is a constant parameter that controls the rate of 

decay of 𝐺. 

In summary, the PSO-GSA algorithm combines the social 

thinking ability of PSO with the local search ability of GSA to 

improve the convergence rate and search accuracy of the 

algorithm. The algorithm has been applied to various 

optimization problems and has shown promising results. 

Once the PSO-GSA optimization is complete, you can use the 

hyperparameters of the global best solution to train a random 

forest classifier on your data set and make predictions on new 

data. 

 

V. SIMULATION AND RESULTS 

5.1 K-Fold Forward Cross-Validation (K-Fold FCV) 

This approach improves on the classic k-fold cross-validation 

for assessing model prediction capacity. Rather of splitting the 

dataset at random, all samples are first organised based on the 

material's property beliefs and then uniformly dispersed into k 

subsets. 

The entire procedure is as follows: 

1. Categorize all samples in ascending or descending 

order according to their property values. 

2. Separate the categorized samples into k equal subsets 

labelled 𝑆1, 𝑆2, . . . , 𝑆𝑘 . 

3. Designate 𝑆2 as the validation set and 𝑆1 as the 

training set, beginning with the second subset 𝑆2. Train 

a model on 𝑆1 and then test it on 𝑆2. 
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4. For the following cycle, make 𝑆3 the validation set and 

all subsets before 𝑆3 the training set. Train a model on 

𝑆1 and 𝑆2 and then test it on 𝑆3. 

5. Step 4 should be repeated until all 𝑆2 through 𝑆𝑘  have 

been evaluated. Calculate the total performance of all 

models. The option to rank the samples ascending or 

descending is based on whether the model is predicted 

to extrapolate higher or lower. 

When 𝑘 is relatively big, the initial size of the training set may 

be insufficient. A minimum size for the training data might be 

defined to minimise distortions induced by this problem. 

 

  
Fig.2. k-fold forward cross validation 

 

5.2 Evaluation Parameters 

Table 1. Evaluation parameters 

TP (True 

Positive) 

“Indicated the weed with that were classified 

as correctly classified” 

TN (True 

Negative) 

“Indicated the weed with that were classified 

as not classified correctly” 

FP (False 

Positive) 

“Indicated the weed with that were classified 

as incorrectly classified” 

FN (False 

Negative) 

“Indicated the weed with that were classified 

as not classified incorrectly” 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

           (19) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

         (20) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 (21) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

 (22) 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(23) 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

 (24) 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

  (25) 

𝑀𝑎𝑡𝑡ℎ𝑒𝑤𝑠 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑀𝐶𝐶)

=
(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑁)(𝑇𝑃 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)
 

 (26) 

𝐾𝑎𝑝𝑝𝑎 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠

=
2(𝑇𝑃 × 𝑇𝑁 − 𝐹𝑁 × 𝐹𝑃)

(𝑇𝑃 + 𝐹𝑃) × (𝐹𝑃 + 𝑇𝑁) + (𝑇𝑁 + 𝐹𝑁) × (𝐹𝑁 + 𝑇𝑁)
 

(27) 

  

1 2 3 4 5 … k-1 k 1st Iteration 

Training Validation 

  

1 2 3 4 5 … k-1 k 2nd Iteration 

Training Validation 

  

1 2 3 4 5 … k-1 k 3rd Iteration 

          Training Validation 

  

1 2 3 4 5 … k-1 k 
(k-1)th 

Iteration 

Training Validation 

……... 
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5.3 Results 

 

 
Fig. 3. Input image 

 
Fig. 4. HSV color space conversion 

 
Fig. 5. Saturation enhanced HSV 

 
Fig. 6. Enhanced RGB image 

 
Fig. 7. LAB color space conversion 

 
Fig. 8. Binary mask extracted from LAB image 

 
Fig. 9. Binary mask after noise removal 

 
Fig. 10. Manually labelled image 
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Fig. 11. Input image 

 
Fig. 12. HSV color space conversion 

 
Fig. 13. Saturation enhanced HSV 

 
Fig. 14. Enhanced RGB image 

 
Fig. 15. LAB color space conversion 

 
Fig. 16. Binary mask extracted from LAB image 

 
Fig. 17. Binary mask after noise removal 

 
Fig. 18. Manually labelled image 

 
Fig. 19. Box plot comparison of extracted features 
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Fig. 20. Execution time of the proposed and random forest 

classifier on various features in seconds 

 
Fig. 21. Accuracy comparison with various classifiers on 

features learned on classifiers 

 

Table 2. Average feature computation time for an image 

Features 
Number of 

features 
Time (secs) 

Hybrid Features after 

NCA 

1000 
0.9287 

GLCM 16 0.2200 

MSER 60 0.4700 

Shi-Tomasi 40 0.2627 

 

 
Fig. 22. ROC curves in different features 

 

Table 3. Comparative analysis of classification result with 

various parameters 

Parameters GLCM Si- 

Tomasi 

MSER Hybrid 

Accuracy 0.9091 0.9360 0.9375 0.9507 

Error 0.0909 0.0640 0.0625 0.0493 

Sensitivity 0.9600 0.9592 0.9500 0.9664 

Specificity 0.9800 0.9143 0.9857 0.9355 

Precision 0.9000 0.9126 0.9333 0.9351 

False Positive Rate 0.0200 0.0857 0.0143 0.0645 

F1-Score 0.9111 0.9353 0.9314 0.9505 

Matthews 

Correlation 

Coefficient 

0.8998 0.8730 0.9238 0.9018 

Kappa 0.7159 0.8720 0.8047 0.9013 

 

VI. CONCLUSION 

The image classification system developed for 

distinguishing between crops and weeds employs a blend of 

hybrid features along with feature selection through 

neighborhood component analysis. Utilizing hybrid features 

enables a more comprehensive representation of the data, 

while neighborhood component analysis effectively 

identifies the most pertinent features for accurate 

classification. 

The system leverages a random forest classifier optimized 

by the PSO-GSA algorithm to train and categorize the 

images. This approach enhances classification accuracy by 

integrating the gravitational search algorithm (GSA) with 

particle swarm optimization (PSO) to refine the random 

forest model. 

In summary, the proposed methodology presents a robust 

solution for accurately classifying images of crops and 

weeds. The combination of hybrid features and 

neighborhood component analysis ensures the utilization of 

the most significant information for classification, while the 

PSO-GSA-optimized random forest classifier provides a 

strong and efficient framework for data training and 

classification. 

It is important to highlight that the system's accuracy could 

be affected by the quality of the input images and the 

specific environmental conditions of the crops and weeds. 

Therefore, additional testing and assessment of the system in 

various settings will be essential to validate its effectiveness 

in practical applications. 
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