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Abstract 

The goal of this work is to provide a mathematical model for the study of temperature and velocity partial differential equations 

with convective boundary conditions. The nonlinear partial differential equation that governs is solved using the Homotopy 

Analysis Method. Plotting temperature and velocity on a graph allows one to examine the behaviors of the various factors. We 

analyze and provide in tabular form the impact of skin friction and the local Nusselt number on different parameters.  
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Introduction 

In many industrial and real-world situations, there exist 

flows that are triggered not only by variations in temperature 

but also by variations in concentration. These variations in 

mass transfer have an impact on the pace of heat 

transmission. Numerous industrial transport procedures 

include the transmission of mass and heat. In many chemical 

processing sectors, including the food and polymer 

industries, heat and mass transfer are typical occurrences. 

Free convection fluxes are of relevance to many industrial 

applications, including granular and fiber insulation, 

geothermal systems, and so on [1]. 

The effects of radiation heat on a number of fluid flow 

models were investigated by Ibrahim et al. [2] and Aliakbar 

et al. [3]. For many technical uses, convective heat transfer 

in nanofluid flow is essential. Das [4] examined the flow 

and heat transfer of a Cu-water nanofluid in a mixed 

convection stagnation point in the direction of a diminishing 

sheet. Chaudhary and Merkin [5] examined homogeneous-

heterogeneous responses in boundary layer flow. Around the 

two-dimensional stagnation point flow, Khan and Pop [6] 

studied the flow effects on an infinite permeable wall with 

homogeneous-heterogeneous responses. The continuous 

MHD boundary layer flow of electrically conducting Casson 

fluid past an increasingly decreasing shrinking sheet was 

studied by Mahanta [7]. 

Mukhopadhyay [8] talked on the impact of heat transfer past 

a stretched surface and slip-on unstable mixed convective 

flow. Heat and mass transmission in a vertical plate of 

laminar free convection boundary-layer flow were studied 

simultaneously by Lin and Wu [9]. Bhattacharya et al. [10] 

looked at the analytical solutions for the heat transfer 

towards the decreasing sheet and the boundary layer 

stagnation point flow. The magnetohydrodynamic flow of a 

viscous incompressible fluid caused by surface deformation 

was studied by Pavlov [11].  

Wang [12] investigated the three-dimensional flow 

produced by a stretched flat surface. Cross-mass transfer 

phenomena in a lower stretched wall channel were studied 

by Mehmood and Ali [13]. [14] looked at the mass transfer 

mechanisms in a channel flow across a stretched surface. 

In this study, the homotopy analysis technique (HAM) is 

utilized to derive an analytical equation for the temperature 

profile and concentration velocity. In addition, the local 

Nusselt number and the Skin Friction analytical solution are 

investigated. The HAM's auxiliary parameter h causes the 

analytical solution to converge. It illustrates the behavior of 

each parameter. 

Mathematical Formulation  

Think about the three-dimensional (3D) incompressible flow 

across a stretched sheet. While fluid is introduced into the z-

axis, the sheet is stretched in the xy-plane. 
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Fig.1. Physical model and coordinate systems [7].  

The following is an introduction to the dimensionless 

variables for the concentrations in the equations that link the 

nonlinear differential equations to the dynamic 

circumstances [7]: 

(1 +
1

𝛽
)  𝐹′′′ − (𝐹′)2 − (𝐹 + 𝑐 𝐺)𝐹′′ − (𝑀2 + 𝜆)𝐹′ = 0(1) 

(1 +
1

𝛽
)  𝐺′′′ − (𝐺′)2 − (𝐹 + 𝑐 𝐺)𝐺′′ − (𝑀2 + 𝜆)𝐺′ = 0 (2) 

(1 + 𝑅) 𝜙′′ + 𝑃𝑟(𝐹 + 𝑐 𝐺)𝜙′ = 0  (3) 

where 𝑀2  is the magnetic parameter, 𝑃𝑟  is the Prandtl 

number, 𝜆  is the porosity parameter, 𝑅 is the radiation 

parameter, Biot number (𝐵𝑖)and stretching parameter (c). 

The following boundary conditions are 

 𝜂 = 0 ∶   𝐹(0) = 0, 𝐺(0) = 0, 𝐹′(0) = 1, 𝐺′(0) =

𝑐, 𝜙′(0) = −𝐵𝑖(1 − 𝜙(0))(4) 

𝜂 =  ∞ ∶   𝐹′(∞) = 0, 𝐺′(∞) = 0, 𝜙(∞) = 0    (5) 

1. Homotopy Analysis Method: Analytical Solutions for 

the Velocities and Temperature 

A semi-analytical method for resolving nonlinear issues is 

homotopy analysis. This method was originally proposed by 

Liao [15]. Unlike other analytical approaches, this method is 

independent of small/large physical characteristics. A 

straightforward technique for guaranteeing solution series 

convergence in a limited number of iterations is the 

Homotopy Analysis Method. The following approximate 

analytical formulations were produced by applying the 

Homotopy Analysis Method to solve the nonlinear equations 

(2) through (6): 

𝐹(𝜂) =
1

√𝑠
( 1 − 𝑒−√𝑠 𝜂) +

ℎ(𝑐2 + 2)

6𝑠√𝑠
[ 𝑒−2√𝑠 𝜂 − 2𝑒−√𝑠 𝜂 + 1 ] 

+
5𝑘(ℎ − ℎ2)(𝑀2𝑐2 + 2𝑀2 + 𝜆𝑐2 + 2ℎ) − ℎ2𝑘𝑐2(10 − 3𝑐2) − 3ℎ(1 + 𝑐2)(𝑚2 + 𝜆)

18𝑠2√𝑠
 

[ 1 − 2𝑒−√𝑠 𝜂 + 𝑒−2√𝑠 𝜂]   +

 𝑀 
(𝑐2+2)[4(ℎ−ℎ2)(𝑚2+𝜆)−2ℎ2(1+𝑐2)]

6𝑠2   +
ℎ2(𝑐2+2)(𝑐2+3)

36𝑠2√𝑠
 [2 −

3𝑒−√𝑠 𝜂 + 𝑒−3√𝑠 𝜂] 6) 

𝐺(𝜂) =
𝑐

√𝑠
( 1 − 𝑒−√𝑠 𝜂)

ℎ(𝑐3 + 2𝑐)

6𝑠√𝑠
[ 𝑒−2√𝑠 𝜂 − 2𝑒−√𝑠 𝜂

+ 1 ] 

   +
5𝑘(ℎ − ℎ2)(𝑀2𝑐3 + 2𝑀2𝑐 + 𝜆𝑐3 + 2ℎ𝑐) − ℎ2𝑘𝑐3(10 − 3𝑐2) − 3ℎ(𝑐 + 𝑐3)(𝑚2 + 𝜆)

18𝑠2√𝑠
 

[ 1 − 2𝑒−√𝑠 𝜂 + 𝑒−2√𝑠 𝜂]

+  𝑀 
(𝑐3 + 2𝑐)[4(ℎ − ℎ2)(𝑚2 + 𝜆) − 2ℎ2(1 + 𝑐2)]

6𝑠2
 

+
ℎ2𝑐 (𝑐3+2𝑐)(𝑐2+3)

36𝑠2√𝑠
 [2 − 3𝑒−√𝑠 𝜂 + 𝑒−3√𝑠 𝜂]  (7) 

𝜙(𝜂) =
𝐵𝑖(1+𝑅)

𝐺+𝐵𝑖(1+𝑅)
𝑒−(

𝐺

1+𝑅  
)𝜂     (8) 

where 𝑠 =
𝑀2+𝜆

𝑘
, 𝑘 = 1 +

1

𝛽
, 𝐺 =

𝑃𝑟( 1+𝑐2)

√𝑠
+

ℎ(𝑐2+2)(1+𝑐)

6𝑠√𝑠
 , 𝑀 

𝑒−√𝑠 𝜂−1

√𝑠
+ 𝑥𝑒−√𝑠 𝜂 

The dimensionless local Nusselt number and skin friction 

are as follows for analytical        expressions [7]: 

𝑅𝑒𝑥
1/2

𝐶𝑓𝑥 = (1 +
1

𝛽
) 𝐹′′(0)    (9) 

𝑅𝑒𝑥
1/2

𝐶𝑓𝑦 = (1 +
1

𝛽
) 𝐹′′(0)     (10) 

where𝐶𝑓𝑥 =
𝜏𝑤𝑥

𝜌𝑢𝑤
2  ,     𝐶𝑓𝑦 =

𝜏𝑤𝑦

𝜌𝑢𝑤
2  

𝐶𝑓is the skin friction, 𝐶𝑓𝑥and 𝐶𝑓𝑦are skin friction along the 

𝑥- and 𝑦-directions𝜏𝑤𝑥 and 𝜏𝑤𝑦   are defined.  

𝑅𝑒𝑥
− 1/2 

 𝑁𝑢 = − 𝜙(0)    (11) 

where 𝑅𝑒𝑥 = 𝑢𝑥(𝑥) 𝑥/𝑣 is defined. 

1. Result and Discussion 

Equations (1) through (5) show how velocities and 

temperature are expressed analytically. This article has 

examined the temperature and velocity profiles for a range 

of physical parameter values, including M, \lambda, \beta, 

B_i, P_r, R, and C. The acquired analytical findings for 

different parameter values are shown in Figs. 2 through 10. 

It is in good agreement with both the numerical result [7] 

and the previous result.  

Figures 2 through 4 show the fluid velocity for different 

parameter values. Fig. 2 illustrates how the velocity 

F^\prime(\eta) loses effect when the casson parameter 

increases. Figure 3 illustrates how the velocity drops as the 

parameter is raised. Fig. 4 shows the effects of parameters 

M and C on the velocity profiles. As M and C grow, the 

fluid velocity F^\prime(\eta) falls, as seen in the graph.  

Analyze the velocity profile for different values of the 

parameters lambda and beta in Figures 5 and 6. It is noted 

http://www.ijritcc.org/
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that the velocity profile G^\prime(\eta) improves when the 

parameters \lambda and \beta are decreased. Fig. 7 

illustrates how M and C affect the velocity profiles. It is 

observed that M grows as the fluid's velocity G^\prime(\eta) 

decreases.  

It is clear that when parameter C grows, so does the velocity 

profile G^\prime(\eta). To investigate the impacts of P_r on 

temperature \phi(\eta), it is depicted in Fig. 8. It is evident 

that the parameter P_r lowers as temperature \phi(\eta) rises. 

Figure 9 displays the temperature profile \phi(\eta) as a 

function of the different values of the parameters B_i. This 

is because the temperature \phi(\eta) grows together with the 

parameter B_i. Figure 10 makes it clear that the temperature 

profile \phi(\eta) grows in step with the parameter R. 

 

 

Fig.2.Analytical expression of dimensionless concentration 

in velocity 𝐹′(𝜂)versus 𝜂 at various values of 𝛽 for fixed 

values of parameters 𝑀 = 2, 𝐶 = 0.5, 𝜆 = 0.5, ℎ = −0.1  

 

 

Fig.3.Analytical expression of dimensionless concentration 

in velocity𝐹′(𝜂)versus𝜂 at various values of 𝜆 for fixed 

values of parameters  𝑀 = 2, 𝐶 = 0.5, 𝛽 = 0.5, ℎ = −0.1 

 

Fig.4.Analytical expression of dimensionless concentration 

in velocity𝐹′(𝜂)versus𝜂 at various values of  𝑀 for fixed 

values of parameters  𝜆 = 0.5, 𝐶 = 0.5, 𝛽 = 0.5, ℎ = −0.1 

 

 

Fig.5.Analytical expression of dimensionless concentration 

in velocity𝐺′(𝜂) versus𝜂 at various values of 𝛽for fixed 

values of parameters  𝑀 = 2, 𝐶 = 0.5, 𝜆 = 0.5, ℎ = 0.1 

 

 

Fig.6.Analytical expression of dimensionless concentration 

in velocity𝐺′(𝜂)versus𝜂 at various values of 𝜆for fixed 

values of parameters  𝑀 = 2, 𝐶 = 0.5, 𝛽 = 0.5, ℎ = 0.1 

http://www.ijritcc.org/
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Fig.7.Analytical expression of dimensionless concentration 

in velocity𝐺′(𝜂)versus𝜂 at various values of  𝑀for fixed 

values of parameters  𝜆 = 0.5, 𝐶 = 0.5, 𝛽 = 0.5, ℎ = 0.1 

 

 

Fig.8.Analytical expression of dimensionless concentration 

in temperature 𝜙(𝜂)versus𝜂 at various values of  𝑃𝑟  for 

fixed values of parameters  𝑀 = 2, 𝜆 = 0.5, 𝐶 = 0.5, 𝑅 =

0.3, 𝐵𝑖 = 20, 𝛽 = 0.5, ℎ = 0.1 

 

 

Fig. 9. Analytical expression of dimensionless concentration 

in temperature 𝜙(𝜂)versus𝜂 at various values of 𝐵𝑖  for fixed 

values of parameters  𝑀 = 2, 𝜆 = 0.5, 𝐶 = 0.5, 𝑅 = 0.3, 𝛽 =

0.5, 𝑃𝑟 = 5, ℎ = 0.1 

 

Fig. 10.Analytical expression of dimensionless 

concentration in temperature 𝜙(𝜂)versus𝜂 at various values 

of  𝑅 for fixed values of parameters  𝑀 = 2, 𝜆 = 0.5, 𝐶 =

0.5, 𝐵𝑖 = 20, 𝛽 = 0.5, 𝑃𝑟 = 5, ℎ = 0.1 

 

2. Conclusion 

This work presents a mathematical model of concentration 

in a temperature and velocity profile, which has been 

applied to several Casson fluid characteristics. We also 

looked at how many different physical characteristics 

affected the model's forecast. Using the Homotopy Analysis 

Method, the system of nonlinear partial differential 

equations is solved. Furthermore, impacts for different 

values of emerging parameters are investigated for velocities 

F^\prime(\eta), G^\prime(\eta), and temperature \phi(\eta). 

Using the Prandtl number Pr and the Lewis number\Le\ 

results in the opposite temperature distribution and volume 

fraction. 
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