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Abstract: The ability of autonomous unmanned aerial vehicles, also known as UAVS, to do dangerous and monotonous tasks in lieu
of people has made them an integral part of contemporary aeronautical engineering. First and foremost, it is important to highlight
their widespread use in vital sectors such as disaster relief (e.g., transporting medical supplies to impacted areas, focusing on
legitimate targets during wartime, etc.), surveillance, and environmental monitoring. These sectors offer optimism for the future of
aviation, as unmanned aircraft are more efficient, effective, and secure than human pilots. However, there is still a significant gap
between the decision-making capabilities of green systems and UAVs, even if all present efforts are focused on making UAVS more
autonomous via the integration of flexible navigation algorithms. First, the existing techniques, which vary from traditional
pathfinding to optimizations based on biological principles, are inadequate when faced with real-world environments that need
rapid, efficient changes. Finding and closing the gap between the navigational skills of the human brain and those of Al algorithms
is the primary goal of this research. To achieve this goal, we introduce the Hippocampal Route Planner (HRP), a neurorobotics
design inspired by the navigational abilities of the mammalian hippocampus. UAVs are able to naturally sense their surroundings
and navigate in real time thanks to the HRP algorithm. In other words, UAVs equipped with the HRP algorithm may mimic the
mental maps seen in living things. We have tested our model in air supremacy, and it outperforms other models with less CPU
overhead and power consumption and more successful runs. What makes the HRP algorithm so impressive is its ability to learn and
make judgments over time; this is perhaps the most astounding feature of all of them. With scalability and efficiency in mind, there's
a better likelihood of widespread adoption across industries, which will boost airborne operations' safety and dependability.

Keywords: Autonomous UAVs, Neurorobotics, Hippocampal-Inspired Algorithms, Cognitive Mapping, Route Planning Algorithms,
Advanced Navigation Systems

1. INTRODUCTION safety, and the cost effectiveness factors, that, in turn, place
them in the spotlight as an innovative type of aircraft, not
manual. The forthcoming study in this area is designed to
support UAVs technological solutions that will possess the
ability of self-adapting dynamic intelligence in response to
ever changing environment conditions, and will be used for
mission objectives of complex nature. On the contrary the gap
between nowadays UAV capabilities and those of living
creatures which are hardwired for such complexity as
improvisation in diverse tasks with the highest degree of their
cognitive and navigational autonomy remains widening.

Introduction of UAVs has really marked off a dizzy era of
engineering, utilizing incredible technology to drive without
requirement of the human controls. These sophisticated
machines have been used to perform tasks incorrectly for
human beings [1]. For example, operation by machine could
be too dangerous or monotonous. Such operations can include
disaster response, surveillance monitoring, and general
environmental monitoring [2]. The convenience of self-
driving UAVs relies on reshaping operational efficiency,
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Fig. 1 Workflow of Autonomous Unmanned Aerial Vehicles

As the network map displayed in the Fig. 1 shows, the
harnessed autonomy level of UAVs used in a real time
surveillance and monitoring purposes becomes more
complex. The grounds of the system can be expanded to
achieve endless possibilities with complementary UAVs
which accompany with advanced cameras and sensors. They
are able to transmit real-time videos of their environment with
no lag that supports UAVs to perform their tasks without any
interruption. This live feed transfers in processing objects
detection algorithm, which need capabilities of detecting and
classifying various objects that are in the field of vision of
UAV. During this subsequent data analysis phase, we sift out
helpful information such as trends, patterns and actionable
intelligence that may aid in the targeting of policy
interventions and improved service delivery. At the same
time, location tracking receives the information of relevant
objects’ movements and visualizes them as the trajectory of
objects, providing the prediction of future location. At the end
of this process, there will come the stage where the
transmitted data are processed by the high-level systems
according to the innovated control decision and then through
high communication channels they are fed back to the central
Control Center. While this area of research has covered
numerous methodologies indeed, one can distinguish the
principal algorithmic calculus comprising of Dijkstra's and
A* algorithms on the one hand and, on the other hand,
incorporates the nature-inspired techniques such as Ant
Colony  optimizations and  Genetic  Algorithms
[3]. Consequently the application of above mentioned
techniques is a success in their field. But the constraints come
in the arena of real-world fight where the fast adaptation, data
synthesis, and saving of energy are important. In those aged
methods, the complex real time data assignment and
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integration will normally be a problem and may as well not
be the most appropriate when principle level thinking is
necessary and a quick decision has to be made. The approach
taken in our research is tackling these complex issues,
introducing a novel Robotics Neuron-Platform incorporating
human-like navigation, symbolized by the original
Hippocampal Route Planner (HRP). The HRP algorithm
draws on the nature of the mechanism present in the
mammalian hippocampus, which is responsible for assisting
in the building and utilization of dynamic cognitive maps for
instantaneous movement tracking and decision-making
coordination. Such, methodology entrusted the UAVs with
the ability to make sense, and respond accurately and
reflexive in a manner that is similar to the way biological
creatures operate. Advocated for infrastructure drastically
diminishes both computational burden and showed energy
conservation where at the same time success rates get higher.
It obviously exceeds efficiency of extant structures in the
fierce environment of simulations. Our research is distinctive
in the magnitude of the constraints in current UAV navigation
systems that our research is committed to superseding. Being
able to establish environment site learning as well to work out
autonomous and intelligent decisions on the fly is a sign that
robotics is ready for the next step in UAV autonomy. Our
system’s scalability and its operational efficacy leave little
doubt to its diverse scope of industrial applications, which is
devising the era of more severe, reliable, and autonomous
ways of airborne works. This research not only serves as a
valuable academic contribution but also bears significant
practical implications, potentially catalyzing a new epoch of
sophisticated UAV applications.
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2. LITERATURE SURVEY

An overview of the many cutting-edge algorithms and uses of
UAVs in a variety of industries, including agricultural,
autonomous systems, medical assistance, and more. A closer
examination of a few of them is presented here: Within a
UAV-empowered Mobile Fog Computing (MFC) system
tailored for Medical Internet of Things (10T) devices, Asim et
al. (2023) provide a new approach for optimizing simulated
annealing trajectories [4]. Efficient communication and
service delivery in medical contexts are presumably the goals
of this algorithm, which optimizes the trajectories of UAVS.
In their discussion of UAV control using propulsion madels
and acoustics, Kawamura et al. (2023) go into a hierarchical
blend of specialists. The use of acoustic signals for navigation
and control, in conjunction with expert systems for UAV
dynamics management, could lead to an increase in the
autonomy and accuracy of UAVs operating in complicated
situations [5]. In their 2023 study, Sanchez-Fernandez et al.
analyze how autonomous UAV systems might be used in
farming, with a focus on reducing drift in fruit orchards. In
order to reduce waste and environmental effect, they probably
investigate how UAVs [6] can precisely administer
treatments like fertilizers or insecticides. A multiple-UAV
architecture [7] for autonomous media creation is described
by Mademlis et al. (2023). This architecture might include a
number of UAVs cooperating to take pictures and videos
from different perspectives, which would improve the
efficiency and quality of media production. To identify
uncertain misleading targets with the help of autonomous
dual UAV systems, Salameh et al. (2023) use a federated
reinforcement learning strategy [8]. In military or security
contexts, this might imply that UAVs are taught to detect and
follow objects employing deceitful strategies via the use of
distributed learning algorithms.
Using destination-aware fan-shaped clustering, Dixit and
Singh (2023) [9] provide BMUDF, a bio-inspired model for
fault-aware UAV routing.

To improve routing efficiency and resilience, particularly in
the face of errors or failures, this approach seems to integrate
biological patterns into UAV flight pathways. The 3DVFH*
(3D Vector Field Histogram*) method is a local obstacle
avoidance system [10]. Thomessen et al. (2023) provide an
adaptation to the algorithm that changes altitude in a bio-
inspired way. This upgrade might improve UAVS' ability to
navigate in three-dimensional space by letting them
dynamically adjust their altitude in reaction to obstructions
[11]. Maraveas et al. (2023) use patterns and methods
discovered in nature to improve agricultural operations via
the use of UAVs [12]. They utilize bio and nature-inspired
algorithms in agricultural engineering. Path planning using
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UAYV swarms in obstacle situations is described by Puente-
Castro et al. (2024) as a method based on Q-Learning. A
swarm of UAVs may be guided across complicated settings
using this reinforcement learning method, which most likely
maximizes their aggregate navigational abilities. The
Rapidly-exploring Random Tree (RRT) technique, developed
by Kelner et al. (2024) and used to describe UAV swarm
flight trajectories [13], is a way to explore non-uniform
regions effectively by constructing a space-filling tree.
Situations where the outcome is uncertain and subject to
change are ideal for this method. An enhanced sand cat swarm
optimization for moving target search by UAV is created by
Niu et al. (2024). This system, which takes its cues from sand
cat hunting techniques, may help unmanned aerial vehicles
(UAVs) find moving or changing targets more quickly and
efficiently [14]. To describe the flight paths of UAV swarms,
Kelner et al. (2024) use the Rapidly-exploring Random Tree
(RRT) technique. Renowned for its fast search and navigation
capabilities, the RRT method [15] constructs a tree that
covers the search space at random. Because it enables rapid,
decentralized decision-making and adaptation to new or
changing situations, this may be very helpful for UAV
swarms.

In order to facilitate the joint search for lost tourists by
Human-UAV teams, Xu et al. (2024) [16] provide an iterative
greedy heuristic. It is quite probable that this method is
iterative, meaning it continuously improves the search
process by improving search patterns. A joint effort between
people and UAVs would allow the former to cover more
ground and the latter to make more nuanced decisions
depending on the circumstances. The loading, mission abort,
and rescue site selection procedures for UAVSs are the subject
of a combined optimization issue that Zhao et al. (2024)
devotes their attention to [17]. All three levels of UAV
mission  optimization—logistical, =~ operational,  and
emergency—are considered here. In times of crisis or rescue,
when quick judgments taking into account many goals are
required, this form of optimization is vital. For the purpose of
seeking moving targets with UAVS, Niu et al. (2024) provide
an enhanced sand cat swarm optimization method [18]. It is
quite probable that the sand cat swarm optimization method
takes its cues from the sand cat's renownedly effective and
secretive hunting style. This strategy has the potential to
enhance the UAV's real-time search pattern adaptation
capabilities, making it easier to find objects that are in motion.
By offering fresh perspectives on old challenges, all of the
surveys help advance UAV research. Natural process
inspiration drives the algorithms they cover, which aim to
improve UAV capabilities in areas like search efficiency,
trajectory planning, and difficult scenario decision-making.
The computational efficiency, efficacy in real-world
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situations, flexibility to dynamic environments, and capacity
to operate in collaborative settings with other UAVs or
human teams would likely be the criteria used to assess these
investigations. These algorithms aim to improve the
autonomy, reliability, and efficiency of unmanned aerial
vehicle (UAV) operations for various uses. In order to
improve UAV navigation, autonomy, fault tolerance, and job
execution, the algorithms used often take models from
biological systems. Metrics including computing cost,
efficiency, accuracy, fault tolerance, and real-world
application are usually used to compare these approaches.

3. METHODOLOGY

Among other things, UAVs are perfect for surveillance,
agriculture, and emergency management when these
applications are not purely military. Autonomy and Al-based
neurorobotics—the topic that involves unique combination of
neurology, robotics, and Al—should be considered as the
dominant techniques for UAVs operation. This research
comes with a new concept of neuro-robotic based UAV
navigation that instinctively responds like a pro-
organism. Emulating neural networks structure in a UAV
control system for autonomous operation makes robots act
like advanced ones in terms of the perception and the
framework of cognition. In this system the ‘real-time sensory
data collection architecture’ realizes environmental mapping
based on both high fidelity environmental data and detailed
obstacle detection. From here-on, the sophisticated neural
processing unit evaluates flight control, energy
managements, and reactive functions to environmental
inputs. Integration of Al into UAV operation makes possible
good performance of robotic rigs without human participation
in complex tasks, creating more compact and safe
environment in difficult situations.

Fig. 2. Enhanced UAV Autonomous Navigation
Simulation

The given Fig. 2 represents a subprocedure of autopilot
navigation simulation system of a UAV. Multiple layers of
detailing form a plane which is a ground for UAV depicted in
this cover. Brown regions reflect the contrast that is on the
high ground or complex terrain. Symbols indicating wind
speed and direction based on arrow shapes. Vector field-in
this sense, represents those and other physical factors that the
UAV should take account while in the air. In an HTML
world, they would be classified as users, transparent as "red
lines with points". UAVs have to recognize these objects in
real-time and prevent collisions with them. So, they use
sensors, LIDAR, cams etc. That beautiful blue line plotting
the UAV’s flight route, however, has taken into account
topography, wind and obstacle circumstances. The same
establishes using neurorobotics algorithms, the UAV does on-
the-fly route optimization. The aircraft lifts off the black dot
and shoots towards the black "X". Neurorobotics systems,
especially for UAVs, can deal with unpredictable and
dynamic environments, thanks to their ability to process and
synthesise diversity in the input data. The Fig. 3 explains that
the UAV's state variables, namely altitude speed, and battery
level, fluctuate with the dynamics of the environment over
time.
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a) Integration with Hippocampal-Inspired Cognitive
Mapping:

The composition of the spatial awareness in the UAVs
vehicles is basically done by means of cognitive mapping, a
characteristic of animal hippocampus, which gives the ability
to create the spatial navigation and the memory
formation. This  research  utilizes  hippocampal-like
algorithms in a method that involves the creation of cognitive
dynamic maps, which can have UAVS, through novel ways
of understanding and interacting with environmental
information, never-before  achieved capabilities. The
algorithms are built to mimic the hippocampal structure, and
the generated spatial representation is created from the input
sensor data with its creation an illusion of the environment as
the coherent space. Cognitive maps are not static that is why
they evolve with every new information, letting us know that
the newer knowledge is updated and theoretical path is
corrected. It is essential for these systems to be able to gather
and process real-time data when working in dynamic or the
GPS-denied environments where pre-existing maps are not
correct now. The hippocampal-inspired models are fed on
huge datasets of environmental interactions and machine
learning methods to ensure that UAVs are able to understand
their surroundings better akin to brain; which is again as good
as natural intelligence.

The quest for creating spatial awareness in UAVS culminates
with the application of cognitive mapping which is an oxygen
molecules field created by mammals due to the great
contribution of the hippocampal formation. The similarity
between setting up a coordinate system and finding directions
in a new place leads to the need for a mental map of
navigation, spatial information processing and memory
consolidation. We apply the best practices of hippocampus-
styled algorithms to design cognitive maps that have the
ability to respond to external stimuli by using changeable
interpretations and actions towards the current
environments. The ‘computational hippocampal model' is at
the core of our approach and comprises a set of algorithms
that simulate a natural hippocampus' function. We have the
following key components in our models: The second one is
the Spatial Temporal Cells Simulation that demonstrates the
memorization of a sequence of events (episodes) or
movement (trajectories) from the brain. This model is
mimicking cell N; by the help of artificial neuron system. It
should be noted that each artificial cell has a particular spatial
coordinate. The activation of a neuron Nj is determined by the
UAV's proximity to the location the neuron represents,
following a Gaussian function as shown in Eqgn. 1.

Al-(x, y) — e—202(x—xi)"2+(y—yi)“2

o))
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in which (coordinate x,y) are the current position of the UAV,
(xi,yi) represent space associated with nerves N; and
parameter ¢ governs the influence of a place cells. Grid Cell
Mechanism provides a picture for navigation as hexagoins
generating a grid. This square integration, which they called
tessellation, gives more flexibility and the possibility to
produce a more precise contour. The model of a UAV
network includes a grid cell that generates G;j; activation
patterns which improve path integration and vectorial
orientation. It is due to the UAV's movement over time and
because interference of several periodic waves is involved.
Mathematically is the expression of this activation pattern. A
cognitive map being concerning is a process where the
inertial sensors of the UAV provide a sensor which from
where they are you may have started through path
integration. Machine learning models first created a rough
version of the map based on the sensor data and the
interaction between the environment. An RNN with LSTM
units can handle dimension through time and space as can be
demonstrated in Eqn. 2.

he = f(Winxe + bin + Wanhe-1y + bnn)
(2)

where hy is the hidden state at time t, x; is the input at time t,
and W and b are the weights and biases, respectively. The
UAYV updates its cognitive map continuously with new
sensory inputs. Decision making, particularly in GPS-denied
environments, relies on the updated map. The UAYV assesses
its position and calculates the best route using a probabilistic
framework. The Monte Carlo Localization (MCL) method is
used to estimate the UAV's position P;based on the map M
and controls utas shown in Eqn. 3,

P = fP(x(t—n | M, ut)P(x(t—l))dx(t—l)
3

where P(x;-;) is the prior belief of the UAV's position at time
t—1. By synthesizing these algorithmic components, the
UAVs develop a form of spatial intuition that parallels
biological intelligence, making autonomous navigation in
uncertain and dynamic environments a tangible reality. This
hippocampal-inspired  cognitive  mapping  framework
becomes the bedrock upon which advanced UAV autonomy
is constructed, ensuring a comprehensive understanding of
space that dynamically adapts with each new influx of data.

b) Applying Route Planning Algorithm:

Neurorobotics interoperability with the new advanced route
planning algorithms has proven itself as a revolutionary step
in the direction of UAV autonomy. To the core of this
integration belongs the Hippocampal Route Planner (HRP),
an algorithm created through a great number of methods to
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harmonize spatial knowledge with real-time data from the
environment, consequently making UAVs alert and letting
them travel independently in complex locations. The HRP
algorithm is a multi-faceted algorithm, it both searches the
most efficient path and improvises energy savings and risk
management. Therefore the system improvises the durability
and sustainability of the system. HRP analytics mechanism
leverages multi-objective optimization model balancing
conflicting objectives. The algorithm seeks the shortest path
using a cost function that minimizes the cumulative distance
between waypoints, formulated as shown in Eqn. (4), where
d(pi, pi+1) is the Euclidean distance between consecutive
waypoints p; and pi:1

min Y15 d(p;, pis1) (3)

Here, the HRP algorithm resolves multi-objective
optimization though Pareto efficiency, whereby the judicious
set of solutions is defined as those in which objective
functions cannot be improved without worsening others. In
both scenarios that involve multiple UAV and complex
communication by means of decentralized communication
network, the HRP algorithm performs a cooperative routing.
This network enables UAVSs to share their cognitive maps and
sensor data, optimizing the route planning process for the

entire fleet as shown in Eqn. 4, where Preet represents the
combined path for the fleet, and M;, Si, O; are the cognitive
map, sensor data, and obstacle set for each UAV i.

Pfleet = UK, HRP(Mi,Si, 0i) 4)

This is a form of a collective intelligence, which refers to the
ability of that single UAV to reflect the autonomy of each
drone and enrich the function of the entire fleets. The HRP
algorithm, which is a compact, multicriteria optimizing and
dynamic transport rerouting algorithm, becomes the
backbone of the integrated approach design, with the
algorithm building, on the intricate layers of cognitive
mapping, a set of actionable, efficient and safe viable
navigation strategies for UAVs fulfilling their missions in
different operational scenarios. The algorithm which is
indicated below spells out a multi-modal optimization
approach in HRP strategy by considering distance, energy
and risk and real-time data-based re-routing to mitigate
human challenges. Moreover, it is designed to account for the
scenario of the cooperative routing on the fleets when a batch
of UAVs need to share the same airspace. However, note that
this algorithmic representation is a high-level one since it
contains only the most important parts and all the detailed will
be made in a full implementation.

Algorithm: Hippocampal Route Planner for UAV Autonomy

Inputs:
CM: Cognitive Map
RTD: Real-Time Data
US: UAV Status
OD: Obstacle Data
FD: Fleet Data
HRP_Algorithm(CM, RTD, US, OD, FD)
OP—0
PF <0
while not at_target(US)
CP « get_position(US)
SD « sense(RTD)
KO « update_obstacles(OD)
RM « risk_assessment(KO, SD)
PP « generate paths(CM, CP, RM)
for Path in PP
Dist « calc_distance(Path)
Energy « calc_energy(Path, US)
Risk « calc_risk(Path, RM)
if pareto_efficient(Dist, Energy, Risk, PF)
PF.add(Path)
OP « select_path(PF, US)
ifFD# @
FP « integrate fleet(FD, OP, CM)
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OP « select fleet path(FP)
execute(OP, US)
update_map(CM, SD)
if dynamic_change detected(SD)

continue

return OP
Output:
OP: Optimal Path

The accompanying HRP helps our autonomous UAV
navigate complicated or challenging options. UAVsS may
analyze and comprehend situations in real time using a
cognitive map that mimics a mammal's hippocampus. A
cognitive map and continual sensor utilization enable the
UAV real-time situational awareness. So, it can adapt to its
surroundings and produce adaptive flight path planning even
in no-GPS zones. HRP's multiobjective optimization method
considers UAV route time, energy consumption, and risk
avoidance to optimize UAV performance. The application
utilizes real-time data to redirect the UAV when cluttering
occurs. The HPR algorithm's main benefit is drone fleet route
planning coordination. Centralized UAV networks help
humans make better decisions by exchanging data and
generating insights. User-based communication in this
intelligent air-fleet paradigm increases UAV autonomy, fleet

efficiency, and most crucially safety. Neurorobotics and
hippocampal-inspired cognitive mapping help the HRP
algorithm navigate autonomous drones, making this solution
unique. It delivers real-world understanding of UAV
difficulties to perform missions with exceptional accuracy
and agility as shown in Fig. 4. In nonstop direct lines, linking
a single point may increase flight distance or aviation
performance. UAVs should traverse static (red rectangles)
and dynamic (blue circles) obstacles. The UAV recalculates
its trajectory to reach the black star (her goal), using the
decision points (yellow squares) as intermediate milestones.
The solid green line in Fig. 5 represents the HRP and the
dashed purple line the modified HICM. However, the HICM
system is less sensitive to particular places and only indirectly
creates obstacles, implying a simpler but smaller response.
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Fig. 4. 2D Visualization of UAV — HRP Algorithm

4. EXPERIMENTAL RESULTS

The experimental results of the proposed work are illustrated
through a series of plots that underscore the effectiveness of
the proposed systems in enhancing UAV navigation. Fig. 6
depicts the UAV route's efficacy in a few trials, revealing

IJRITCC | December 2023, Available @ http://www.ijritcc.org

Fig. 5. Comparison of UAV Paths

difficulties. The graph shows efficiency, whereas the line
graph's frequent swings reveal environmental impacts or
algorithm decisions. The algorithms maintain 90% trip
efficiency regardless of route alterations. As seen below,
algorithms may provide good results. Fig. 7 shows UAV
destruction by unexpected obstacles. UAV obstacle
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prediction (dotted line). Whole lines represent long, difficult
detours. The real-time hippocampal algorithms let UAVs
make decisions during diversions. Figure 8 shows ambient
stimulus-limited UAV processing speed histogram. Typically
100 ms delays indicate the on-board neurorobotics system's
signal interpretation and processing reliability. Delay
distribution is utilized to study real-time processing and
system performance since the flight controller's reaction to
the UAV's agility is crucial. System complexity and neural
treatment base are presented via visuals. Due to its autonomy,
the UAV can avoid obstacles, travel faster, and understand
messages. Unattended drones may operate in unexpected and

tough conditions, giving them freedom to evolve. Fig. 9
shows algorithm computational complexity, success, energy
efficiency, and scalability. Table 1 contains graph numbers.
The Hippocampal-based algorithm achieves 95%,
outperforming other options. For physical locations and
complicated situations, 90% energy savings and 88 scalability
are promising. This explains its reduced complexity (0.85)
and lower processing needs for performance gains compared
to the Ant Colony method. The Ant Colony algorithm
achieved 80% success and 82% scalability without extremes.
The Hippocampal-inspired algorithm yields 85% energy
efficiency, somewhat lower.
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Fig. 7. Obstacle Avoidance and Rerouting
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Fig. 8. Obstacle Avoidance and Rerouting
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Genetic algorithms are good but not great with 85% success
and the same scalability grade. Its 0.75 computational
complexity and 80% energy efficiency make it simpler than
Ant Colony. A* has 90% success rate but lower energy
efficiency (75%), scalability (78%), showing that it can
discover successful pathways but may not be efficient or
effective in large-scale settings. At 0.65, it has the lowest
computational complexity and runs quicker. At 70%,
Dijkstra's pathfinding benchmark gets the lowest success,

energy efficiency, and scalability ratings. The lowest
computational complexity score, 0.60, indicates poor
performance but minimal effort. For complicated, real-world
UAV applications that need resource management and
completion, the Hippocampal-inspired algorithm has the
highest success rate, energy efficiency, and scalability. The
other methods switch computational complexity and
performance measures, emphasizing the importance of
operation choice.

TABLE 1: Comparison of Algorithms Over Various Dimensions

Algorithms Computational Complexity Success Rate Energy Efficiency
Hippocampal-inspired 0.85 0.95 0.90
Ant Colony 0.80 0.80 0.85
Genetic Algorithms 0.75 0.85 0.80
A* 0.65 0.90 0.75

0.8 0.8
0.8

0.6

o
o

°
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0.8
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Fig. 9. Comparison of Algorithms Across Different Dimensions

Fig. 9 and Table 2 compare HICM and HPP UAV active
ranging sensor systems. Each system is monitored by the
government for efficiency and efficacy. Their route selection
process may work since H, S. Yang, and C. R. Park's HICM
decreases trip from 175 to 155 units. Together with HICM,
this algorithm accomplishes 7 barriers that HICM could not
overcome with its 5 obstacles, increasing the likelihood of
being alert and avoiding testing. Data processing and
decision-making improved, and the method was 23% quicker
with 128 resources instead of 105. The HRP and HICM had
drivers switch off the engine, reducing energy usage from 70

IJRITCC | December 2023, Available @ http://www.ijritcc.org

to 60. UAV operation time is extended by optimizing routes
for least distances and energy usage. Integrating HRP
increases the success percentage from 92% to 97%, proving
its efficiency. Due to its high completion rate in challenging
environments and terrains, the integrated system is
successful. The line graph has reduced latency and accuracy
volatility, but computational cost must be minimized. The
two most diverse barieromevoid-metric approaches showed
similar trend lines. Calculations and imaging analysis show
that HRCM-explored UAV autonomy is more effective,
energy-efficient, and successful.
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Table 2: UAV Performance Metrics

Metric HICM HICM & HRP Metric
Distance Traveled 175 155 Distance Traveled
Obstacles Avoided 5 7 Obstacles Avoided

Average Computational 128 105 Average Computational
Overhead Overhead
Energy Consumption 70 60 Energy Consumption

0.6

=
P

Normalized Metric Scores

0.2

0.0

4 HICM & HRP Trend
HICM
W HICM & HRP

Fig. 10. Normalized Comparison of UAV Performance Metrics

5. CONCLUSION

We use HICM and HRP algorithms to improve UAV
autonomy. Our research's extensive numerical simulations
suggest this combo has potential. The combo strategy
improves UAV performance, according to our findings. The
mission distance fell from 175 units to 155 units when HICM
was combined with HRP. The decrease improves mission
trajectory optimization and route planning. With the
connection, the UAV can avoid seven obstacles instead of
five, considerably improving its obstacle avoidance. This
mobility augmentation improves mission performance in
complicated, ever-changing contexts. The integrated system's
decreased computational overhead suggests more efficient
processing. Efficiency increase and energy consumption
reduction demonstrate the system's power utilization
improvement. The 97% mission success rate, up from 92%,
is the biggest increase. This improvement shows that the
integrated system can consistently and successfully fulfill
mission goals. Future UAV autonomy potential will abound.
Adaptive machine learning might improve real-time UAV
decisions. Advanced risk assessment models may also

IJRITCC | December 2023, Available @ http://www.ijritcc.org

improve navigation tactics, especially under uncertain
conditions. The scalability of the swarm robotics integrated
system allows coordinated autonomous operations among
several UAVs. UAVs can collaborate independently,
expanding their utility. Combining HICM and HRP
algorithms may change UAV autonomy, according to our
study. The findings show that mission efficiency,
dependability, and adaptability enable unmanned aerial
system optimization and innovation. There are many
strategies to increase UAV autonomy in the future. First,
adaptive machine learning may improve UAV real-time
decision-making. Second, enhanced risk assessment models
may improve navigation strategies, especially under
uncertain conditions. Finally, expanding the integrated
system to coordinate autonomous UAYV actions is a new and
fascinating concept in swarm robotics. These possibilities
provide interesting new research pathways that might
transform UAVS.
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