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Abstract: The ability of autonomous unmanned aerial vehicles, also known as UAVs, to do dangerous and monotonous tasks in lieu 

of people has made them an integral part of contemporary aeronautical engineering. First and foremost, it is important to highlight 

their widespread use in vital sectors such as disaster relief (e.g., transporting medical supplies to impacted areas, focusing on 

legitimate targets during wartime, etc.), surveillance, and environmental monitoring. These sectors offer optimism for the future of 

aviation, as unmanned aircraft are more efficient, effective, and secure than human pilots. However, there is still a significant gap 

between the decision-making capabilities of green systems and UAVs, even if all present efforts are focused on making UAVs more 

autonomous via the integration of flexible navigation algorithms. First, the existing techniques, which vary from traditional 

pathfinding to optimizations based on biological principles, are inadequate when faced with real-world environments that need 

rapid, efficient changes. Finding and closing the gap between the navigational skills of the human brain and those of AI algorithms 

is the primary goal of this research. To achieve this goal, we introduce the Hippocampal Route Planner (HRP), a neurorobotics 

design inspired by the navigational abilities of the mammalian hippocampus. UAVs are able to naturally sense their surroundings 

and navigate in real time thanks to the HRP algorithm. In other words, UAVs equipped with the HRP algorithm may mimic the 

mental maps seen in living things. We have tested our model in air supremacy, and it outperforms other models with less CPU 

overhead and power consumption and more successful runs. What makes the HRP algorithm so impressive is its ability to learn and 

make judgments over time; this is perhaps the most astounding feature of all of them. With scalability and efficiency in mind, there's 

a better likelihood of widespread adoption across industries, which will boost airborne operations' safety and dependability. 

Keywords: Autonomous UAVs, Neurorobotics, Hippocampal-Inspired Algorithms, Cognitive Mapping, Route Planning Algorithms, 

Advanced Navigation Systems 

 

1. INTRODUCTION 

Introduction of UAVs has really marked off a dizzy era of 

engineering, utilizing incredible technology to drive without 

requirement of the human controls. These sophisticated 

machines have been used to perform tasks incorrectly for 

human beings [1]. For example, operation by machine could 

be too dangerous or monotonous. Such operations can include 

disaster response, surveillance monitoring, and general 

environmental monitoring [2]. The convenience of self-

driving UAVs relies on reshaping operational efficiency, 

safety, and the cost effectiveness factors, that, in turn, place 

them in the spotlight as an innovative type of aircraft, not 

manual. The forthcoming study in this area is designed to 

support UAVs technological solutions that will possess the 

ability of self-adapting dynamic intelligence in response to 

ever changing environment conditions, and will be used for 

mission objectives of complex nature. On the contrary the gap 

between nowadays UAV capabilities and those of living 

creatures which are hardwired for such complexity as 

improvisation in diverse tasks with the highest degree of their 

cognitive and navigational autonomy remains widening.  
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Fig. 1 Workflow of Autonomous Unmanned Aerial Vehicles  

As the network map displayed in the Fig. 1 shows, the 

harnessed autonomy level of UAVs used in a real time 

surveillance and monitoring purposes becomes more 

complex. The grounds of the system can be expanded to 

achieve endless possibilities with complementary UAVs 

which accompany with advanced cameras and sensors. They 

are able to transmit real-time videos of their environment with 

no lag that supports UAVs to perform their tasks without any 

interruption. This live feed transfers in processing objects 

detection algorithm, which need capabilities of detecting and 

classifying various objects that are in the field of vision of 

UAV. During this subsequent data analysis phase, we sift out 

helpful information such as trends, patterns and actionable 

intelligence that may aid in the targeting of policy 

interventions and improved service delivery. At the same 

time, location tracking receives the information of relevant 

objects’ movements and visualizes them as the trajectory of 

objects, providing the prediction of future location. At the end 

of this process, there will come the stage where the 

transmitted data are processed by the high-level systems 

according to the innovated control decision and then through 

high communication channels they are fed back to the central 

Control Center. While this area of research has covered 

numerous methodologies indeed, one can distinguish the 

principal algorithmic calculus comprising of Dijkstra's and 

A* algorithms on the one hand and, on the other hand, 

incorporates the nature-inspired techniques such as Ant 

Colony optimizations and Genetic Algorithms 

[3]. Consequently the application of above mentioned 

techniques is a success in their field. But the constraints come 

in the arena of real-world fight where the fast adaptation, data 

synthesis, and saving of energy are important. In those aged 

methods, the complex real time data assignment and 

integration will normally be a problem and may as well not 

be the most appropriate when principle level thinking is 

necessary and a quick decision has to be made. The approach 

taken in our research is tackling these complex issues, 

introducing a novel Robotics Neuron-Platform incorporating 

human-like navigation, symbolized by the original 

Hippocampal Route Planner (HRP). The HRP algorithm 

draws on the nature of the mechanism present in the 

mammalian hippocampus, which is responsible for assisting 

in the building and utilization of dynamic cognitive maps for 

instantaneous movement tracking and decision-making 

coordination. Such, methodology entrusted the UAVs with 

the ability to make sense, and respond accurately and 

reflexive in a manner that is similar to the way biological 

creatures operate. Advocated for infrastructure drastically 

diminishes both computational burden and showed energy 

conservation where at the same time success rates get higher. 

It obviously exceeds efficiency of extant structures in the 

fierce environment of simulations. Our research is distinctive 

in the magnitude of the constraints in current UAV navigation 

systems that our research is committed to superseding. Being 

able to establish environment site learning as well to work out 

autonomous and intelligent decisions on the fly is a sign that 

robotics is ready for the next step in UAV autonomy. Our 

system’s scalability and its operational efficacy leave little 

doubt to its diverse scope of industrial applications, which is 

devising the era of more severe, reliable, and autonomous 

ways of airborne works. This research not only serves as a 

valuable academic contribution but also bears significant 

practical implications, potentially catalyzing a new epoch of 

sophisticated UAV applications. 
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2. LITERATURE SURVEY 

An overview of the many cutting-edge algorithms and uses of 

UAVs in a variety of industries, including agricultural, 

autonomous systems, medical assistance, and more. A closer 

examination of a few of them is presented here: Within a 

UAV-empowered Mobile Fog Computing (MFC) system 

tailored for Medical Internet of Things (IoT) devices, Asim et 

al. (2023) provide a new approach for optimizing simulated 

annealing trajectories [4]. Efficient communication and 

service delivery in medical contexts are presumably the goals 

of this algorithm, which optimizes the trajectories of UAVs. 

In their discussion of UAV control using propulsion models 

and acoustics, Kawamura et al. (2023) go into a hierarchical 

blend of specialists. The use of acoustic signals for navigation 

and control, in conjunction with expert systems for UAV 

dynamics management, could lead to an increase in the 

autonomy and accuracy of UAVs operating in complicated 

situations [5]. In their 2023 study, Sánchez-Fernández et al. 

analyze how autonomous UAV systems might be used in 

farming, with a focus on reducing drift in fruit orchards. In 

order to reduce waste and environmental effect, they probably 

investigate how UAVs [6] can precisely administer 

treatments like fertilizers or insecticides. A multiple-UAV 

architecture [7] for autonomous media creation is described 

by Mademlis et al. (2023). This architecture might include a 

number of UAVs cooperating to take pictures and videos 

from different perspectives, which would improve the 

efficiency and quality of media production. To identify 

uncertain misleading targets with the help of autonomous 

dual UAV systems, Salameh et al. (2023) use a federated 

reinforcement learning strategy [8]. In military or security 

contexts, this might imply that UAVs are taught to detect and 

follow objects employing deceitful strategies via the use of 

distributed learning algorithms.  

Using destination-aware fan-shaped clustering, Dixit and 

Singh (2023) [9] provide BMUDF, a bio-inspired model for 

fault-aware UAV routing.  

To improve routing efficiency and resilience, particularly in 

the face of errors or failures, this approach seems to integrate 

biological patterns into UAV flight pathways. The 3DVFH* 

(3D Vector Field Histogram*) method is a local obstacle 

avoidance system [10]. Thomessen et al. (2023) provide an 

adaptation to the algorithm that changes altitude in a bio-

inspired way. This upgrade might improve UAVs' ability to 

navigate in three-dimensional space by letting them 

dynamically adjust their altitude in reaction to obstructions 

[11]. Maraveas et al. (2023) use patterns and methods 

discovered in nature to improve agricultural operations via 

the use of UAVs [12]. They utilize bio and nature-inspired 

algorithms in agricultural engineering. Path planning using 

UAV swarms in obstacle situations is described by Puente-

Castro et al. (2024) as a method based on Q-Learning. A 

swarm of UAVs may be guided across complicated settings 

using this reinforcement learning method, which most likely 

maximizes their aggregate navigational abilities. The 

Rapidly-exploring Random Tree (RRT) technique, developed 

by Kelner et al. (2024) and used to describe UAV swarm 

flight trajectories [13], is a way to explore non-uniform 

regions effectively by constructing a space-filling tree. 

Situations where the outcome is uncertain and subject to 

change are ideal for this method. An enhanced sand cat swarm 

optimization for moving target search by UAV is created by 

Niu et al. (2024).  This system, which takes its cues from sand 

cat hunting techniques, may help unmanned aerial vehicles 

(UAVs) find moving or changing targets more quickly and 

efficiently [14]. To describe the flight paths of UAV swarms, 

Kelner et al. (2024) use the Rapidly-exploring Random Tree 

(RRT) technique. Renowned for its fast search and navigation 

capabilities, the RRT method [15] constructs a tree that 

covers the search space at random. Because it enables rapid, 

decentralized decision-making and adaptation to new or 

changing situations, this may be very helpful for UAV 

swarms.  

In order to facilitate the joint search for lost tourists by 

Human-UAV teams, Xu et al. (2024) [16] provide an iterative 

greedy heuristic. It is quite probable that this method is 

iterative, meaning it continuously improves the search 

process by improving search patterns. A joint effort between 

people and UAVs would allow the former to cover more 

ground and the latter to make more nuanced decisions 

depending on the circumstances. The loading, mission abort, 

and rescue site selection procedures for UAVs are the subject 

of a combined optimization issue that Zhao et al. (2024) 

devotes their attention to [17].  All three levels of UAV 

mission optimization—logistical, operational, and 

emergency—are considered here. In times of crisis or rescue, 

when quick judgments taking into account many goals are 

required, this form of optimization is vital. For the purpose of 

seeking moving targets with UAVs, Niu et al. (2024) provide 

an enhanced sand cat swarm optimization method [18]. It is 

quite probable that the sand cat swarm optimization method 

takes its cues from the sand cat's renownedly effective and 

secretive hunting style. This strategy has the potential to 

enhance the UAV's real-time search pattern adaptation 

capabilities, making it easier to find objects that are in motion. 

By offering fresh perspectives on old challenges, all of the 

surveys help advance UAV research. Natural process 

inspiration drives the algorithms they cover, which aim to 

improve UAV capabilities in areas like search efficiency, 

trajectory planning, and difficult scenario decision-making. 

The computational efficiency, efficacy in real-world 
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situations, flexibility to dynamic environments, and capacity 

to operate in collaborative settings with other UAVs or 

human teams would likely be the criteria used to assess these 

investigations. These algorithms aim to improve the 

autonomy, reliability, and efficiency of unmanned aerial 

vehicle (UAV) operations for various uses. In order to 

improve UAV navigation, autonomy, fault tolerance, and job 

execution, the algorithms used often take models from 

biological systems. Metrics including computing cost, 

efficiency, accuracy, fault tolerance, and real-world 

application are usually used to compare these approaches. 

 

3. METHODOLOGY 

Among other things, UAVs are perfect for surveillance, 

agriculture, and emergency management when these 

applications are not purely military. Autonomy and AI-based 

neurorobotics—the topic that involves unique combination of 

neurology, robotics, and AI—should be considered as the 

dominant techniques for UAVs operation. This research 

comes with a new concept of neuro-robotic based UAV 

navigation that instinctively responds like a pro-

organism. Emulating neural networks structure in a UAV 

control system for autonomous operation makes robots act 

like advanced ones in terms of the perception and the 

framework of cognition. In this system the ‘real-time sensory 

data collection architecture’ realizes environmental mapping 

based on both high fidelity environmental data and detailed 

obstacle detection. From here-on, the sophisticated neural 

processing unit evaluates flight control, energy 

managements, and reactive functions to environmental 

inputs. Integration of AI into UAV operation makes possible 

good performance of robotic rigs without human participation 

in complex tasks, creating more compact and safe 

environment in difficult situations.  

 

Fig. 2. Enhanced UAV Autonomous Navigation 

Simulation 

The given Fig. 2 represents a subprocedure of autopilot 

navigation simulation system of a UAV. Multiple layers of 

detailing form a plane which is a ground for UAV depicted in 

this cover. Brown regions reflect the contrast that is on the 

high ground or complex terrain. Symbols indicating wind 

speed and direction based on arrow shapes. Vector field-in 

this sense, represents those and other physical factors that the 

UAV should take account while in the air. In an HTML 

world, they would be classified as users, transparent as "red 

lines with points". UAVs have to recognize these objects in 

real-time and prevent collisions with them. So, they use 

sensors, LIDAR, cams etc. That beautiful blue line plotting 

the UAV’s flight route, however, has taken into account 

topography, wind and obstacle circumstances. The same 

establishes using neurorobotics algorithms, the UAV does on-

the-fly route optimization. The aircraft lifts off the black dot 

and shoots towards the black "X". Neurorobotics systems, 

especially for UAVs, can deal with unpredictable and 

dynamic environments, thanks to their ability to process and 

synthesise diversity in the input data. The Fig. 3 explains that 

the UAV's state variables, namely altitude speed, and battery 

level, fluctuate with the dynamics of the environment over 

time. 

 

 

Fig. 3. Time Series Analysis of UAV Flight Parameters 
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a) Integration with Hippocampal-Inspired Cognitive 

Mapping: 

The composition of the spatial awareness in the UAVs 

vehicles is basically done by means of cognitive mapping, a 

characteristic of animal hippocampus, which gives the ability 

to create the spatial navigation and the memory 

formation. This research utilizes hippocampal-like 

algorithms in a method that involves the creation of cognitive 

dynamic maps, which can have UAVs, through novel ways 

of understanding and interacting with environmental 

information, never-before achieved capabilities. The 

algorithms are built to mimic the hippocampal structure, and 

the generated spatial representation is created from the input 

sensor data with its creation an illusion of the environment as 

the coherent space. Cognitive maps are not static that is why 

they evolve with every new information, letting us know that 

the newer knowledge is updated and theoretical path is 

corrected. It is essential for these systems to be able to gather 

and process real-time data when working in dynamic or the 

GPS-denied environments where pre-existing maps are not 

correct now. The hippocampal-inspired models are fed on 

huge datasets of environmental interactions and machine 

learning methods to ensure that UAVs are able to understand 

their surroundings better akin to brain; which is again as good 

as natural intelligence. 

The quest for creating spatial awareness in UAVs culminates 

with the application of cognitive mapping which is an oxygen 

molecules field created by mammals due to the great 

contribution of the hippocampal formation. The similarity 

between setting up a coordinate system and finding directions 

in a new place leads to the need for a mental map of 

navigation, spatial information processing and memory 

consolidation. We apply the best practices of hippocampus-

styled algorithms to design cognitive maps that have the 

ability to respond to external stimuli by using changeable 

interpretations and actions towards the current 

environments. The 'computational hippocampal model' is at 

the core of our approach and comprises a set of algorithms 

that simulate a natural hippocampus' function. We have the 

following key components in our models: The second one is 

the Spatial Temporal Cells Simulation that demonstrates the 

memorization of a sequence of events (episodes) or 

movement (trajectories) from the brain. This model is 

mimicking cell Ni by the help of artificial neuron system. It 

should be noted that each artificial cell has a particular spatial 

coordinate. The activation of a neuron Ni is determined by the 

UAV's proximity to the location the neuron represents, 

following a Gaussian function as shown in Eqn. 1.  

𝐴𝑖(𝑥, 𝑦) = 𝑒−2𝜎2(𝑥−𝑥𝑖)^2+(𝑦−𝑦𝑖)^2                                        

(1) 

in which (coordinate x,y) are the current position of the UAV, 

(xi,yi) represent space associated with nerves Ni, and 

parameter σ governs the influence of a place cells. Grid Cell 

Mechanism provides a picture for navigation as hexagoins 

generating a grid. This square integration, which they called 

tessellation, gives more flexibility and the possibility to 

produce a more precise contour. The model of a UAV 

network includes a grid cell that generates Gij activation 

patterns which improve path integration and vectorial 

orientation. It is due to the UAV's movement over time and 

because interference of several periodic waves is involved. 

Mathematically is the expression of this activation pattern. A 

cognitive map being concerning is a process where the 

inertial sensors of the UAV provide a sensor which from 

where they are you may have started through path 

integration. Machine learning models first created a rough 

version of the map based on the sensor data and the 

interaction between the environment. An RNN with LSTM 

units can handle dimension through time and space as can be 

demonstrated in Eqn. 2. 

ℎ𝑡 = 𝑓(𝑊𝑖ℎ𝑥𝑡 + 𝑏𝑖ℎ + 𝑊ℎℎℎ(𝑡−1) + 𝑏ℎℎ)                        

(2) 

where ht is the hidden state at time t, xt is the input at time t, 

and W and b are the weights and biases, respectively. The 

UAV updates its cognitive map continuously with new 

sensory inputs. Decision making, particularly in GPS-denied 

environments, relies on the updated map. The UAV assesses 

its position and calculates the best route using a probabilistic 

framework. The Monte Carlo Localization (MCL) method is 

used to estimate the UAV's position Pt based on the map M 

and controls ut as shown in Eqn. 3, 

𝑃𝑡 = ∫ 𝑃(𝑥(𝑡−1) ∣ 𝑀, 𝑢𝑡)𝑃(𝑥(𝑡−1))𝑑𝑥(𝑡−1)                              

 (3) 

where P(xt−1) is the prior belief of the UAV's position at time 

t−1. By synthesizing these algorithmic components, the 

UAVs develop a form of spatial intuition that parallels 

biological intelligence, making autonomous navigation in 

uncertain and dynamic environments a tangible reality. This 

hippocampal-inspired cognitive mapping framework 

becomes the bedrock upon which advanced UAV autonomy 

is constructed, ensuring a comprehensive understanding of 

space that dynamically adapts with each new influx of data. 

b) Applying Route Planning Algorithm:  

Neurorobotics interoperability with the new advanced route 

planning algorithms has proven itself as a revolutionary step 

in the direction of UAV autonomy. To the core of this 

integration belongs the Hippocampal Route Planner (HRP), 

an algorithm created through a great number of methods to 
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harmonize spatial knowledge with real-time data from the 

environment, consequently making UAVs alert and letting 

them travel independently in complex locations. The HRP 

algorithm is a multi-faceted algorithm, it both searches the 

most efficient path and improvises energy savings and risk 

management. Therefore the system improvises the durability 

and sustainability of the system. HRP analytics mechanism 

leverages multi-objective optimization model balancing 

conflicting objectives. The algorithm seeks the shortest path 

using a cost function that minimizes the cumulative distance 

between waypoints, formulated as shown in Eqn. (4), where 

d(pi, pi+1) is the Euclidean distance between consecutive 

waypoints pi and pi+1 

𝑚𝑖𝑛 ∑𝑖=1
𝑛−1 𝑑(𝑝𝑖 , 𝑝𝑖+1)                                                  (3) 

Here, the HRP algorithm resolves multi-objective 

optimization though Pareto efficiency, whereby the judicious 

set of solutions is defined as those in which objective 

functions cannot be improved without worsening others. In 

both scenarios that involve multiple UAV and complex 

communication by means of decentralized communication 

network, the HRP algorithm performs a cooperative routing. 

This network enables UAVs to share their cognitive maps and 

sensor data, optimizing the route planning process for the 

entire fleet as shown in Eqn. 4, where Pfleet represents the 

combined path for the fleet, and Mi, Si, Oi are the cognitive 

map, sensor data, and obstacle set for each UAV i. 

𝑃𝑓𝑙𝑒𝑒𝑡 =  ⋃𝑖=1
𝑘  𝐻𝑅𝑃(𝑀𝑖, 𝑆𝑖, 𝑂𝑖)                               (4) 

This is a form of a collective intelligence, which refers to the 

ability of that single UAV to reflect the autonomy of each 

drone and enrich the function of the entire fleets. The HRP 

algorithm, which is a compact, multicriteria optimizing and 

dynamic transport rerouting algorithm, becomes the 

backbone of the integrated approach design, with the 

algorithm building, on the intricate layers of cognitive 

mapping, a set of actionable, efficient and safe viable 

navigation strategies for UAVs fulfilling their missions in 

different operational scenarios. The algorithm which is 

indicated below spells out a multi-modal optimization 

approach in HRP strategy by considering distance, energy 

and risk and real-time data-based re-routing to mitigate 

human challenges. Moreover, it is designed to account for the 

scenario of the cooperative routing on the fleets when a batch 

of UAVs need to share the same airspace. However, note that 

this algorithmic representation is a high-level one since it 

contains only the most important parts and all the detailed will 

be made in a full implementation. 

 

Algorithm: Hippocampal Route Planner for UAV Autonomy 

 

Inputs: 

  CM: Cognitive Map 

  RTD: Real-Time Data 

  US: UAV Status 

  OD: Obstacle Data 

  FD: Fleet Data 

HRP_Algorithm(CM, RTD, US, OD, FD) 

    OP ← ∅ 

    PF ← ∅ 

    while not at_target(US) 

        CP ← get_position(US) 

        SD ← sense(RTD) 

        KO ← update_obstacles(OD) 

        RM ← risk_assessment(KO, SD) 

        PP ← generate_paths(CM, CP, RM) 

        for Path in PP 

            Dist ← calc_distance(Path) 

            Energy ← calc_energy(Path, US) 

            Risk ← calc_risk(Path, RM) 

            if pareto_efficient(Dist, Energy, Risk, PF) 

                PF.add(Path) 

        OP ← select_path(PF, US) 

        if FD ≠ ∅ 

            FP ← integrate_fleet(FD, OP, CM) 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 11 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023 

__________________________________________________________________________________________________________________ 

 

 

    1496 

IJRITCC | December 2023, Available @ http://www.ijritcc.org 

            OP ← select_fleet_path(FP) 

        execute(OP, US) 

        update_map(CM, SD) 

        if dynamic_change_detected(SD) 

            continue   

    return OP 

Output: 

  OP: Optimal Path 

 

 

The accompanying HRP helps our autonomous UAV 

navigate complicated or challenging options. UAVs may 

analyze and comprehend situations in real time using a 

cognitive map that mimics a mammal's hippocampus. A 

cognitive map and continual sensor utilization enable the 

UAV real-time situational awareness. So, it can adapt to its 

surroundings and produce adaptive flight path planning even 

in no-GPS zones. HRP's multiobjective optimization method 

considers UAV route time, energy consumption, and risk 

avoidance to optimize UAV performance. The application 

utilizes real-time data to redirect the UAV when cluttering 

occurs. The HPR algorithm's main benefit is drone fleet route 

planning coordination. Centralized UAV networks help 

humans make better decisions by exchanging data and 

generating insights. User-based communication in this 

intelligent air-fleet paradigm increases UAV autonomy, fleet 

efficiency, and most crucially safety. Neurorobotics and 

hippocampal-inspired cognitive mapping help the HRP 

algorithm navigate autonomous drones, making this solution 

unique. It delivers real-world understanding of UAV 

difficulties to perform missions with exceptional accuracy 

and agility as shown in Fig. 4. In nonstop direct lines, linking 

a single point may increase flight distance or aviation 

performance. UAVs should traverse static (red rectangles) 

and dynamic (blue circles) obstacles. The UAV recalculates 

its trajectory to reach the black star (her goal), using the 

decision points (yellow squares) as intermediate milestones. 

The solid green line in Fig. 5 represents the HRP and the 

dashed purple line the modified HICM. However, the HICM 

system is less sensitive to particular places and only indirectly 

creates obstacles, implying a simpler but smaller response. 

 

 

Fig. 4. 2D Visualization of UAV – HRP Algorithm                     Fig. 5. Comparison of UAV Paths 

 

4. EXPERIMENTAL RESULTS 

The experimental results of the proposed work are illustrated 

through a series of plots that underscore the effectiveness of 

the proposed systems in enhancing UAV navigation. Fig. 6 

depicts the UAV route's efficacy in a few trials, revealing 

difficulties. The graph shows efficiency, whereas the line 

graph's frequent swings reveal environmental impacts or 

algorithm decisions. The algorithms maintain 90% trip 

efficiency regardless of route alterations. As seen below, 

algorithms may provide good results. Fig. 7 shows UAV 

destruction by unexpected obstacles. UAV obstacle 
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prediction (dotted line). Whole lines represent long, difficult 

detours. The real-time hippocampal algorithms let UAVs 

make decisions during diversions. Figure 8 shows ambient 

stimulus-limited UAV processing speed histogram. Typically 

100 ms delays indicate the on-board neurorobotics system's 

signal interpretation and processing reliability. Delay 

distribution is utilized to study real-time processing and 

system performance since the flight controller's reaction to 

the UAV's agility is crucial. System complexity and neural 

treatment base are presented via visuals. Due to its autonomy, 

the UAV can avoid obstacles, travel faster, and understand 

messages. Unattended drones may operate in unexpected and 

tough conditions, giving them freedom to evolve. Fig. 9 

shows algorithm computational complexity, success, energy 

efficiency, and scalability. Table 1 contains graph numbers. 

The Hippocampal-based algorithm achieves 95%, 

outperforming other options. For physical locations and 

complicated situations, 90% energy savings and 88 scalability 

are promising. This explains its reduced complexity (0.85) 

and lower processing needs for performance gains compared 

to the Ant Colony method. The Ant Colony algorithm 

achieved 80% success and 82% scalability without extremes. 

The Hippocampal-inspired algorithm yields 85% energy 

efficiency, somewhat lower. 

 

 

Fig. 6. Route Efficiency over Multiple Trails                   Fig. 7. Obstacle Avoidance and Rerouting 

 

 

Fig. 8. Obstacle Avoidance and Rerouting 
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Genetic algorithms are good but not great with 85% success 

and the same scalability grade. Its 0.75 computational 

complexity and 80% energy efficiency make it simpler than 

Ant Colony. A* has 90% success rate but lower energy 

efficiency (75%), scalability (78%), showing that it can 

discover successful pathways but may not be efficient or 

effective in large-scale settings. At 0.65, it has the lowest 

computational complexity and runs quicker. At 70%, 

Dijkstra's pathfinding benchmark gets the lowest success, 

energy efficiency, and scalability ratings. The lowest 

computational complexity score, 0.60, indicates poor 

performance but minimal effort. For complicated, real-world 

UAV applications that need resource management and 

completion, the Hippocampal-inspired algorithm has the 

highest success rate, energy efficiency, and scalability. The 

other methods switch computational complexity and 

performance measures, emphasizing the importance of 

operation choice.  

 

TABLE 1: Comparison of Algorithms Over Various Dimensions  

Algorithms Computational Complexity Success Rate Energy Efficiency 

Hippocampal-inspired 0.85 0.95 0.90 

Ant Colony 0.80 0.80 0.85 

Genetic Algorithms 0.75 0.85 0.80 

A* 0.65 0.90 0.75 

 

 

Fig. 9. Comparison of Algorithms Across Different Dimensions 

 

Fig. 9 and Table 2 compare HICM and HPP UAV active 

ranging sensor systems. Each system is monitored by the 

government for efficiency and efficacy. Their route selection 

process may work since H, S. Yang, and C. R. Park's HICM 

decreases trip from 175 to 155 units. Together with HICM, 

this algorithm accomplishes 7 barriers that HICM could not 

overcome with its 5 obstacles, increasing the likelihood of 

being alert and avoiding testing. Data processing and 

decision-making improved, and the method was 23% quicker 

with 128 resources instead of 105. The HRP and HICM had 

drivers switch off the engine, reducing energy usage from 70 

to 60. UAV operation time is extended by optimizing routes 

for least distances and energy usage. Integrating HRP 

increases the success percentage from 92% to 97%, proving 

its efficiency. Due to its high completion rate in challenging 

environments and terrains, the integrated system is 

successful. The line graph has reduced latency and accuracy 

volatility, but computational cost must be minimized. The 

two most diverse barieromevoid-metric approaches showed 

similar trend lines. Calculations and imaging analysis show 

that HRCM-explored UAV autonomy is more effective, 

energy-efficient, and successful. 
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Table 2: UAV Performance Metrics   

Metric HICM HICM & HRP Metric 

Distance Traveled 175 155 Distance Traveled 

Obstacles Avoided 5 7 Obstacles Avoided 

Average Computational 

Overhead 
128 105 

Average Computational 

Overhead 

Energy Consumption 70 60 Energy Consumption 

 

 

Fig. 10. Normalized Comparison of UAV Performance Metrics   

 

5. CONCLUSION 

We use HICM and HRP algorithms to improve UAV 

autonomy. Our research's extensive numerical simulations 

suggest this combo has potential. The combo strategy 

improves UAV performance, according to our findings. The 

mission distance fell from 175 units to 155 units when HICM 

was combined with HRP. The decrease improves mission 

trajectory optimization and route planning. With the 

connection, the UAV can avoid seven obstacles instead of 

five, considerably improving its obstacle avoidance. This 

mobility augmentation improves mission performance in 

complicated, ever-changing contexts. The integrated system's 

decreased computational overhead suggests more efficient 

processing. Efficiency increase and energy consumption 

reduction demonstrate the system's power utilization 

improvement. The 97% mission success rate, up from 92%, 

is the biggest increase. This improvement shows that the 

integrated system can consistently and successfully fulfill 

mission goals. Future UAV autonomy potential will abound. 

Adaptive machine learning might improve real-time UAV 

decisions. Advanced risk assessment models may also 

improve navigation tactics, especially under uncertain 

conditions. The scalability of the swarm robotics integrated 

system allows coordinated autonomous operations among 

several UAVs. UAVs can collaborate independently, 

expanding their utility. Combining HICM and HRP 

algorithms may change UAV autonomy, according to our 

study. The findings show that mission efficiency, 

dependability, and adaptability enable unmanned aerial 

system optimization and innovation. There are many 

strategies to increase UAV autonomy in the future. First, 

adaptive machine learning may improve UAV real-time 

decision-making. Second, enhanced risk assessment models 

may improve navigation strategies, especially under 

uncertain conditions. Finally, expanding the integrated 

system to coordinate autonomous UAV actions is a new and 

fascinating concept in swarm robotics. These possibilities 

provide interesting new research pathways that might 

transform UAVs. 
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