
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

__

 1354
IJRITCC | December 2023, Available @ http://www.ijritcc.org

A Review on Extreme Programming in Software

Development

Saurabh Parikh1, Dr. Ajay Jain2
1Research Scholar, Dr. APJ Abdul Kalam University Indore

2Supervisor, Dr. APJ Abdul Kalam University Indore

Abstract : In recent years, the practice of Software Development (SD) has become more common in the software industry. The

advantages of globalization, the economy, location, speed to market, organizational strategy, the availability of qualified workers,

and lower prices are all factors in this shift. One of the most well-known agile approaches is Extreme Programming (XP), which

places a premium on clarity, openness, bravery, and feedback. High demand and a need for goods from customers and clients are

putting a strain on the software industry's ability to provide high-quality items quickly. Small delays in the release may have a huge

influence on the company's image and profitability. In software engineering, cost estimate plays a significant role in contract

negotiation and project execution. A good Development plan reduces the risks and the inefficiencies related to the Development

task. Development effort and productivity are difficult to quantify because of a variety of internal organizational elements and

procedures related to the product itself. Development process productivity is often lower than development process productivity.

Keywords: Extreme Programming, Software, Development, Technology,

INTRODUCTION

Today's world is entirely influenced by SW technology.

There is almost no one left who doesn't use some kind of SW

technology on a daily basis now. These SW components may

be accessed in a variety of ways, including standalone

programs, web programming, mobile apps, and more. As the

usage of SW technology grows, so does the need for new,

improved, and high-quality SW products. Nowadays,

practically everyone is linked to technology in some way,

whether directly or indirectly, thanks to the widespread

availability of widely used mobile phones.

Government, as well as community and private efforts, have

all been impacted by the expansion of technology. Without

technology, we are unable to confront the world and lead

regular lives. As may be seen from the above, there are a large

number of users of SW. As the number of users grows, so

does the need for innovative and high-quality software. The

process of creating software is one of iterative, resource-

constrained, well-focused development. In order to entice

people to utilize technology, new and improved software

(SW) must be developed. It's a must for the industry's success.

High demand and a need for goods from customers and

clients are putting a strain on the software industry's ability to

provide high-quality items quickly. Small delays in the

release may have a huge influence on the company's image

and profitability. This situation is a result of companies still

adhering to the traditional software development process.

Until recently, the process of developing software was seen

as a sequence of processes that were followed by the

implementation of code. While it may have worked well at

first, as use grew, it became less appealing to both the client

and the end user. Increased consumer demand has resulted in

an increase in competition for the best possible product.

LITERATURE REVIEW

Hohl, P., Klünder, J., van Bennekum, A. et al. (2018), In

2001, seventeen professionals set up the manifesto for agile

software development. They wanted to define values and

basic principles for better software development. On top of

being brought into focus, the manifesto has been widely

adopted by developers, in software-developing organizations

and outside the world of IT. Agile principles and their

implementation in practice have paved the way for radical

new and innovative ways of software and product

development. In parallel, the understanding of the

manifesto’s underlying principles evolved over time. This, in

turn, may affect current and future applications of agile

principles. This article presents results from a survey and an

interview study in collaboration with the original contributors

of the manifesto for agile software development.

Furthermore, it comprises the results from a workshop with

one of the original authors. This publication focuses on the

origins of the manifesto, the contributors’ views from today’s

perspective, and their outlook on future directions. We

evaluated 11 responses from the survey and 14 interviews to

understand the viewpoint of the contributors. They emphasize

that agile methods need to be carefully selected and agile

should not be seen as a silver bullet. They underline the

importance of considering the variety of different practices

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

__

 1355
IJRITCC | December 2023, Available @ http://www.ijritcc.org

and methods that had an influence on the manifesto.

Furthermore, they mention that people should question their

current understanding of “agile” and recommend

reconsidering the core ideas of the manifesto.

Theo, Theunissen, Uwevan Heescha, ParisAvgeriou

(2022) With an increase in Agile, Lean, and DevOps software

methodologies over the last years (collectively referred to as

Continuous Software Development (CSD)), we have

observed that documentation is often poor. Objective: This

work aims at collecting studies on documentation challenges,

documentation practices, and tools that can support

documentation in CSD. Method: A systematic mapping

study was conducted to identify and analyze research on

documentation in CSD, covering publications between 2001

and 2019. Results: A total of 63 studies were selected. We

found 40 studies related to documentation practices and

challenges, and 23 studies related to tools used in CSD. The

challenges include: informal documentation is hard to

understand, documentation is considered as waste,

productivity is measured by working software only,

documentation is out-of-sync with the software and there is a

short-term focus. The practices include: non-written and

informal communication, the usage of development artifacts

for documentation, and the use of architecture frameworks.

We also made an inventory of numerous tools that can be

used for documentation purposes in CSD. Overall, we

recommend the usage of executable documentation, modern

tools and technologies to retrieve information and transform

it into documentation, and the practice of minimal

documentation upfront combined with detailed design for

knowledge transfer afterwards. Conclusion: It is of

paramount importance to increase the quantity and quality of

documentation in CSD. While this remains challenging,

practitioners will benefit from applying the identified

practices and tools in order to mitigate the stated challenges.

Shrivastava, et al (2021) Extreme programming was

developed as a solution to the problem of method selection

that has arisen with the rise of start-ups and the transition of

established businesses to online commerce. In this study, we

aimed to collect a variety of relevant examples. One of the

most well-known agile approaches to developing software is

called extreme programming. Customer happiness, improved

software quality, and effective project management are all

benefits of extreme programming. Teams tend to be small,

but everyone works well together. This paradigm is based on

ongoing dialogue and the incorporation of new ideas and

features, making it a dynamic approach to creating software.

Maleeha, Yasvi (2019) Extreme programming is an iterative

approach to software development that attempts to make

better software and aid in finding the best possible solution.

Extreme Programming is distinct from other approaches to

software development because of its emphasis on flexibility

and rapid response to evolving client needs. Better outcomes

have been achieved in software development thanks to the use

of extreme programming as a technique.

Sadath, Lipsa & Karim, Kayvan & Gill, Stephen (2018)

Developing software that is both functional and easily

maintained in order to fulfill the needs of a certain use case is

an example of software engineering. Due to the higher degree

of abstraction required for this kind of manufacturing, it

differs fundamentally from other forms of engineering

practice. This reality gives rise to several strategies for long-

term success in the software business. This method's

significance in ensuring the long-term health of the academic

software sector cannot be overstated. In order to establish a

shared understanding and technical foundation in the

academic community, we propose a framework called XPIA

(Extreme Programming In Academia) that employs tried-

and-true methods from the software engineering industry,

with a special emphasis on pair programming.

SOFTWARE DEVELOPMENT

It is expected that software will evolve and alter throughout

the course of its lifespan. A software product's lifespan

necessitates development. For the sake of keeping the

program running, preventing and correcting software errors,

and enhancing its usefulness, software development is

necessary. Developing software is the process of making

changes to a software system or a component after it has been

delivered in order to fix bugs, enhance performance or other

characteristics, or to adapt to changing environmental

conditions. Corrective, adaptive, perfect, and preventative are

some of the classifications of Development. Adaptive

Development focuses on adapting to changes in the software

environment, whereas perfective Development focuses on

meeting new user needs. Error correction is under corrective

development, while error prevention falls under preventive

development, which aims to keep problems from occurring in

the first place. It has been noticed that corrective development

is believed to be conventional, while others are considered to

be a kind of evolution in software. Most change requests in

Development fall into the corrective or perfective category,

according to recent research.

Development accounts for between 40 and 90 percent of the

overall cost of a software system's lifespan, according to

many empirical studies. There is always a need for new

software systems to stay up with developments in the

software environment. It is more cost-effective to reuse and

http://www.ijritcc.org/
https://www.sciencedirect.com/topics/computer-science/devops
https://www.sciencedirect.com/topics/computer-science/systematic-mapping-study
https://www.sciencedirect.com/topics/computer-science/systematic-mapping-study

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

__

 1356
IJRITCC | December 2023, Available @ http://www.ijritcc.org

improve existing systems rather than to develop a new one,

thanks to the economic advantages. The current techniques

and models of development are taken from the current

development approaches and models. New software

development paradigms have emerged as a result of the

dynamic and demanding nature of the software industry.

Software development is often referred to be an iterative

process because of the way development is conducted.

Examining these distinctions more closely demonstrates how

Development differs from the software development life

cycle. It is also essential to have a Development-conscious

model since the beginning phases of Development are more

critical and need more work than development. We have our

own set of procedures for creating computer programs called

"software development life cycles". It's important to follow

these models since they break down the development process

into discrete steps that must be completed in the correct order.

Quick repair, Boehm, Osborne, iterative-enhancement, full-

reuse, etc. are all examples of development-conscious

approaches. Traditional software development process

models, which accept change requests as input and conduct

all stages, are the basis for these process models.

Development Estimation

In order for software development to be a success, accurate

estimations are critical. Despite the fact that software

development is a significant activity and a significant portion

of the overall cost of software, researchers devote less

attention to software development estimate than they do to

software development estimation for new products. Software

development has fewer methods for estimating work than

software development. Models such as the ACT model, the

FP model, and COCOMO 2.0 reuse may estimate software

development effort. Source lines of code, function points, and

object points are used as scaling units in many estimate

techniques. The current software development estimating

methods are based on the old software development

approaches. Realistic results may be achieved using these

models since they take into account the size of a program in

terms of function points and source lines of code, which are

not appropriate metrics for extreme programming.

i.Changes in Legacy Code: Changes to existing code, such as

fixing bugs or adding new features, are at the heart of

development. Code changes are a time-consuming and costly

undertaking because of the absence of test coverage, outdated

documentation, and a lack of access to original programmers.

Because of its complicated structure, it's difficult to estimate

the effects of modifications to old code. As a consequence,

system instability and defects may emerge from code

modifications that have insufficient test coverage.

ii.Impact of XP practices on maintainability during

Development: The maintainability of a software product has

a significant impact on both the maintenance costs and the

product's overall lifespan. Non-XP software produced using

antiquated and unstructured code has a significant

maintainability concern. Because of this, an experiment is

needed to see how an iterative development life cycle

utilizing XP affects maintainability, productivity and other

aspects of Development. XP (or individual practices) has

been the subject of several evaluation studies, both by

industry professionals and by students in project courses, to

determine whether or not they have an impact on

development quality and productivity.

EXTREME PROGRAMMING

Extreme Programming (XP) is one of the numerous

prominent agile approaches. It was created in 1996 by Kent

Beck, Ward Cunningham, and Ron Jeffries, and released in

1999. The first time XP was used to update the Daimler-

Chrysler payment system was on the Chrysler

Comprehensive Compensation (C3) project. XP's

incremental development technique is best suited for

environments that are constantly changing. It is the goal of

XP to increase the quality and responsiveness of software to

changing client needs. Extensively used procedures like as

code reviews and testing have been adapted for usage in XP.

These procedures are applied to an extraordinary degree. XP

is organized on a philosophy with five values and a set of

twelve practices. The principles that are important to XP

include communication, simplicity, feedback, bravery and

respect. It's important to remember that these values are

interdependent and complement each other. Communication

and feedback, for example, aid in establishing a shared

understanding of the project's goals and progress.

• Small Releases

XP requires a two-week cycle. Every two weeks, some new

feature must be made available. In a few of months, the

system will be in full operation. Every day or every other

month, a new release is created. XP's iterative character is

underscored by its small release strategy. Since XP was

released so quickly, its feature set is quite limited. Customers

benefit from a sense of security about the project's

development because of these frequent, short releases.

Developers have validated the functionality of deployable

software at the conclusion of each iteration in preparation for

showing it to clients. For the end user, the customer may

select when and how the product is released. Small functional

units that make good business sense and can be released into

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

__

 1357
IJRITCC | December 2023, Available @ http://www.ijritcc.org

customer environments are the focus of the release planning.

• Metaphor

An example of this is the use of a metaphor, which is a short

story about how a system works. A metaphor or combination

of metaphors shared by consumers and programmers defines

the system's form. The goal of metaphor is to create an

architecture that is simple to communicate and elaborate

between the client and the developer.

• Sample Design

KISS (Keep It Simple, Stupid) is a philosophy advocated by

the XP methodology, which states that the development team

should strive to keep the system as simple as possible. To

ensure that every time the test runs, everything is

communicated exactly as desired by programmers, the code

must be concise and free of duplicate code.

• Tests

XP places a high value on testing and test-driven

development. It necessitates the creation of unit tests prior to

the actual authoring of code. Before developing a single line

of code, programmers write unit test cases. Minute by minute,

unit tests are written. Tests written by customers guarantee

that features are performed as planned. Refactoring requires

the usage of unit tests in order to get immediate feedback

from the system, which is why they are an essential part of

the process.

• Refactoring

Small, quick changes are made to the system without

affecting its behavior as part of the refactoring process.

Duplicate code is removed, communication is improved, the

process is simplified, or more flexibility is added so that all

tests continue to execute. A system's exterior behavior isn't

altered, but its extensibility and readability are. The

simplicity of refactoring allows you to experiment with other

designs. Code modifications need a strong sense of self-

confidence. It is true that refactoring streamlines designs. The

refactoring process facilitates the simplification of code in

order to make it more general.

• Pair Programming

Pair programming is a kind of programming in which two

programmers work together on the same computer system to

produce code. Driver and observer are the two roles that are

defined in this XP methodology. The observer evaluates the

code written by the driver.

CONCLUSION

To ensure excellent software is delivered on schedule with

little effort, several approaches have been created to impose

a disciplined procedure on the creation of software. In

response to the problems with traditional approaches, "agile

techniques" have emerged. XP is an early and widely used

form of agile development. Many in business and academics

have hailed XP as revolutionary, yet there is few quantitative

evidence to back up their assertions. The goal of this study

was to determine whether or not XP increased software

production, decreased the cost of change, and improved the

efficiency with which new developers picked up skills via

pair programming. Software development is often referred to

be an iterative process because of the way development is

conducted. Examining these distinctions more closely

demonstrates how Development differs from the software

development life cycle.

REFERENCES

[1] Hohl, P., Klünder, J., van Bennekum, A. et al. Back to

the future: origins and directions of the “Agile

Manifesto” – views of the originators. J Softw Eng Res

Dev 6, 15, 2018. https://doi.org/10.1186/s40411-018-

0059-z

[2] Theunissen, Theo & Heesch, Uwe & Avgeriou, Paris. A

mapping study on documentation in Continuous

Software Development. Information and Software

Technology. 142, 2022 106733.

10.1016/j.infsof.2021.106733.

[3] Shrivastava, Anchit & Jaggi, Isha & Katoch, Nandita &

Deepali, Gupta & Gupta, Sheifali. A Systematic Review

on Extreme Programming. Journal of Physics:

Conference Series. 1969, 2021, 012046. 10.1088/1742-

6596/1969/1/012046.

[4] Yasvi, Maleeha. Review On Extreme Programming-

XP, 2019

[5] Sadath, Lipsa & Karim, Kayvan & Gill, Stephen.

Extreme programming implementation in academia for

software engineering sustainability, (2018).

10.1109/ICASET.2018.8376925.

[6] Darwish, N. R. Enhancements in Scum Framework

Using Extreme Programming Practices. International

Journal of Intelligent Computing and Information

Sciences (IJICIS), Ain Shams University, 14(2), 53-67,

2014

[7] Abdullah, Elmuntasir & Abdelsatir, El-Tigani. Extreme

programming applied in a large-scale distributed

system. 442-446, 2013

10.1109/ICCEEE.2013.6633979.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

__

 1358
IJRITCC | December 2023, Available @ http://www.ijritcc.org

[8] Shrivastava, Anchit & Jaggi, Isha & Katoch, Nandita &

Deepali, Gupta & Gupta, Sheifali. A Systematic Review

on Extreme Programming. Journal of Physics:

Conference Series. 1969. 012046, 2021, 10.1088/1742-

6596/1969/1/012046.

[9] Rojas, S. & Guzmán, L. & Coronel, P. & Benítez, A.

Scrum with eXtreme Programming: An Agile

Alternative in Software Development, 2021,

10.1007/978-3-030-60467-7_29.

[10] Ekhlaif, M. & Elshaar, S.A. A systematic study of

extreme programming and their implementation in

Libyan Software. 23. 410-417, 2013,

10.5829/idosi.wasj.2013.23.03.13071,

http://www.ijritcc.org/

