International Journal on Recent and Innovation Trends in Computing and Communication
ISSN: 2321-8169 Volume: 11 Issue: 11
Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

A Review on Extreme Programming in Software
Development

Saurabh Parikh?, Dr. Ajay Jain?
'Research Scholar, Dr. APJ Abdul Kalam University Indore
2Supervisor, Dr. APJ Abdul Kalam University Indore

Abstract : In recent years, the practice of Software Development (SD) has become more common in the software industry. The
advantages of globalization, the economy, location, speed to market, organizational strategy, the availability of qualified workers,
and lower prices are all factors in this shift. One of the most well-known agile approaches is Extreme Programming (XP), which
places a premium on clarity, openness, bravery, and feedback. High demand and a need for goods from customers and clients are
putting a strain on the software industry's ability to provide high-quality items quickly. Small delays in the release may have a huge
influence on the company's image and profitability. In software engineering, cost estimate plays a significant role in contract
negotiation and project execution. A good Development plan reduces the risks and the inefficiencies related to the Development
task. Development effort and productivity are difficult to quantify because of a variety of internal organizational elements and
procedures related to the product itself. Development process productivity is often lower than development process productivity.

Keywords: Extreme Programming, Software, Development, Technology,

INTRODUCTION

Today's world is entirely influenced by SW technology.
There is almost no one left who doesn't use some kind of SW
technology on a daily basis now. These SW components may
be accessed in a variety of ways, including standalone
programs, web programming, mobile apps, and more. As the
usage of SW technology grows, so does the need for new,
improved, and high-quality SW products. Nowadays,
practically everyone is linked to technology in some way,
whether directly or indirectly, thanks to the widespread
availability of widely used mobile phones.

Government, as well as community and private efforts, have
all been impacted by the expansion of technology. Without
technology, we are unable to confront the world and lead
regular lives. As may be seen from the above, there are a large
number of users of SW. As the number of users grows, so
does the need for innovative and high-quality software. The
process of creating software is one of iterative, resource-
constrained, well-focused development. In order to entice
people to utilize technology, new and improved software
(SW) must be developed. It's a must for the industry's success.
High demand and a need for goods from customers and
clients are putting a strain on the software industry's ability to
provide high-quality items quickly. Small delays in the
release may have a huge influence on the company's image
and profitability. This situation is a result of companies still
adhering to the traditional software development process.
Until recently, the process of developing software was seen
as a sequence of processes that were followed by the

IJRITCC | December 2023, Available @ http://www.ijritcc.org

implementation of code. While it may have worked well at
first, as use grew, it became less appealing to both the client
and the end user. Increased consumer demand has resulted in
an increase in competition for the best possible product.

LITERATURE REVIEW

Hohl, P., Kliinder, J., van Bennekum, A. et al. (2018), In
2001, seventeen professionals set up the manifesto for agile
software development. They wanted to define values and
basic principles for better software development. On top of
being brought into focus, the manifesto has been widely
adopted by developers, in software-developing organizations
and outside the world of IT. Agile principles and their
implementation in practice have paved the way for radical
new and innovative ways of software and product
development. In parallel, the understanding of the
manifesto’s underlying principles evolved over time. This, in
turn, may affect current and future applications of agile
principles. This article presents results from a survey and an
interview study in collaboration with the original contributors
of the manifesto for agile software development.
Furthermore, it comprises the results from a workshop with
one of the original authors. This publication focuses on the
origins of the manifesto, the contributors’ views from today’s
perspective, and their outlook on future directions. We
evaluated 11 responses from the survey and 14 interviews to
understand the viewpoint of the contributors. They emphasize
that agile methods need to be carefully selected and agile
should not be seen as a silver bullet. They underline the
importance of considering the variety of different practices

1354

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

and methods that had an influence on the manifesto.
Furthermore, they mention that people should question their
current understanding of “agile” and recommend
reconsidering the core ideas of the manifesto.

Theo, Theunissen, Uwevan Heescha, ParisAvgeriou
(2022) With an increase in Agile, Lean, and DevOps software
methodologies over the last years (collectively referred to as
Continuous Software Development (CSD)), we have
observed that documentation is often poor. Objective: This
work aims at collecting studies on documentation challenges,
documentation practices, and tools that can support
documentation in CSD. Method: A systematic mapping
study was conducted to identify and analyze research on
documentation in CSD, covering publications between 2001
and 2019. Results: A total of 63 studies were selected. We
found 40 studies related to documentation practices and
challenges, and 23 studies related to tools used in CSD. The
challenges include: informal documentation is hard to
understand, documentation is considered as waste,
productivity is measured by working software only,
documentation is out-of-sync with the software and there is a
short-term focus. The practices include: non-written and
informal communication, the usage of development artifacts
for documentation, and the use of architecture frameworks.
We also made an inventory of numerous tools that can be
used for documentation purposes in CSD. Overall, we
recommend the usage of executable documentation, modern
tools and technologies to retrieve information and transform
it into documentation, and the practice of minimal
documentation upfront combined with detailed design for
knowledge transfer afterwards. Conclusion: It is of
paramount importance to increase the quantity and quality of
documentation in CSD. While this remains challenging,
practitioners will benefit from applying the identified
practices and tools in order to mitigate the stated challenges.

Shrivastava, et al (2021) Extreme programming was
developed as a solution to the problem of method selection
that has arisen with the rise of start-ups and the transition of
established businesses to online commerce. In this study, we
aimed to collect a variety of relevant examples. One of the
most well-known agile approaches to developing software is
called extreme programming. Customer happiness, improved
software quality, and effective project management are all
benefits of extreme programming. Teams tend to be small,
but everyone works well together. This paradigm is based on
ongoing dialogue and the incorporation of new ideas and
features, making it a dynamic approach to creating software.

Maleeha, Yasvi (2019) Extreme programming is an iterative
approach to software development that attempts to make

IJRITCC | December 2023, Available @ http://www.ijritcc.org

better software and aid in finding the best possible solution.
Extreme Programming is distinct from other approaches to
software development because of its emphasis on flexibility
and rapid response to evolving client needs. Better outcomes
have been achieved in software development thanks to the use
of extreme programming as a technique.

Sadath, Lipsa & Karim, Kayvan & Gill, Stephen (2018)
Developing software that is both functional and easily
maintained in order to fulfill the needs of a certain use case is
an example of software engineering. Due to the higher degree
of abstraction required for this kind of manufacturing, it
differs fundamentally from other forms of engineering
practice. This reality gives rise to several strategies for long-
term success in the software business. This method's
significance in ensuring the long-term health of the academic
software sector cannot be overstated. In order to establish a
shared understanding and technical foundation in the
academic community, we propose a framework called XPIA
(Extreme Programming In Academia) that employs tried-
and-true methods from the software engineering industry,
with a special emphasis on pair programming.

SOFTWARE DEVELOPMENT

It is expected that software will evolve and alter throughout
the course of its lifespan. A software product's lifespan
necessitates development. For the sake of keeping the
program running, preventing and correcting software errors,
and enhancing its usefulness, software development is
necessary. Developing software is the process of making
changes to a software system or a component after it has been
delivered in order to fix bugs, enhance performance or other
characteristics, or to adapt to changing environmental
conditions. Corrective, adaptive, perfect, and preventative are
some of the classifications of Development. Adaptive
Development focuses on adapting to changes in the software
environment, whereas perfective Development focuses on
meeting new user needs. Error correction is under corrective
development, while error prevention falls under preventive
development, which aims to keep problems from occurring in
the first place. It has been noticed that corrective development
is believed to be conventional, while others are considered to
be a kind of evolution in software. Most change requests in
Development fall into the corrective or perfective category,
according to recent research.

Development accounts for between 40 and 90 percent of the
overall cost of a software system's lifespan, according to
many empirical studies. There is always a need for new
software systems to stay up with developments in the
software environment. It is more cost-effective to reuse and

1355

http://www.ijritcc.org/
https://www.sciencedirect.com/topics/computer-science/devops
https://www.sciencedirect.com/topics/computer-science/systematic-mapping-study
https://www.sciencedirect.com/topics/computer-science/systematic-mapping-study

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

improve existing systems rather than to develop a new one,
thanks to the economic advantages. The current techniques
and models of development are taken from the current
development approaches and models. New software
development paradigms have emerged as a result of the
dynamic and demanding nature of the software industry.

Software development is often referred to be an iterative
process because of the way development is conducted.
Examining these distinctions more closely demonstrates how
Development differs from the software development life
cycle. It is also essential to have a Development-conscious
model since the beginning phases of Development are more
critical and need more work than development. We have our
own set of procedures for creating computer programs called
"software development life cycles". It's important to follow
these models since they break down the development process
into discrete steps that must be completed in the correct order.
Quick repair, Boehm, Osborne, iterative-enhancement, full-
reuse, etc. are all examples of development-conscious
approaches. Traditional software development process
models, which accept change requests as input and conduct
all stages, are the basis for these process models.

Development Estimation

In order for software development to be a success, accurate
estimations are critical. Despite the fact that software
development is a significant activity and a significant portion
of the overall cost of software, researchers devote less
attention to software development estimate than they do to
software development estimation for new products. Software
development has fewer methods for estimating work than
software development. Models such as the ACT model, the
FP model, and COCOMO 2.0 reuse may estimate software
development effort. Source lines of code, function points, and
object points are used as scaling units in many estimate
techniques. The current software development estimating
methods are based on the old software development
approaches. Realistic results may be achieved using these
models since they take into account the size of a program in
terms of function points and source lines of code, which are
not appropriate metrics for extreme programming.

i.Changes in Legacy Code: Changes to existing code, such as
fixing bugs or adding new features, are at the heart of
development. Code changes are a time-consuming and costly
undertaking because of the absence of test coverage, outdated
documentation, and a lack of access to original programmers.
Because of its complicated structure, it's difficult to estimate
the effects of modifications to old code. As a consequence,
system instability and defects may emerge from code

IJRITCC | December 2023, Available @ http://www.ijritcc.org

modifications that have insufficient test coverage.

ii.iImpact of XP practices on maintainability during

Development: The maintainability of a software product has
a significant impact on both the maintenance costs and the
product's overall lifespan. Non-XP software produced using
antiquated and unstructured code has a significant
maintainability concern. Because of this, an experiment is
needed to see how an iterative development life cycle
utilizing XP affects maintainability, productivity and other
aspects of Development. XP (or individual practices) has
been the subject of several evaluation studies, both by
industry professionals and by students in project courses, to
determine whether or not they have an impact on
development quality and productivity.

EXTREME PROGRAMMING

Extreme Programming (XP) is one of the numerous
prominent agile approaches. It was created in 1996 by Kent
Beck, Ward Cunningham, and Ron Jeffries, and released in
1999. The first time XP was used to update the Daimler-
Chrysler payment system was on the Chrysler
Comprehensive ~ Compensation (C3) project. XP's
incremental development technique is best suited for
environments that are constantly changing. It is the goal of
XP to increase the quality and responsiveness of software to
changing client needs. Extensively used procedures like as
code reviews and testing have been adapted for usage in XP.
These procedures are applied to an extraordinary degree. XP
is organized on a philosophy with five values and a set of
twelve practices. The principles that are important to XP
include communication, simplicity, feedback, bravery and
respect. It's important to remember that these values are
interdependent and complement each other. Communication
and feedback, for example, aid in establishing a shared
understanding of the project's goals and progress.

. Small Releases

XP requires a two-week cycle. Every two weeks, some new
feature must be made available. In a few of months, the
system will be in full operation. Every day or every other
month, a new release is created. XP's iterative character is
underscored by its small release strategy. Since XP was
released so quickly, its feature set is quite limited. Customers
benefit from a sense of security about the project's
development because of these frequent, short releases.
Developers have validated the functionality of deployable
software at the conclusion of each iteration in preparation for
showing it to clients. For the end user, the customer may
select when and how the product is released. Small functional
units that make good business sense and can be released into

1356

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

customer environments are the focus of the release planning.
. Metaphor

An example of this is the use of a metaphor, which is a short
story about how a system works. A metaphor or combination
of metaphors shared by consumers and programmers defines
the system's form. The goal of metaphor is to create an
architecture that is simple to communicate and elaborate
between the client and the developer.

. Sample Design

KISS (Keep It Simple, Stupid) is a philosophy advocated by
the XP methodology, which states that the development team
should strive to keep the system as simple as possible. To
ensure that every time the test runs, everything is
communicated exactly as desired by programmers, the code
must be concise and free of duplicate code.

° Tests

XP places a high value on testing and test-driven
development. It necessitates the creation of unit tests prior to
the actual authoring of code. Before developing a single line
of code, programmers write unit test cases. Minute by minute,
unit tests are written. Tests written by customers guarantee
that features are performed as planned. Refactoring requires
the usage of unit tests in order to get immediate feedback
from the system, which is why they are an essential part of
the process.

. Refactoring

Small, quick changes are made to the system without
affecting its behavior as part of the refactoring process.
Duplicate code is removed, communication is improved, the
process is simplified, or more flexibility is added so that all
tests continue to execute. A system's exterior behavior isn't
altered, but its extensibility and readability are. The
simplicity of refactoring allows you to experiment with other
designs. Code modifications need a strong sense of self-
confidence. It is true that refactoring streamlines designs. The
refactoring process facilitates the simplification of code in
order to make it more general.

. Pair Programming

Pair programming is a kind of programming in which two
programmers work together on the same computer system to
produce code. Driver and observer are the two roles that are
defined in this XP methodology. The observer evaluates the
code written by the driver.

IJRITCC | December 2023, Available @ http://www.ijritcc.org

CONCLUSION

To ensure excellent software is delivered on schedule with
little effort, several approaches have been created to impose
a disciplined procedure on the creation of software. In
response to the problems with traditional approaches, "agile
techniques"” have emerged. XP is an early and widely used
form of agile development. Many in business and academics
have hailed XP as revolutionary, yet there is few quantitative
evidence to back up their assertions. The goal of this study
was to determine whether or not XP increased software
production, decreased the cost of change, and improved the
efficiency with which new developers picked up skills via
pair programming. Software development is often referred to
be an iterative process because of the way development is
conducted. Examining these distinctions more closely
demonstrates how Development differs from the software
development life cycle.

REFERENCES

[1] Hohl, P., Klinder, J., van Bennekum, A. et al. Back to
the future: origins and directions of the “Agile
Manifesto” — views of the originators. J Softw Eng Res
Dev 6, 15, 2018. https://doi.org/10.1186/s40411-018-
0059-z

[2] Theunissen, Theo & Heesch, Uwe & Avgeriou, Paris. A
mapping study on documentation in Continuous
Software Development. Information and Software
Technology. 142, 2022 106733.
10.1016/j.infsof.2021.106733.

[3] Shrivastava, Anchit & Jaggi, Isha & Katoch, Nandita &
Deepali, Gupta & Gupta, Sheifali. A Systematic Review
on Extreme Programming. Journal of Physics:
Conference Series. 1969, 2021, 012046. 10.1088/1742-
6596/1969/1/012046.

[4] Yasvi, Maleeha. Review On Extreme Programming-
XP, 2019

[5] Sadath, Lipsa & Karim, Kayvan & Gill, Stephen.
Extreme programming implementation in academia for
software engineering sustainability, (2018).
10.1109/ICASET.2018.8376925.

[6] Darwish, N. R. Enhancements in Scum Framework
Using Extreme Programming Practices. International
Journal of Intelligent Computing and Information
Sciences (1JICIS), Ain Shams University, 14(2), 53-67,
2014

[71 Abdullah, EImuntasir & Abdelsatir, EI-Tigani. Extreme
programming applied in a large-scale distributed
system. 442-446, 2013
10.1109/ICCEEE.2013.6633979.

1357

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication
ISSN: 2321-8169 Volume: 11 Issue: 11
Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

[8] Shrivastava, Anchit & Jaggi, Isha & Katoch, Nandita & Alternative in Software Development, 2021,
Deepali, Gupta & Gupta, Sheifali. A Systematic Review 10.1007/978-3-030-60467-7_29.
on Extreme Programming. Journal of Physics: [10] Ekhlaif, M. & Elshaar, S.A. A systematic study of
Conference Series. 1969. 012046, 2021, 10.1088/1742- extreme programming and their implementation in
6596/1969/1/012046. Libyan Software. 23. 410-417, 2013,
[9] Rojas, S. & Guzman, L. & Coronel, P. & Benitez, A. 10.5829/idosi.wasj.2013.23.03.13071,

Scrum with eXtreme Programming: An Agile

1358
IJRITCC | December 2023, Available @ http://www.ijritcc.org

http://www.ijritcc.org/

