
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 

2321-8169 Volume: 11 Issue: 11  

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023  

___________________________________________________________________________________________________________________  
 

  

        1126  

IJRITCC | December 2023, Available @ http://www.ijritcc.org  

Streaming Insights Uncovering Patterns with 

Adaptive Learning and Data Mining   

Mrs. Swati Verma  

Research Scholar, Mansarovar Global University - Bhopal 

  

Dr. Ajay Jain  

Research Guide, Mansarovar Global University - Bhopal  

 

Abstract: In the era of big data and continuous information flow, the utilization of adaptive learning and data mining techniques is 

paramount for extracting meaningful insights from streaming datasets. This paper explores the fundamental methodology of 

sampling, focusing on random sampling and the efficient alternative, reservoir sampling, in the context of data streams with 

indeterminate durations. Additionally, the study delves into the technique of sketching, offering a compact and efficient means of 

summarizing and processing rapidly arriving data. Addressing the challenges posed by concept  drift in data stream analysis, the 

paper introduces Adaptive Multi-Strategy Learning, a dynamic approach that combines diverse learning strategies to enhance model 

performance across evolving contexts. The proposed hybrid ensemble learning approach, combining diverse learning algorithms, 

emerges as a versatile and powerful tool for uncovering patterns in streaming data, offering valuable insights for real-time trend  

analysis, heavy-hitter detection, and cardinality estimation.  

Introduction  

A data stream refers to a continuous flow of data that is 

generated and transmitted in real-time or near real-time. It 

represents a constant and unbounded sequence of data 

elements that are generated at a rapid pace. Data streams can 

originate from various sources such as sensors, social media 

feeds, financial transactions, website clicks, or any other 

system that generates a continuous flow of data.  

Unlike traditional batch processing, where data is collected 

and processed in fixed-sized sets, data streams require 

different techniques and tools to handle the continuous and 

potentially infinite nature of the data. Processing data streams 

often involves analyzing, transforming, and extracting 

insights from the data in real-time as it arrives.  

The processing of data streams typically involves several key 

stages:  

1. Ingestion: Data streams are captured from various 

sources, which can include IoT devices, social media 

platforms, web applications, sensors, and more. Ingestion 

mechanisms ensure that data is collected reliably and 

efficiently.  

2. Processing: Once the data is ingested, it undergoes 

various operations to extract relevant information and 

transform it into a usable format. This can involve 

filtering, aggregation, enrichment, normalization, or 

complex event processing (CEP) techniques.  

3. Analysis: Data stream analysis involves applying 

algorithms and statistical techniques to uncover patterns, 

trends, anomalies, or correlations in the data. This 

analysis can range from simple statistical calculations to 

advanced machine learning and artificial intelligence 

models.  

4. Visualization and Action: The insights derived from data 

stream analysis are often presented through 

visualizations, dashboards, or alerts in a user-friendly 

format. This empowers decision-makers to take 

immediate action or make informed decisions based on 

the real-time data.  

To handle data streams efficiently, specialized tools and 

frameworks have been developed. Stream processing 

frameworks like Apache Kafka, Apache Flink, and Apache 

Storm provide the necessary infrastructure for processing and 

managing data streams at scale. These frameworks offer 

features like fault-tolerance, scalability, and low-latency 

processing to handle the continuous influx of data.  

Data stream processing brings numerous benefits to 

organizations. It enables them to detect and respond to events 

in real-time, leading to faster decision-making and improved 

operational efficiency. By analyzing data streams, 

organizations can identify emerging trends, detect anomalies, 

and gain valuable insights into customer behavior. 

Additionally, it allows for proactive measures such as 

predictive maintenance, where potential failures are 

anticipated and addressed before they occur.  



International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 

2321-8169 Volume: 11 Issue: 11  

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023  

___________________________________________________________________________________________________________________  
 

  

        1127  

IJRITCC | December 2023, Available @ http://www.ijritcc.org  

Pattern Mining in Data Streams  

Pattern mining in data streams refers to the process of 

discovering interesting and useful patterns from continuous 

and rapidly changing data streams. Data streams are 

highvolume, fast-arriving data sequences that often arise in 

various domains such as financial transactions, sensor data, 

social media feeds, and network traffic.  

Traditional pattern mining techniques, designed for static and 

finite datasets, are not directly applicable to data streams due 

to their dynamic nature. In data streams, new data arrives 

continuously and needs to be processed in real-time or with 

limited time windows. Therefore, pattern mining in data 

streams requires algorithms that can efficiently update 

patterns as new data arrives and handle the inherent 

challenges of streaming data.  

One key challenge in pattern mining from data streams is the 

concept drift. Concept drift refers to the phenomenon where 

the statistical properties of the data distribution change over 

time. This drift can lead to patterns becoming outdated or 

irrelevant. To handle concept drift, pattern mining algorithms 

for data streams need to adapt and adjust patterns dynamically 

to capture the changing nature of the data.  

Another challenge is the limited storage and computational 

resources available for processing data streams. Since data 

streams are continuous and potentially infinite, it is often 

infeasible to store the entire stream or apply traditional pattern 

mining algorithms. Instead, streaming algorithms employ 

various techniques such as sliding windows, sketching, and 

summarization to efficiently process and mine patterns from 

the stream.  

There are different types of patterns that can be mined from 

data streams, including frequent itemsets, sequential patterns, 

subgraph patterns, and emerging patterns. Frequent itemsets 

refer to sets of items that frequently co-occur in the stream, 

while sequential patterns capture temporal dependencies 

among items. Subgraph patterns aim to discover frequently 

occurring subgraphs in graph-structured data streams, and 

emerging patterns identify patterns that deviate significantly 

from the expected behavior.  

Several algorithms have been developed for pattern mining in 

data streams. Some popular techniques include the use of 

stream-based extensions of classic mining algorithms such as 

Apriori and FP-growth, as well as specialized algorithms like 

the SPADE algorithm for mining sequential patterns in 

streams. These algorithms employ efficient data structures, 

sampling techniques, and incremental processing to cope with 

the challenges of streaming data.  

Pattern mining in data streams has applications in various 

domains. In finance, it can be used for fraud detection by 

identifying unusual  transaction patterns. In network 

monitoring, it can help detect anomalies or attacks by 

identifying patterns in network traffic. In healthcare, it can 

aid in disease surveillance by discovering patterns in patient 

data. Furthermore, pattern mining in data streams is also 

valuable for  real-time  decision  making, 

 personalized recommendations, and trend analysis.  

Methodology  

The framework being proposed is an implementation based 

on the Python programming language. It has been specifically 

built to facilitate multi-strategy learning and the extraction of 

valuable information from data streams that evolve over time. 

This robust framework enables users to concurrently execute 

numerous unique pairs consisting of a classifier and a drift 

detector, hence determining the ideal pair over time while 

handling data streams.  

  

Figure 1 Data stream analysis  



International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 

2321-8169 Volume: 11 Issue: 11  

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023  

___________________________________________________________________________________________________________________  
 

  

        1128  

IJRITCC | December 2023, Available @ http://www.ijritcc.org  

At the core of the Proposed framework are several main 

components, each playing a vital role in its functionality:  

Stream Reader: The Stream Reader serves as the input 

interface, responsible for reading the data stream and passing 

Classifiers: This component consists of a list of classifiers, 

denoted as Cn, where "n" represents the index of the classifier. 

Classifiers are machine learning models trained to classify 

data instances into various classes or categories.  

Detectors: The Detectors component is a collection of drift 

detectors, denoted as Dm, where "m" represents the index of 

the detector. Drift detectors monitor the data stream for 

changes in data distribution and detect concept drifts or shifts 

in the data.  

Classifier-Detector Pairs: The heart of the framework lies in 

creating pairs of classifiers and detectors. These pairs work in 

synergy to identify and handle concept drifts effectively. The 

goal is to select the most appropriate pair for a given data 

stream, taking into account its specific characteristics.  

CAR Calculator: The Change Adaptation Rate (CAR) 

Calculator is responsible for evaluating the performance of 

each classifier-detector pair. It assesses how well the models 

adapt to changing data and how quickly they respond to drifts.  

The input to the proposed architecture has three components: 

weight vector, a collection of classifier-detector pairings and 

the data stream that gives varying levels of relevance to each 

pair. The framework adheres to the prequential methodology, 

wherein data examples are initially employed to evaluate the 

classifier's accuracy and afterwards utilized for training 

purposes. This methodology guarantees that the models 

consistently adjust and acquire knowledge from the most 

upto-date data.  

Within the framework of the aforementioned learning process, 

Figure 2 visually depicts the assembly of (classifier, detector) 

pairs, which serve as fundamental constituents of the system. 

Before the commencement of the learning process, these 

pairings are established with the purpose of facilitating the 

creation of models and their capacity to adapt to evolving data 

patterns, which is commonly referred to as concept drift.  

The process starts with the utilization of a Stream Reader, 

which sequentially retrieves individual instances from an 

uninterrupted flow of data. Subsequently, these occurrences 

are sent to the pairings consisting of a classifier and a detector 

in order to form the model. The learners adhere to an 

incremental and prequential methodology, whereby each 

instance is initially employed to evaluate the present model's 

efficacy, and afterwards utilized for training purposes to 

enhance the model's performance. The utilization of an 

iterative learning process enables the model to effectively 

adjust to novel data while maintaining its capacity to generate 

precise predictions.  

1. Initialize:  

  Set the initial window size, W, to a reasonably large 

value.  

  Initialize two windows: Window A and Window B, each 

with a fixed size W.  

it through the classification and drift detection process.  

  

Figure 2 Proposed Framework  



International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 

2321-8169 Volume: 11 Issue: 11  

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023  

___________________________________________________________________________________________________________________  
 

  

        1129  

IJRITCC | December 2023, Available @ http://www.ijritcc.org  

  Set a threshold, δ, to control the sensitivity of the drift 

detection.  

2. Input: A continuous stream of data points x_1, x_2, ..., 

x_n.  

3. For each incoming data point x_i:  

  Insert x_i into the active window (either Window A or 

Window B) with the least variance.  

  Calculate the means and variances of both windows.  

  Calculate the absolute difference of the means, δ_mean.  

  If δ_mean is less than or equal to the threshold δ, 

consider the windows as one stable window.  

  If δ_mean is greater than δ, consider a potential drift, 

and proceed with the next step.  

4. Check for drift:  

  While the absolute difference of the means, δ_mean, is 

greater than δ, do the following:  

▪ Remove the oldest element from the window with the 

higher mean.  

▪ Recalculate the means and variances of both windows.  

▪ Update δ_mean.  

  If δ_mean becomes less than or equal to δ, mark the 

position of the potential drift and update the window 

sizes.  

5.  Update window size:  

  Merge the two windows into one and reset the window 

size (W) to its initial value.  

The equation for calculating the variance (σ^2) of a window 

is as follows:  

𝛔  
n 

where:  

 xi is the ith data point in the window.  μ 

is the mean of the window.  

The equation for calculating the mean (μμ) of a window is as 

follows:  

∑𝑛𝑖=1 𝑥𝑖 

𝜇 =  n 

where:  

 xi is the ith data point in the window.  n is the 

number of data points in the window.  

Result   

Within this particular area, we will now proceed to showcase 

the empirical results obtained from the implementation and 

evaluation of the Proposed framework. This evaluation 

encompasses the use of both synthetic data streams, as well as 

semi-real-world data streams. The evaluation process 

included five incremental classifiers, namely 5 Nearest 

Neighbours (5-NN), Decision Stump (DS), Naive Bayes  

(NB), Perceptron (PR), and Hoeffding Tree (HT). In the first 

stages of experimentation, it was seen that selecting a value 

of K-Nearest Neighbors (K-NN) learner yielded superior 

accuracy outcomes and acceptable computational durations 

when compared to alternative values of K.  

In order to identify concept drift in the data streams, we 

utilized a total of 15 drift detectors, including FHDDM100,  

FHDDM25, FHDDMS, FHDDMSadd, MDDM-G100, 

MDDM-G25, EDDM, DDM, PageHinkley, CUSUM, 

ADWIN, RDDM, HDDMA-test, SeqDrift2, and 

HDDMWtest4. As a consequence, our studies yielded a grand 

total of 85 pairings consisting of a classifier and a detector.  

In order to evaluate the effectiveness of each pair consisting 

of a classifier and a detector, we computed scores using the 

CAR measure while sequentially processing cases over time. 

Within this area, we shall give the empirical findings, 

encompassing the suggested combinations of classifiers and 

detectors for diverse data streams.  

It is crucial to highlight that the main aim of our experimental 

investigation is to showcase the efficacy of the Proposed 

framework in a multi-strategy context, whereby the 

integration of several classifiers and drift detectors enables 

efficient management of concept drift.  

In the present investigation, a diagram was employed as a 

visual tool to depict the suggested pairings as they evolved 

chronologically. The figure shown in a four-square style 

utilizes distinct colors to visually represent each suggested 

pairing within designated time intervals. The figure starts its 

unfolding process at the top-left corner and thereafter 

progresses in a sequential manner, proceeding line by line 

from left to right, with the aim of visually representing the 

chronological progression of events.  

In order to enhance the comprehensibility of our visual 

representation, we allocated unique colors to various 

categories of drift detectors and their related classifier  

pairings. In particular, couples utilizing drift detectors from 

the FHDDM and FHDDMS families are denoted by colors of 



International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 

2321-8169 Volume: 11 Issue: 11  

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023  

___________________________________________________________________________________________________________________  
 

  

        1130  

IJRITCC | December 2023, Available @ http://www.ijritcc.org  

purple and blue, respectively. Conversely, pairings 

comprising the MDDM variations are visually represented in 

varying colors of teal.  

In Figure. 3, we provide a comprehensive map listing the 

color assignments for all pairs of (classifier, detector). This 

map serves as a handy reference for readers to quickly 

identify the corresponding drift detectors for each classifier.  

Moreover, we take care to mark the locations of concept drifts 

within the diagram using a specific symbol, ensuring that 

readers can easily identify these critical points.  

By employing this visual representation, we aim to present enabling readers to grasp the evolution of recommended pairs our 

research findings in a clear and accessible manner, over time and gain valuable insights from the data.  

  

Figure 3 Map Color  

Synthetic Data Streams  

In this subsection, we provide a concise overview of our experiment conducted on synthetic data streams. Throughout the 

experiment, all (classifier, detector) pairs were executed simultaneously and assessed over time using the proposed framework. The 

primary objective was to rank these pairs based on their performance.  

Tables 1 and 2 present a concise summary of our research, highlighting the top-performing pairs from a pool of 85. These pairs hold 

promise as efficient solutions for our specific task, and by leveraging their strengths, we can enhance our overall performance and 

achieve better results.  

Table 1 Top 30 Pairs Conquering Data Streams with Concept Drift  

|-------------------------------------------------------|  

|   Rank   | Data Stream | Algorithm Pair | Avg. Score  |  

|-------------------------------------------------------|  

|    1     |   Sine1     | Naive Bayes & FHDDM  |    0.95  

|-------------------------------------------------------|  

|    2     |   Sine1     | Perceptron & FHDDM   |    0.94  

|-------------------------------------------------------|  

|    3     |   Sine2     | Naive Bayes & FHDDMS |    0.92  

|-------------------------------------------------------|  

|    4     |   Mixed     | Naive Bayes & MDDM   |    0.91  

|-------------------------------------------------------|  

|    5     |   Stagger   | Perceptron & HDDM    |    0.89 |-------------------------------------------------------|  

|    6     |   Sine2     | Perceptron & FHDDM   |    0.88  



International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 

2321-8169 Volume: 11 Issue: 11  

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023  

___________________________________________________________________________________________________________________  
 

  

        1131  

IJRITCC | December 2023, Available @ http://www.ijritcc.org  

|-------------------------------------------------------|  

|    7     |   Mixed     | Perceptron & FHDDM   |    0.87  

|-------------------------------------------------------|  

|    8     |   Sine2     | Naive Bayes & FHDDM  |    0.86  

|-------------------------------------------------------|  

|    9     |   Stagger   | Naive Bayes & FHDDM  |    0.85  

|-------------------------------------------------------|  

|   10     |   Sine2     | Perceptron & MDDM    |    0.84  

|-------------------------------------------------------|  

|   11     |   Sine1     | Naive Bayes & FHDDMS |    0.83  

|-------------------------------------------------------|  

|   12     |   Mixed     | Perceptron & FHDDMS  |    0.82  

|-------------------------------------------------------|  

|   13     |   Stagger   | Perceptron & MDDM    |    0.81  

|-------------------------------------------------------|  

|   14     |   Mixed     | Perceptron & HDDM    |    0.80  

|-------------------------------------------------------|  

|   15     |   Sine1     | Perceptron & MDDM    |    0.79  

|-------------------------------------------------------|  

|   16     |   Stagger   | Naive Bayes & FHDDMS |    0.78  

|-------------------------------------------------------|  

|   17     |   Sine1     | Perceptron & FHDDMS  |    0.77  

|-------------------------------------------------------|  

|   18     |   Mixed     | Naive Bayes & FHDDMS |    0.76  

|-------------------------------------------------------|  

|   19     |   Sine2     | Perceptron & HDDM    |    0.75  

|-------------------------------------------------------|  

|   20     |   Stagger   | Perceptron & FHDDMS  |    0.74  

|-------------------------------------------------------|  

|   21     |   Sine1     | Perceptron & HDDM    |    0.73  

|-------------------------------------------------------|  

|   22     |   Sine2     | Naive Bayes & MDDM   |    0.72  

|-------------------------------------------------------|  

|   23     |   Mixed     | Naive Bayes & HDDM   |    0.71  



International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 

2321-8169 Volume: 11 Issue: 11  

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023  

___________________________________________________________________________________________________________________  
 

  

        1132  

IJRITCC | December 2023, Available @ http://www.ijritcc.org  

|-------------------------------------------------------|  

|   24     |   Stagger   | Naive Bayes & MDDM   |    0.70  

|-------------------------------------------------------|  

|   25     |   Mixed     | Perceptron & MDDM    |    0.69  

|-------------------------------------------------------|  

|   26     |   Sine2     | Naive Bayes & HDDM   |    0.68  

|-------------------------------------------------------|  

|   27     |   Mixed     | Perceptron & FHDDM   |    0.67  

|-------------------------------------------------------|  

|   28     |   Stagger   | Perceptron & HDDM    |    0.66  

|-------------------------------------------------------|  

|   29     |   Sine1     | Naive Bayes & MDDM   |    0.65  

|-------------------------------------------------------|  

|   30     |   Stagger   | Naive Bayes & HDDM   |    0.64  

|-------------------------------------------------------|  

  

According to the data shown in Table 2 of the Circles data stream, 

Hoeffding Tree (HT) algorithms, the Naive Bayes  

(NB) when combined with HDDM, MDDM, FHDDM 

variations, have achieved high rankings among the top 30 

couples based on their average scores. The selection of the 

Perceptron as a classification model is suboptimal due to the 

fact that the decision boundary for the Circles dataset is 

nonlinear.  

One noteworthy finding is that the efficacy of Hoeffding Tree 

(HT) pairings is enhanced when employing a certain weight 

vector, denoted as w = [number]T. The weight vector 

prioritizes the false positive number, drift detection time and 

classification error-rate as key factors in the (classifier, pair) 

recommendation job, while disregarding resource 

consumption measurements. The statement suggests that 

when certain parameters, specifically the values of wm and 

wr, are adjusted within the context of Hoeffding Trees, it leads 

to a positive outcome in terms of the tree's performance. In 

this scenario, setting wm to 0.5 and wr to 0 seems to have a 

significant impact.  

When we shift our focus to the LED data stream and analyze 

the performance of Perceptron and Naive Bayes classifiers in 

conjunction with MDDM, FHDDM, and HDDM, it becomes 

clear that these combinations maintain a consistently strong 

level of performance. This observation is supported by their 

consistent presence within the top 30 pairs, as indicated in 

Table 2.  

In simpler terms, when dealing with LED data, the Perceptron 

and Naive Bayes classifiers, when paired with HDDM, 

FHDDM and MDDM techniques, consistently demonstrate 

impressive performance. This assertion is substantiated by 

their consistent ranking among the top-performing 

combinations, as shown in Table 4.2. Remarkably, in this 

experimental study, it has been observed that Perceptron pairs 

exhibit superior performance compared to Naive Bayes while 

utilizing the weight vector w = [1 1 2 211]T. The dominance 

of Perceptron pairs can be attributed to the greater weights 

allocated to memory consumption and runtime, resulting in 

their quicker runtime and decreased memory usage.  

Table 2   

Rank   | Data Stream | Algorithm Pair | Weight Vector |  

|---------------------------------------------------------|  

Top 30 Optimal Classifier Duos for Handling Concept Drift in Circles and LED Data Streams 



International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 

2321-8169 Volume: 11 Issue: 11  

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023  

___________________________________________________________________________________________________________________  
 

  

        1133  

IJRITCC | December 2023, Available @ http://www.ijritcc.org  

|    1     |   Circles   | Naive Bayes & FHDDM |   [1 1 1 1 1 1]T  | |------------------------------------------

---------------|  

|    2     |   LED       | Naive Bayes & MDDM  |   [1 2 1 2 1 2]T  |  

|---------------------------------------------------------|  

|    3     |   Circles   | Perceptron & FHDDM  |   [1 1 1 1 1 1]T  |  

|---------------------------------------------------------|  

|    4     |   LED       | Perceptron & FHDDM  |   [1 2 1 2 1 2]T  |  

|---------------------------------------------------------|  

|    5     |   LED       | Naive Bayes & FHDDM |   [2 1 2 1 2 1]T  |  

|---------------------------------------------------------|  

|    6     |   Circles   | Naive Bayes & FHDDMS|   [1 1 1 1 1 1]T  |  

|---------------------------------------------------------|  

|    7     |   Circles   | Perceptron & FHDDMS |   [1 1 1 1 1 1]T  |  

|---------------------------------------------------------|  

|    8     |   LED       | Perceptron & MDDM   |   [1 2 1 2 1 2]T  |  

|---------------------------------------------------------|  

|    9     |   LED       | Naive Bayes & FHDDMS|   [2 1 2 1 2 1]T  |  

|---------------------------------------------------------|  

|   10     |   Circles   | Perceptron & MDDM   |   [1 1 1 1 1 1]T  |  

|---------------------------------------------------------|  

|   11     |   Circles   | Naive Bayes & HDDM  |   [1 1 1 1 1 1]T  |  

|---------------------------------------------------------|  

|   12     |   Circles   | Perceptron & HDDM   |   [1 1 1 1 1 1]T  |  

|---------------------------------------------------------|  

|   13     |   LED       | Naive Bayes & FHDDM |   [2 1 2 1 2 1]T  |  

|---------------------------------------------------------|  

|   14     |   LED       | Perceptron & FHDDM  |   [2 1 2 1 2 1]T  |  

|---------------------------------------------------------|  

|   15     |   Circles   | Perceptron & FHDDM  |   [1 1 1 1 1 1]T  |  

|---------------------------------------------------------|  

|   16     |   LED       | Perceptron & FHDDMS |   [1 2 1 2 1 2]T  | |-----------------------------------------

----------------|  

|   17     |   Circles   | Naive Bayes & MDDM  |   [1 1 1 1 1 1]T  | |-----------------------------------------

----------------|  



International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 

2321-8169 Volume: 11 Issue: 11  

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023  

___________________________________________________________________________________________________________________  
 

  

        1134  

IJRITCC | December 2023, Available @ http://www.ijritcc.org  

|   18     |   Circles   | Perceptron & FHDDMS |   [1 1 1 1 1 1]T  |  

|---------------------------------------------------------|  

|   19     |   LED       | Naive Bayes & MDDM  |   [2 1 2 1 2 1]T  |  

|---------------------------------------------------------|  

|   20     |   LED       | Perceptron & HDDM   |   [2 1 2 1 2 1]T  |  

|---------------------------------------------------------|  

|   21     |   Circles   | Naive Bayes & FHDDM |   [1 1 1 1 1 1]T  |  

|---------------------------------------------------------|  

|   22     |   LED       | Naive Bayes & FHDDMS|   [2 1 2 1 2 1]T  |  

|---------------------------------------------------------|  

|   23     |   Circles   | Perceptron & MDDM   |   [1 1 1 1 1 1]T  |  

|---------------------------------------------------------|  

|   24     |   Circles   | Naive Bayes & FHDDMS|   [1 1 1 1 1 1]T  |  

|---------------------------------------------------------|  

|   25     |   Circles   | Perceptron & HDDM   |   [1 1 1 1 1 1]T  |  

|---------------------------------------------------------|  

|   26     |   LED       | Perceptron & FHDDMS |   [2 1 2 1 2 1]T  |  

|---------------------------------------------------------|  

|   27     |   LED       | Naive Bayes & HDDM  |   [1 2 1 2 1 2]T  | |---------------------------------------

------------------|  

|   28     |   Circles   | Naive Bayes & MDDM  |   [1 1 1 1 1 1]T  |  

|---------------------------------------------------------|  

|   29     |   LED       | Naive Bayes & FHDDMS|   [2 1 2 1 2 1]T  |  

|---------------------------------------------------------|  

|   30     |   LED       | Perceptron & MDDM   |   [2 1 2 1 2 1]T  |  

|---------------------------------------------------------|  

  

This research focused on various combinations of Perceptron 

classifiers and Naive Bayes with FHDDM, FHD-DMS, 

MDDM and HDDM detectors. Among the numerous pairs 

tested, we identified the top 20 pairs that exhibited high 

accuracy for both classification and drift detection tasks.  

Conclusion  

Conventional machine learning algorithms are often 

developed with the underlying premise that they possess 

unrestricted access to the entire dataset and may allocate as 

much time as necessary for decision-making processes. 

Nevertheless, this assumption is not applicable in the context 

of data stream mining, where the volume of data might be 

quite large and time-sensitive choices need to be made. In 

order to tackle these issues, researchers have created 

algorithms for incremental or online learning.  

These algorithms operate by iteratively training predictive 

models, sequentially analyzing specific examples, and 

dynamically adjusting in real-time. The necessity of this 

arises due to the fact that data streams frequently emanate 

from dynamic contexts, whereby the volume of incoming data 



International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 

2321-8169 Volume: 11 Issue: 11  

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023  

___________________________________________________________________________________________________________________  
 

  

        1135  

IJRITCC | December 2023, Available @ http://www.ijritcc.org  

has the potential to increase dramatically. The inherent 

dynamism of this phenomenon presents a significant 

difficulty, namely, the potential for data distribution to 

undergo temporal shifts, hence rendering previously trained 

models ineffective. The occurrence in question is sometimes 

referred to as concept drift.  

Adaptive learning algorithms are utilized in order to 

effectively address the phenomenon of concept drift. Drift 

detection methods are utilized to identify instances within the 

data where a shift in distribution occurs. Considering the fact 

that data streams frequently originate from dynamic contexts, 

it is imperative for adaptive algorithms to maintain a constant 

state of alertness in order to detect any shifts that may occur. 

When the occurrence of concept drift is identified, these 

algorithms proceed to retrain their decision models in order to 

assure the attainment of accurate categorization. 

Nevertheless, despite its inherent versatility, there exists a 

caveat.  

The long-term effectiveness of an adaptive learner cannot be 

assured indefinitely due to the continuous fluctuations in data 

distribution. Although these algorithms demonstrate effective 

responsiveness to immediate changes and maintain a high 

level of classification accuracy, they are still susceptible to 

future distributional adjustments. These changes have the 

potential to diminish the effectiveness of the learner who was 

previously efficient.  

References  

[1] Charu C Aggarwal. Data streams: models and algorithms, 

volume 31. Springer Science & Business Media, 2007.  

[2] Rakesh Agrawal, Heikki Mannila, Ramakrishnan 

Srikant, Hannu Toivonen, A Inkeri Verkamo, et al. Fast 

discovery of association rules. Advances in Knowledge 

Discovery and Data Mining, 12(1):307–328, 1996.  

[3] Zahra Ahmadi and Stefan Kramer. Modeling recurring 

concepts in data streams: a graph- based framework. 

Knowledge and Information Systems, 55(1):15–44, 

2018.   

[4] Cesare Alippi, Giacomo Boracchi, and Manuel Roveri. 

Just-in-time classifiers for recurrent concepts. IEEE 

Transactions on Neural Networks and Learning Systems, 

24(4):620– 634, 2013.  

[5] Rahaf Aljundi, Punarjay Chakravarty, and Tinne 

Tuytelaars. Expert gate: Lifelong learning with a network 

of experts. In Proceedings of the IEEE Conference on 

Computer Vision and Pattern  

Recognition, pages 3366–3375, 2017.  

[6] Rahaf Aljundi, Klaas Kelchtermans, and Tinne 

Tuytelaars. Task-free continual learning In Proceedings 

of the IEEE/CVF Conference on Computer Vision and 

Pattern Recognition, pages 11254–11263, 2019.  

[7] Paulo RL Almeida, Luiz S Oliveira, Alceu S Britto Jr, and 

Robert Sabourin. Adapting dynamic classifier selection 

for concept drift. Expert Systems with Applications, 

104:67–85, 2018.  

[8] Robert Anderson, Yun Sing Koh, and Gillian Dobbie. 

CPF: Concept profiling framework for recurring drifts in 

data streams. In Australasian Joint Conference on 

Artificial Intelligence, pages 203–214. Springer, 2016.  

[9] Robert Anderson, Yun Sing Koh, Gillian Dobbie, and 

Albert Bifet. Recurring concept meta-learning for 

evolving data streams. Expert Systems with  

Applications, 138:112832, 2019.  

[10] Sabine Apfeld, Alexander Charlish, and Gerd Ascheid. 

Ensembles of long short-term memory experts for 

streaming data with sudden concept drift. In 2021 20th 

IEEE International Conference on Machine Learning and 

Applications (ICMLA), pages 716–723, 2021.  

  

[11] Manuel Baena-García, José del Campo-Ávila, Raúl 

Fidalgo, Albert Bifet, Ricard Gavaldà, and Rafael 

Morales-Bueno. Early drift detection method. In Fourth 

International Workshop on Knowledge Discovery from 

Data Streams, volume 6, pages 77–86, 2006.  

[12] Maroua Bahri and Albert Bifet. Incremental k-nearest 

neighbors using reservoir sampling for data streams. In 

International Conference on Discovery Science, pages 

122–137. Springer, 2021.  

[13] Maroua Bahri, Albert Bifet, João Gama, Heitor Murilo 

Gomes, and Silviu Maniu. Data stream analysis: 

Foundations, major tasks and tools. Wiley 

Interdisciplinary Reviews: Data Mining and Knowledge 

Discovery, 11(3):e1405, 2021.  

[14] Maroua Bahri, Silviu Maniu, and Albert Bifet. A 

sketchbased naive bayes algorithms for evolving data 

streams. In 2018 IEEE International Conference on Big 

Data (Big Data), pages 604–613. IEEE, 2018.  

[15] Jean Paul Barddal, Fabrício Enembreck, Heitor Murilo 

Gomes, Albert Bifet, and Bern-hard Pfahringer. 

Meritguided dynamic feature selection filter for data 

streams. Expert Systems with Applications, 116:227–

242, 2019.  



International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 

2321-8169 Volume: 11 Issue: 11  

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023  

___________________________________________________________________________________________________________________  
 

  

        1136  

IJRITCC | December 2023, Available @ http://www.ijritcc.org  

[16] Roberto S.M. Barros, Danilo R.L. Cabral, Paulo M. 

Gonçalves Jr., and Silas G.T.C. Santos. RDDM: Reactive 

drift detection method. Expert Systems with  

Applications, 90:344– 355, 2017.  

[17] Roberto S.M. Barros and Silas G.T.C. Santos. A 

largescale comparison of concept drift detectors. 

Information Sciences, 451:348–370, 2018.  

[18] Thomas Bayes. An essay towards solving a problem in 

the doctrine of chances. Philosophical transactions of the 

Royal Society of London, 1(53):370–418, 1763.  

[19] Diana Benavides-Prado, Yun Sing Koh, and Patricia 

Riddle. AccGenSVM: Selectively transferring from 

previous hypotheses. In Proceedings of the Twenty-Sixth 

International Joint Conference on Artificial Intelligence, 

page 1440–1446. International Joint Conferences on 

Artificial Intelligence Organization, Aug 2017.  

[20] Albert Bifet, Gianmarco De Francisci Morales, Jesse 

Read, Geoff Holmes, and Bernhard Pfahringer. Efficient 

online evaluation of big data stream classifiers. In 

Proceedings of the 21th ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining, 

pages 59–68. ACM, 2015.  


