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Abstract— Verifying the correctness of real-time systems often involves checking language inclusion between timed automata. This 

problem determines if the language of a system implementation is a subset of the language specified by its design. While the general case is 

undecidable, recent advancements have proposed techniques for specific scenarios. This paper compares two such techniques: a zone-based 
semi-algorithm for non-Zeno runs and a time-bounded discretization approach. We analyze their strengths and weaknesses, highlighting cases 

where each method is advantageous. The comparison highlights the timed bounded discretized language approach's advantages in terms of 

guaranteed termination and lower memory usage. 
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I.  INTRODUCTION 

Timed automata are a powerful formalism for modeling real-
time systems, where behavior is governed by both discrete 
actions and continuous time passage.  A crucial aspect of real-
time system verification involves ensuring the implementation 
adheres to the specified behavior. This translates to the problem 
of language inclusion checking: determining if all legal 
execution sequences (language) of the implementation 
automaton are also valid sequences in the specification 
automaton. 

The general language inclusion problem for timed automata 
is known to be undecidable [1], posing a significant challenge 
for verification. However, research efforts have focused on 
developing techniques for specific scenarios. This paper 
explores two recent advancements in language inclusion 
checking for timed automata. 

Researchers have actively explored methods for language 
inclusion checking in timed automata, a crucial step in verifying 
if an implementation's behavior aligns with a specified property. 
To address the challenge of non-Zeno runs causing misleading 
results, Wang et al. [2] proposed a zone-based semi-algorithm 
that leverages zones (sets of states with time constraints) for 
efficient state space exploration and violation identification. 
This approach is further enhanced through simulation reduction.  
On the other hand, the general problem's undecidability is 
tackled by Ammar et al. [3] with a time-bounded verification 
framework. Their technique utilizes a novel discretization 
approach to represent timed words within a finite time window, 
achieving decidability for non-Zeno timed automata. Beyond 
language inclusion checking, research in timed automata 
verification encompasses broader property verification 

techniques. Alur et al. [4] introduced a framework for model 
checking timed automata using timed logic, enabling the 
specification and automated analysis of complex properties in 
timed systems. Additionally, Tripakis [5] introduced timed 
testing techniques, where designing test cases explores the timed 
behavior of a system to reveal inconsistencies. 

The concept of language inclusion checking for timed 
automata has been extensively studied in [2, 4, 5, 6, 7]. The 
proposed technique in [2] proposes a zone-based semi-algorithm 
specifically designed to handle non-Zeno runs. On the other 
hand, the proposed technique in [3] introduces a time-bounded 
verification framework for the inclusion problem. This 
technique leverages a novel discretization approach to represent 
timed words within a bounded time interval, enabling 
decidability for non-Zeno timed automata. 

This paper builds upon these existing works by comparing 
and contrasting the two inclusion checking techniques. We delve 
into the details of each approach, analyzing their strengths, 
limitations, and potential application areas. The goal is to 
provide a comprehensive understanding of these techniques and 
guide users in selecting the most suitable approach for their 
specific verification needs. 

This paper is organized as follows. Section II lays the 
foundation by introducing the specific type of timed automata 
used in the analysis - the non-Zeno timed automata model. 
Section III and IV delve into the core of the paper of the 
reference [2] and [3]. Each section focuses on a specific 
approach for verifying language inclusion. After introducing the 
verification approaches, the paper applies both methods to the 
same example of non-Zeno timed automata. This allows for a 
direct comparison of their performance in Section V. The 
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comparison focuses on two key aspects: space memory usage, 
strengths and weaknesses 

II. NOTATIONS 

This section defines a timed automaton, a formal model used 
to represent real-time systems. Here's a breakdown of the key 
components: 

• Clocks (X): A finite set representing the system's clocks. 
Each clock holds a non-negative rational value ℚ+.  

• Clock Constraints (C(X)): The set of formulas 
expressing relationships between clocks and constants 
using comparison operators (<, <=, =, >=, >) and 
constants from positive rationales (ℚ+.). These formulas 
define conditions that must hold for the system to be in 
a specific state. 

• Clock Valuation (𝑣): A function that assigns a non-
negative rational value to each clock. 

• Time Delay ( 𝑑 ): A non-negative rational value 
representing the time passage. 

• Timed Automaton 𝑨 = (𝐿, 𝑙0, 𝑋, 𝛴, 𝐼, 𝑇) : A 7-tuple 
consisting of: 
o Locations (𝐿): A finite set of states the system can be 

in. 
o Initial Location (𝑙0): The starting state of the system. 
o Clocks (X): As defined above. |X|=1 
o Actions (𝛴 ): A finite set of events or actions the 

system can perform. 
o Location Invariants (𝐼 ): A function that assigns a 

clock constraint to each location, restricting the 
allowed clock valuations for the system to be in that 
location. 

o Transitions (𝑇 ⊆ 𝐿 ×  𝐶(𝑋) ×  𝛴 × 2𝑋  ×  𝐿 ): A 
finite set of transitions between locations. Each 
transition is a 5-tuple (l, g, a, r, l') representing: 
▪ Source Location (𝑙): The origin location of the 

transition. 
▪ Guard (g): A clock constraint that must be true 

for the transition to occur. 
▪ Action (a): The action associated with the 

transition. 
▪ Reset Set (r): A subset of clocks that are reset to 

zero when the transition is taken. 
▪ Target Location (l'): The destination location 

after the transition. 

• Non-Zenoness: The definition emphasizes that the 
timed automaton is non-Zeno. This means there are no 
execution paths where an infinite number of actions 
occur within a finite amount of time. 

• States: A state of a timed automaton is denoted by a pair 
(l, v) where: 

o l ∈ L: Represents the current location of the system. 

o v ∈ ℚ+
|𝑋|

: Represents the current clock valuation, 

assigning a non-negative rational value to each clock. 

• Transition Run: A transition run, denoted by 𝜓𝑝 = 𝑙0
𝑒0
→ 𝑙1

𝑒1
→ 𝑙2… 𝑙𝑖

𝑒𝑖
→ 𝑙𝑖+1… 𝑙𝑝−1

𝑒𝑝
→ 𝑙𝑝+1 , represents a 

sequence of transitions the automaton can take. It's a 

sequence of elements e0, e1, . . . , e𝑖, e𝑖+1 . . . , e𝑝 where: 

o Each e𝑖 is a transition from the set T of transitions. 

o The transition e𝑖+1  follows e𝑖 such that: 

▪ e𝑖  =  (l𝑖 , a𝑖, g𝑖 , r𝑖, l
′
𝑖) and 

▪ e𝑖+1  =  (l𝑖+1,a𝑖+1,g𝑖+1, r𝑖+1, l′𝑖+1) 
▪ The target location ( l′𝑖 ) of e𝑖  is the source 

location ( l𝑖+1 ) of e𝑖+1 . This ensures a valid 
sequence of transitions. 

▪ This condition holds for all i between 0 and p-1. 
 

This formal definition provides a foundation for understanding 

and analyzing the behavior of real-time systems using non-Zeno 

timed automata. 

III. VERIFICATION OF INCLUSION PROBLEM USING A SEMI-

ALGORITM 

The paper [2] contributes to the field of timed automata 
verification by addressing language inclusion checking while 
considering non-zenoness. The authors propose a zone-based 
semi-algorithm to address language inclusion checking with 
non-zenoness. This proposed method offers a practical solution 
even though it may not provide a guaranteed answer in all 
scenarios. This approach based on the following steps, as shown 
in Fig. 1. 

 

Figure 1.  Steps of the timed bounded verification of inclusion in [1]. 

A. Unfolding of a timed automaton 

The first step of the zone-based semi-algorithm for language 
inclusion checking with non-zenoness involves unfolding the 
timed automaton. This process creates a tree structure that 
captures all possible executions of the automaton, while keeping 
track of timing constraints.  Each node represents a possible state 
along an execution path in the original automaton. The labels on 
the nodes connect these states back to the original automaton and 
encode the timing information using the reset clocks. The 
unfolding step as described as follows: 

• New Clock Resets: At each level of the tree, the clocks 
of the original automaton are reset. This ensures that all 
timing constraints are considered afresh at each step. 

• Node Labeling: Each node (n) in the unfolded 
automaton B1 is labeled with a pair (l, z). 

• Locality (l): This identifies the specific location in the 
original automaton A that the current node in the 
unfolded automaton B1 simulates. 

• Clock Encoding (z): This describes how the clocks in 
B are represented using the clocks in the unfolded 
automaton B1. If z(x) = 𝑧𝑖, it implies that the clock value 
x in B is currently equivalent to the value of clock 𝑧𝑖  in 
B1. This allows for tracking timing constraints across 
different levels of the tree. 

Example 1: 

 

Figure 2.  Timed automaton B 

Let 𝑩 = (𝐿𝐵 , 𝑙𝐵0, 𝑋, 𝛴, 𝐼𝐵 , 𝑇𝐵)  be a timed automaton, 
represented in Fig. 2 where 𝑋 = {𝑥}  and Σ = {𝑎} . This 

Unfolding 
timed 

automaton

Product timed 
automaton

Verification  
inclusion
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automaton describes the possible locations and transitions. The 
unfolding process takes the timed automaton B and creates a new 
automaton, typically shown in Fig. 3, which is a tree-like 
structure. This unfolded automaton captures all the possible 
execution paths of the original automaton, considering timing 
constraints. 

 

Figure 3.  Unfolding of the timed automaton B 

B. Product-timed automaton 

The second step involves creating a new timed automaton 
called the product automaton. This product automaton combines 
the original timed automaton A with the unfolded timed 
automaton B1. It as a merged structure that captures both the 
original system's behavior and all potential execution paths 

revealed through unfolding. The product automaton, denoted by 
P, is based on the following elements:  

• States: The product automaton's states are formed by 
pairing a location from the timed automaton A with a 
node from the unfolded automaton B1. This combined 
state essentially tracks both the current position in the 
original system and the specific point along a possible 
execution path in the unfolded structure. 

• Transitions: The product automaton only allows the 
transition if the corresponding node in the unfolded 
automaton permits it. This ensures the transition adheres 
to the local state and timing constraints at that specific 
point in the potential execution path. 

• Clocks: The product automaton gathers all the clocks 
from both the timed automaton A and the unfolded 
automaton B1. This allows for a comprehensive view of 
how time constraints influence the combined behavior.  

The state of the product automaton is represented by a triplet 
(𝑠𝑎 ,  𝑋𝑏 ,∂) where 𝑠𝑎  identifies the specific location currently 
active in the timed automaton A,  𝑋𝑏 refers to the particular node 
from the unfolded automaton B1 and ∂ represents the combined 
clocks constraints from the timed automaton A and any 
constraints arising from the specific node in the unfolded 
automaton B1.  

 

Figure 4.  Timed automaton A 

Example 2: 
Let 𝑨 = (𝐿𝐴, 𝑙𝐴0, 𝑋, 𝛴, 𝐼𝐴, 𝑇𝐴) be a timed automaton, shown 

in Fig. 4 and B1 be an unfolding automaton shown in Fig. 3.  The 
timed automaton A is combined with the unfolded automaton B1 
to create the product automaton shown in Fig. 5.  

 
Figure 5.  Product automaton of A and B1 

Fig. 5 shows three active clocks: 𝑧0, 𝑧2 and 𝑧3 in level 3. The 
authors propose to reuse 𝑧1 because that is not active in level 3 
and renaming  𝑧3  to 𝑧1. This optimization aims to reduce the 

number of active clocks in the product automaton while 
maintaining the same behavior. Then, Fig. 6 depicts the resulting 
tree structure after renaming the clock.  
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Figure 6.  Product automaton with minimizing clocks in level 3

C. Verification 

The final step of the semi-algorithm aims to determine 
whether the language of timed words allowed by the timed 
automaton A is entirely contained within the language allowed 
by another timed automaton B. In other words, it verifies if all 
the timed behaviors possible in A are also valid behaviors within 
the timed automaton B. In this paper, the verification process 
involves checking the product automaton P for a specific state: 
Is there a state in P where 𝑋𝑏 is empty?  

If the semi-algorithm explores all reachable states in P and 
never encounters an empty nodes 𝑋𝑏, it strengthens the case for 
language inclusion. If it finds a state in P with an empty 𝑋𝑏, it 
indicates a violation of language inclusion. 
Example 3:  
Assuming Fig. 6 depicts the product automaton for our 
verification process, we can analyze it to check language 
inclusion. We note that the tree structure represents an infinite 
tree. In this case, we need to make an assumption about the 
number of clocks involved. We assume a maximum of 3 clocks 
for this analysis. Thus, we conclude that language inclusion is 
verified. In simpler terms, the timed automaton A is entirely 
contained within the language allowed by timed automaton B. 

IV. VERIFICATION OF INCLUSION PROBLEM USING A 

DISCRETIZATION FRAMEWORK 

The work in [3] proposes a novel approach to verifying 
language inclusion for timed automata. It moves beyond 
traditional discretization techniques that combine timed words 
into simplified representations. Instead, it introduces the concept 
of a "timed bounded discretized language." This language 
consists of discrete timed words, each capturing an action along 
with its minimum and maximum possible execution times. This 
allows the verification process to leverage this richer 
information compared to using just the actions themselves. The 
following section details the steps involved in this verification 
using the discretized framework. 

 
Figure 1: Steps of the timed bounded verification of inclusion in [3] 

A. Transition-run 

The first step involves determining all possible transition-
runs for both timed automata being compared. A transition run 
is a sequence of transitions and locations that the automaton can 
take. However, these transition-runs could be infinite due to 
ever-increasing time delays. To address this challenge, the work 
in [3] proposes a novel approach. They suggest introducing a 
bound on the time execution for the last transition in a given 
transition-run. By introducing such bounds, the authors ensure 
that the set of possible transition-runs becomes finite, enabling 
further analysis within the verification process. 
Example 4: 

Let A and B be two timed automaton shown in Fig. 4 and 
Fig.2 respectively and α=5 be a constant value.  The set of 
transition-runs of A and B is introduced in Table I. 

Transition-runs generated by A  Transition-runs generated 
by B 

TABLE I.  TRANSITION-RUNS OF AUTOMATA A AND B 

Transition-runs generated by A Transition-runs generated by B 

𝑙𝐴0
𝑒0
→ 𝑙𝐴0 𝑙𝐵0

𝑒0
→ 𝑙𝐵0 

𝑙𝐴0
𝑒0
→ 𝑙𝐴0

𝑒0
→ 𝑙𝐴0 𝑙𝐵0

𝑒0
→ 𝑙𝐵0

𝑒0
→ 𝑙𝐵0 

 𝑙𝐵0
𝑒0
→ 𝑙𝐵0

𝑒0
→ 𝑙𝐵0

𝑒1
→𝑙𝐵1 

 𝑙𝐵0
𝑒0
→ 𝑙𝐵0

𝑒1
→𝑙𝐵1 

 𝑙𝐵0
𝑒0
→ 𝑙𝐵0

𝑒1
→𝑙𝐵1

𝑒2
→𝑙𝐵1 

 𝑙𝐵0
𝑒1
→ 𝑙𝐵1 

 𝑙𝐵0
𝑒1
→ 𝑙𝐵1

𝑒2
→ 𝑙𝐵1 

 𝑙𝐵0
𝑒1
→ 𝑙𝐵1

𝑒2
→ 𝑙𝐵1

𝑒2
→𝑙𝐵1 

  

Transition-run Discretized run
Timed bounded 

discretized 
langage

Verification  
inclusion
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B. Discretized runs 

Building upon the identified transition runs from step 1, the 
authors in [3] introduce two key concepts: Minimum Execution 
Duration (Dmin) and Maximum Execution Duration (Dmax). 
Dmin represents the shortest possible time it takes to reach a 
specific transition within a given transition run. Dmax represents 
the longest possible time it takes to reach that same transition. 

By analyzing each transition run, the authors construct a new 
type of sequence called a discretized run.  This discretized run 
captures a series of elements, each represented as (action, [Dmin, 
Dmax]) where action refers to the specific action performed 
during the transition and [Dmin, Dmax] is a pair of values 
representing the minimum and maximum execution times to 
reach the transition associated with that action. Note that if the 
constraints of clocks is strict, then the interval is opened and if 
the constraints of clocks is large, then the interval is closed. 
Example 5: 

According to the results shown in Table 1, we determine the 
set of discretized runs of A and B presented in Table II. 

TABLE II.   DISCRETIZED RUNS OF AUTOMATA A AND B 

Discretized runs generated by A Discretized runs generated by B 

𝑙𝐴0
(𝑎,]2,10[)
→     𝑙𝐴0 𝑙𝐵0

(𝑎,]2,10[)
→     𝑙𝐵0 

𝑙𝐴0
(𝑎,]2,10[)
→     𝑙𝐴0

(𝑎,]2,10[)
→     𝑙𝐴0 𝑙𝐵0

(𝑎,]2,10[)
→     𝑙𝐵0

(𝑎,]2,10[)
→     𝑙𝐵0 

 𝑙𝐵0
(𝑎,]2,10[)
→     𝑙𝐵0

(𝑎,]2,10[)
→     𝑙𝐵0

(𝑎,]0,∞[)
→     𝑙𝐵1 

 𝑙𝐵0
(𝑎,]2,10[)
→     𝑙𝐵0

(𝑎,]0,∞[)
→     𝑙𝐵1 

 𝑙𝐵0
(𝑎,]2,10[)
→     𝑙𝐵0

(𝑎,]0,∞[)
→     𝑙𝐵1

(𝑎,]2,20[)
→     𝑙𝐵1 

 𝑙𝐵0
(𝑎,]0,∞[)
→     𝑙𝐵1 

 𝑙𝐵0
(𝑎,]0,∞[)
→     𝑙𝐵1

(𝑎,]2,20[)
→     𝑙𝐵1 

 𝑙𝐵0
(𝑎,]0,∞[)
→     𝑙𝐵1

(𝑎,]2,20[)
→     𝑙𝐵1

(𝑎,]2,20[)
→     𝑙𝐵1 

C. Timed bounded discretized language 

This step focuses on converting the discretized runs from 
step 2 into a format suitable for the timed bounded discretized 
language. Each discretized run is transformed into a discrete 
timed word (action, [Tmin, Tmax]) where [Tmin, Tmax] 
represents the minimum and maximum execution times to reach 
the transition associated with the action.  

Finally, all the obtained discrete timed words generated from 
each discretized run are gathered together to form the timed 
bounded discretized language. This language becomes the 
foundation for the verification process, allowing the comparison 
of behaviors between the two timed automata while considering 
both actions and their possible execution time ranges. 

Example 6: 
According to the results shown in Table 2, we determine the 

timed bounded discretized language of A and B as follow: 
DTL(A,3)={(a,]2,10[), (a,]2,10[) (a,]4,20[)}; 
DTL(B,3)={(a,]2,10[), (a,]2,10[) (a,]4,20[), (a,]2,10[) 

(a,]4,20[) (a,]4,20+[), (a,]2,10[) (a,]2,10+[), (a,]2,10[) 

(a,]2,10+[) (a,]4,30+[), (a,]0,+[) (a,]2,20+[), (a,]0,+[) 

(a,]2,20+[) (a,]4,40+[)} 

D. Verification 

With the timed bounded discretized language (DTLs) 
constructed for both automata (A and B), the actual verification 
of language inclusion can now take place. This step involves 

checking each element (discrete timed word) within the DTL of 
automaton A (denoted as DTL(A)) against the elements in the 
DTL of automaton B (DTL(B)). Every discrete timed word in 
DTL(A) must have a corresponding element (another discrete 
timed word) within DTL(B). The corresponding elements in 
both DTLs should share the same actions. Additionally, each 
interval (minimum and maximum execution time range) for an 
action in the discrete timed word generated from A should be 
entirely contained within the corresponding interval for the same 
action in the discrete timed word generated from B. 

According to the results of timed bounded discretized 
language of A and B, we obtain that DTL(A, α) is included in 
DTL(B, α) (for each discrete timed word in DTL(A, 5), there 
exists an equivalent discrete timed word in DTL(B, 5)). 

V. COMPARISON BETWEEN THESE METHODS 

This section focuses on how the previously discussed methods 

([2] – semi-algorithm and [3] - Timed Bounded Discretized 

Language) compare for bounded verification of language 

inclusion between timed automata A and B. 

A. Finiteness 

The authors of method [2] acknowledge that their approach can 

potentially lead to infinite exploration, which could prevent 

verification from ever terminating. In contrast, the authors of 

method [3] have proven that their approach using timed 

bounded discretized language is guaranteed to terminate 

(finite). 

B. Bounding Techniques 

The key difference between the methods lies in their approach 

to bounding exploration. Method in [2] relies on a bound on the 

number of clocks generated during the verification process. 

Method in [3] employs a bound on the execution time for 

transitions within the automata. 

C. Complexity and Memory Usage: 

Applying both methods to automata A and B, we observe that 

method [2] (semi-algorithm) is generally more complex than 

method [3] (timed bounded discretized language). 

This increased complexity is also reflected in the memory 

usage. Table III demonstrates that method [2] requires more 

memory space for the verification of inclusion compared to 

method [3]. 

TABLE III.  SPACE MEMORY 

 Method in [2] Method in [3] 

Formula 2|L
B

|*  |X|+1 (2b) 2 *! * |LA| 

 

|DTL(A,5)|* |DTL(A,5)|= 

3*k2*|T’A|k *|T’B|k 

Calcul 22*32*(2*3)3*3 *3!*|1|= 

2 176 782 336 
3*32*|1|3*|2|3=216 

Where b is the maximum number clocks, k is the maximum 

length of the discrete timed word and |T’| represents the 

maximum number of out-degrees of a location.  

VI. CONCLUSION 

This paper investigated the verification of language inclusion 
for timed automata, focusing on the challenges posed by non-
Zeno behavior. We explored two verification approaches: the 
zone-based semi-algorithm [2] and the timed bounded 
discretized language method [3]. 
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Our analysis revealed key differences between these 
approaches. While the zone-based semi-algorithm is a well-
established technique, it can lead to infinite exploration. The 
timed bounded discretized language method offers a promising 
alternative by incorporating execution time information, leading 
to a guaranteed termination process and more comprehensive 
verification. 

The comparison of these methods on specific timed automata 
highlighted the advantages of the timed bounded discretized 
language approach in terms of guaranteed termination, lower 
memory usage, and more informative verification results.  

Building upon the insights gained from this comparison, 
future work could involve exploring the potential benefits of 
combining elements from both approaches to create a hybrid 
verification technique that leverages the strengths of each. 
Furthermore, the development of software tools based on these 
verification approaches can facilitate practical application in the 
design and verification of real-time systems. 
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