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Abstract— Video interpretation has garnered considerable attention in computer vision and natural language processing fields due 

to the rapid expansion of video data and the increasing demand for various applications such as intelligent video search, automated 

video subtitling, and assistance for visually impaired individuals. However, video interpretation presents greater challenges due to 

the inclusion of both temporal and spatial information within the video. While deep learning models for images, text, and audio 

have made significant progress, efforts have recently been focused on developing deep networks for video interpretation. A thorough 

evaluation of current research is necessary to provide insights for future endeavors, considering the myriad techniques, datasets, 

features, and evaluation criteria available in the video domain. This study offers a survey of recent advancements in deep learning 

for dense video interpretation, addressing various datasets and the challenges they present, as well as key features in video 

interpretation. Additionally, it provides a comprehensive overview of the latest deep learning models in video interpretation, which 

have been instrumental in activity identification and video description or captioning. The paper compares the performance of several 

deep learning models in this field based on specific metrics. Finally, the study summarizes future trends and directions in video 

interpretation. 
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 Introduction 

The volume of digital multimedia data (text, image, audio, and 

video content) that is created and shared is rising exponentially. 

With the growth of sensors and mobile devices, video has 

become a widespread communication medium or transmission 

module among Internet users. This tremendous rise in video is 

due to advancements in transmission technology, capturing 

devices, and display methods. Every minute, thousands of hours 

of video are posted to YouTube and Facebook, which must be 

swiftly comprehended. This problem may be solved by using 

automatic caption generation to describe images and videos. 

Recently, video comprehension has become a major focus of 

study. Video description in plain language is easy for people, 

but very difficult for computers. As a result, in order for video 

captions to be relevant they must be able to grasp what is going 

on in a video in terms of objects, interactions, the spatio-

temporal sequence of events, and other such minutia. Detection 

and generation of description from images and videos is one of 

the major tasks in image processing and computer vision. 

Applications such as video comprehension, human computer 
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interaction, automated video subtitling, and aiding the visually 

challenged folks rely on video captioning or description [2]. 

Work in this area has grown at a rapid pace in the last several 

years. 

Natural language processing (NLP) and understanding of 
visual contents have never been linked before. Visual content 
and language learning have been seen as a tough job and a vital 
step toward machine intelligence with various applications in 
everyday settings such as image/video retrieval, video 
comprehension, blind navigation, and automated video 
subtitling [1]. Video captioning is an important step toward 
artificial intelligence. In addition, it is capable of bridging the 
gap between visual and verbal communication and aiding those 
with visual impairments in understanding video information. To 
put it another way, it opens the door to a wider range of 
possibilities, such as the ability to transform a collection of 
relevant films into a report page. Because of its importance in 
applications that function in a real-time environment based on 
activity detection, activity recognition is one of the most 
promising tasks. 

Video Description, particularly, goes beyond video 
captioning to offer a more complete analysis of the video's visual 
elements. Video captioning, on the other hand, is more 
challenging than picture captioning due to the wide range of 
objects, scenes, actions, qualities, and prominent elements. 
Despite the complexity of video captioning, a few efforts have 
been made, mostly motivated by current deep learning 
developments. Video interpretation includes various subclasses 
namely video description, video captioning, activity recognition, 
video summarization, dense image description. In this paper, we 
presented a comprehensive survey on recent deep learning 
models in the above-mentioned subclasses, datasets used, 
feature extraction techniques, evaluation metrics in video 
interpretation. Figure 1 illustrates the path we followed for the 
detailed survey, while Figure 2 provides an example of 
automatic video content description. 

 
Figure 1: Path adopted for detail survey. 

 

I. BACKGROUND OF VIDEO INTERPRETATION  

Video accessibility is essential for the education, employment, 

and helping those who are visually impaired. About 285 million 

people worldwide are visually impaired and 39 million 

individuals are blind, according to the World Health 

Organization (WHO). Many videos on the Internet are not 

accessible to those who are blind or visually impaired, despite 

international rules and regulations.  Professional video 

explanations are expensive and time demanding to produce. 

However, the quality of the volunteer-created video descriptions 

might vary widely, making them an unattractive option for those 

who are new to the profession of video description [3]. 

Consequently, there is a need to automate video text production 

in computer vision. 

Recent developments in Computer Vision have made automatic 

image description creation an intriguing but challenging issue. 

The classical era of visual description research used 

conventional approaches such as video description and natural 

language processing (NLP) to first recognize items in films and 

then fit them to standard sentence templates. We are now at a 

point in the research process where we are confident that we can 

solve the open domain automated video description issue with 

deep learning. In several computer vision issues, such as object 

identification, object detection, and activity recognition, major 

developments in Convolutional Neural Network (CNN) models 

have made this feasible. Video description generation is an even 

more difficult problem that might have several applications for 

multimedia applications or for blind people or human-robot 

interaction. 

A. Traditional Video Interpretation methods  

Language templates have been used in most approaches to 

handle video as a flat data sequence, neglecting its inherent 

multimodality nature. Starting with template-based techniques, 

researchers in video captioning began by combining SVOs 

(Subject, Verb, and Object) together using a phrase template that 

had been extracted from the video [4]. SVO-triplets are the term 

used to describe this kind of operation. 

SVO triplets (subject-verb-object) are extracted from training 

sentences and matched to visual data during the test phase of 

visual content description in the early stages of the process. On 

Figure 2: An example of automatic video content description 
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the other hand, the lack of variation in produced sentences as 

well as extremely dependent on the syntactical structures of 

templates are both drawbacks of this bottom-up method (Bin et 

al. 2018) [5]. In addition, a lack of grammatical resources might 

lead to an incorrect description being created. For example, a 

guy is performing on a stage rather than a man performing on 

stage. SVO triplets’ representations, on the other hand, are 

unable to convey video's temporal information (such as 

successive actions). These approaches were superseded by deep 

learning when huge datasets showed that they couldn't handle 

open domain video diversity. 

There are several advantages to using a top-down approach to 

learning video representation encoder and phrase decoder 

concurrently, which is inspired by the neural translation 

machine's success in achieving a high level of translation 

accuracy. A top-down workflow typically uses convolutional 

neural networks (CNNs) to retrieve static image features frame-

by-frame, and then combines the features of all frames into one 

global representation for the video using various kinds of 

operations. In order to transform a visual representation into a 

phrase word-by-word, RNNs are then used. 

 

III. LIMITATIONS OF EXISTING SURVEY 

Islam et al. 2021 [8] offered an assessment on state-of-the-art 

methodologies, emphasizing deep learning models, analyzing 

benchmark datasets in multiple parameters, and grading the 

advantages and drawbacks of the different evaluation metrics 

based on the prior research in the video captioning area. This 

survey provides a detailed description of limited datasets. Aafaq 

et al. 2019 [9] presented a review on state-of-the-art DL 

techniques, benchmark datasets, and assessment criteria in 

video description. Rafiq et al. 2021 [10] offered a survey that 

focuses solely on the benchmark datasets, and assessment 

metrics established and implemented for video description jobs 

and their capabilities and limits. This survey does not discuss 

about the datasets. In the existing surveys, challenges posted by 

corporations on video interpretation like activitynet challenges 

are not described. In this paper, we presented a comprehensive 

survey on deep learning models in video interpretation (video 

captioning and description, video summarization, activity 

recognition, dense image description), challenges posted by 

corporations on video interpretation in recent years, various 

datasets, feature extraction techniques, and evaluation metrics. 

We presented the comparison of several datasets including 

ActivityNet Caption, HMDB51, Hollywood 2, TREC, TACOS, 

KTH, MPII-MD, M-VAD, MSRVTT, MSVD, YouCook, 

TACOS Multilevel, Sports 1M, THUMOS, UCF50, and UCF 

101 in this survey. Discussion on different metrics, for 

evaluating video interpretation models, such as BLEU, 

METEOR, ROUGE, CIDEr, rank based measures, WMD, 

Semantic Textual Similarity, Direct Assessment, PR15, and 

nAUDC is provided here. 

IV. CHALLENGES IN VIDEO INTERPRETATION 

 
Units Our understanding of this link between visual content 
and sentence semantics has not previously been examined in 
video description. Ideally this relationship should be 

modelled and integrated in natural language. In video 
description, the technique of "temporal attention" has been 
frequently utilised to selectively concentrate on key frames. 
As a result, many current systems relying on temporal 
attention suffer from issues such as incorrect recognition or 
a lack of information. The work of machine learning 
algorithms in video content understanding still has many 
problems and faces many different challenges. Different 
grand challenges on video understanding are posted every 
year by corporations. 

A. ActivityNet  

ActivityNet is a new large-scale video standard for the study of 

human activities. Singh and Vishwakarma 2019 used a flexible 

structure that allows consistent acquisition, crowdsourced 

annotation and segmentation of online videos. This results in the 

ActivityNet activity dataset, which is large in terms of the 

number of categories and samples per category, rich in 

taxonomy, and simple to use. Activities are organized by social 

interaction and location in ActivityNet, which is one of the most 

essential features of the system. There are at least four layers of 

activity hierarchy provided by this tool. 

ActivityNet challenges 2021 holds 12 diverse challenges 
(described in table 1), with the goal of pushing the boundaries of 
semantic visual interpretation of movies and linking visual 
material with human captions as they go forward. Time-based 
evidence in the form of class labels, captions, and object entities 
is what these assignments concentrate on.  

TABLE 1: TASKS IN ACTIVITYNET CHALLENGES 2021 

ActivityNet Challenges 2021 Description 

Kinetics 700 Challenge It focused on both supervised and 

self-supervised video classification. 

TinyActions Challenge The focus is on recognizing tiny 

actions in videos. 

ActivityNet Temporal Action 

Localization Challenge 2021 

This project aims to see how well 

algorithms can find events in 

untrimmed video sequences. 

HACS Temporal Action 

Localization Challenge 

The purpose of this challenge is to 

temporally locate activities in 

untrimmed videos in supervised and 

weakly-supervised strategies. 

SoccerNet Challenge The SoccerNet-V2 dataset, which 

covers over 500 games from three 

seasons of the six main European 

football leagues, is used in this 

challenge. Given a professional 
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soccer broadcast, it seeks to 

motivate players to recognize the 

precise timestamps in the video at 

which specific acts occur, and 

replayed events. 

AVA-Kinetics & Active Speakers This challenge aims to solve two 

key problems in spatiotemporal 

video comprehension such 

as locating action extents in space 

and time, and detecting active 

speakers in video sequences in a 

dense manner. 

ActEV SDL Unknown Facility (UF) It supports the use of an ActEV 

Command Line Interface (CLI) and 

submission to create algorithms to 

identify and temporally locate 

incidents of Known activities. 

ActivityNet Event Dense-

Captioning 

Video events must be identified as 

well as described to complete this 

job. 

ActivityNet Entities Object 

Localization 

The goal of this exercise is to 

determine how accurate a 

description (generated or ground-

truth) is in relation to the video it 

describes. 

Video Semantic Role Labeling VidSRL has three sub-tasks 

including prediction of a verb sense 

that describes the most important 

action, prediction of given verb's 

semantic roles, and prediction 

of event relations. 

MMAct Challenge This challenge concentrates on 

cross-modal understanding of video 

actions strategies to overcome the 

limits given by the modality 

disparity between the training and 

testing phases by using both sensor- 

and vision-based modalities in ways 

that addressed the 

drawbacks imposed by visual-only 

approaches. 

HOMAGE (Home Action Genome) It focuses on recognizing 

compositional activity in the house, 

but it also includes numerous 

viewpoints and more sensor 

modalities. 

 

B. DCEV-ActivityNet 

It is more challenging to extract features because of the 

similarity across activities. The qualities of several activities 

may be similar (e.g., walking and running). In order to depict 

activities in a unique way, distinct traits are tough to come by. 

Multi-activity movies are available in a variety of datasets. With 

a single phrase caption, it is impossible to convey several scenes 

or activities in a video. Understanding that various modalities 

and the constituents inside each modality have varying effects 

on the creation of sentences. It's difficult to come up with a large 

number of associated phrases at once. Using many phrases 

relevant to the video's whole context, dense video captioning 

was able to solve this difficulty (Dave and Padmavathi 2022). 

Dense-Caption Events in Video (DCEV) is proposed to 

generate event proposals and context-based caption generator to 

generate captions. ActivityNet challenge 2018's extensive video 

captioning is often broken down into two stages: In order to 

identify probable events in the video, two methods are used: (1) 

event proposal generation and (2) event caption creation. 

Detecting and characterizing the occurrences in a video are both 

part of the dense-captioning job studied in this challenge. Use 

the ActivityNet Captions dataset, a new standard for densely 

captioned events, to compete in this competition. 

C. Large Scale Movie Description Challenge (LSMDC) 

LSMDC was presented by Rohrbach et al. 2017 [6] and 

provides a parallel corpus of 128,118 phrases matched to video 

clips from 200 movies. Film clips will be described 

automatically in the challenge. By integrating the “M-VAD and 

MPII-MD” datasets, they created LSMDC In order to avoid 

having the same movie show up in the combined dataset, they 

first determined the overlap between the two. For validation and 

testing, they also omitted script-based movie alignments. 

“LSMDC 2016” comprises 101,046 training clips, 7408 

validation clips, and 128K total clips after manual alignment of 

training and validation sets. 

As of 2019, LSMDC's newest challenge tracks seek to generate 

multi-sentence movie descriptions in a more realistic and 

practical context. On the basis of a group of five snippets, movie 

summaries are judged rather than individual clips. The 

importance of distinguishing "who is who" while narrating a 

series of events cannot be overstated. As a result, the emphasis 

of the challenge will be on character identification rather than 

generic "SOMEONE". Table 2 shows the summary of LSMDC 

challenges and winners of these challenges from 2015 to 2019. 

TABLE 2: LIST OF LSMDC CHALLENGES AND WINNER 

LSMDC 

challenge 

Task Winner 

LSMDC 

2015 

 “Video Captioning with Recurrent 

Networks Based on Frame- and Video-
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Level Features and Visual Content 

Classification” by “Rakshith Shetty and 

Jorma Laaksonen” 

LSMDC 

2016 

Movie 

Description 

“Video Description by Combining 

Strong Representation and a Simple 

Nearest Neighbor Approach” by “Gil 

Levi, Dotan Kaufman, Lior Wolf, and 

Tal Hassner”. 

Movie 

Annotation and 

Retrieval 

“Video Captioning and Retrieval Models 

with Semantic Attention” by “YoungJae 

Yu, Hyungjin Ko, Jongwook Choi, and 

Gunhee Kim”. 

Movie fill-in-

the-blank 

“Video Captioning and Retrieval Models 

with Semantic Attention” by “YoungJae 

Yu, Hyungjin Ko, Jongwook Choi, and 

Gunhee Kim”. 

LSMDC 

2017 

Movie 

Description 

“MTLE: A Multitask Learning Encoder 

of Visual Feature Representations for 

Video and Movie Description” by 

“Oliver Nina, Scott Clouse, and Alper 

Yilmaz”. 

Movie 

Annotation and 

Retrieval 

“Multi Sequence to One : Joint Sequence 

Fusion Model for Video Question-

Answering and Retrieval” by “YoungJae 

Yu, Jongseok Kim, Gunhee Kim”[99] 

Movie fill-in-

the-blank 

“Multi Sequence to One : Joint Sequence 

Fusion Model for Video Question-

Answering and Retrieval” by “YoungJae 

Yu, Jongseok Kim, Gunhee Kim” 

LSMDC 

2019 

Multi-Sentence 

Description 

“Auxiliary Loss assisted Multi-sentence 

generation” by “Youngjae Yu, Jiwan 

Chung, Jongseok Kim, Heeseung Yun, 

and Gunhee Kim” 

Fill-in the 

Characters 

“Story-Character Matching Network” by 

“Youngjae Yu, Jiwan Chung, Jongseok 

Kim, Heeseung Yun, and Gunhee Kim” 

Multi-Sentence 

Description with 

Characters 

Combination of above two approaches 

 

D. Microsoft multimedia challenge MSR-VTT 

For decades, video recognition has been a major problem for 

computer vision researchers. In the past, researchers have 

mostly concentrated on detecting films using a preset, but very 

restricted, collection of individual words. Video to text (VTT) 

translation is the goal of Microsoft Research-VTT's (MSR-

VTT) great challenge. The objective is to automatically 

construct a comprehensive and natural phrase to explain video 

information, preferably containing its most interesting 

characteristics, from a given video clip that has been entered. 

The context is determined by semantics rather than temporal 

attention. Semantic and temporal attention have never been 

used together in video captioning before. Fused GRU with 

Semantic-Temporal Attention (STA-FG) is a pipeline 

developed by Gao et al. 2020 that uses the MSR-VTT dataset to 

generate semantic-temporal attention for video captioning 

while explicitly including high-level visual notions. 

E. National Institute of Standards and Technology 

(NIST) sponsored challenge TRECVID 

With the NIST-TREC Video Retrieval Evaluation (TRECVID) 

project, researchers want to create bigger and larger 

multicamera datasets that may be utilized to plan future 

Activities in Extended Video (ActEV) tasks. Computer vision 

researchers are encouraged to create new algorithms that can 

better identify human activity in multi-camera systems that span 

a vast area in the NIST-TREC Video Retrieval Evaluation 

ActEV Challenge. Table 3 illustrates the summary of 

TRECVID challenges of recent years. 

TABLE 3: SUMMARY OF RECENT TRECVID CHALLENGES 

NIST-

TRECVID 

Challenge 

Tasks Definition 

TRECVID 

2019 

AVS (Ad-hoc Video 

Search) 

 

Introduction of Vimeo 

Creative Commons 

Collection (V3C) new 

dataset 

ActEV MI dataset 

INS (Instance Search) BBC EastEnders soap opera 

episodes 

VTT (Video to Text) Vine video data 

TRECVID 

2020 

AVS V3C dataset 

INS BBC EastEnders soap opera 

episodes] 

VTT V3C dataset 
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ActEV VIRAT dataset 

VSUM (Video 

Summarization) 

BBC EastEnders soap opera 

episodes 

DSDI (Disaster Scene 

Description and 

Indexing) 

Low Altitude Disaster 

Imagery 

TRECVID 

2021 

Tasks similar to TRECVID 2020 

 

V. DATASET USED IN VIDEO INTREPRETATION  

The rapid growth of this study field is largely due to the 

availability of labelled datasets for video interpretation. We 

compared and contrasted distinct sets of data in our study. 

A. ActivityNet Caption  

There are 20k untrimmed movies in the ActivityNet-Caption 

dataset, each of which has an average of 3.6 event clips with 

captions, separated into training, validation and testing subsets 

by a 2:1:1 ratio (Yu and Han 2021). Videos from 200 classes 

are included in ActivityNet-Captions, which is based on the 

ActivityNet platform. More than three annotated events with 

human-written captions can be found in every film, which is 

around 120 seconds long on average. 

B. HMDB 51 

For video action detection, the HMDB51 dataset comprises 

real-world movies and online videos that are more complex in 

visual content and hence provide a greater challenge. Each of 

the 51 action classes in HMDB51 has at least 100 video clips, 

and there are 6,766 clips in total (Xu et al. 2018). 

C. Hollywood 2 

The Hollywood 2 Dataset comprises 3,669 samples from 69 

Hollywood films, including 12 action categories and 10 scenes 

(Ding et al. 2019). Due of their preference for particular types 

of material (movies and sports), Hollywood-2 has the highest 

center bias (Droste et al. 2020). Analysis or detection of actors 

in Hollywood-2 video samples is difficult because to the wide 

range of emotions, postures, clothing, camera movements, 

lighting changes, occlusions, and backdrops, all of which are 

comparable to those seen in actual settings. 

D. TREC  

A selection of movies from the 2007/8 TREC video assessments 

was made by Dilawari et al 2018. In all, there are seven different 

types of data: activities, close-ups (news stories), meetings 

(groups), traffic, and scenes. In all, there are 140 videos in total, 

20 in each category. Each movie is between 10 and 30 seconds 

in duration. TRECVID doesn't provide any written annotations 

for the video segments. 

E. TACoS 

Textually Annotated Cooking Scenes (TACoS) dataset is used 

for grounding and dense video captioning jobs in video 

grounding and dense video captioning. There are 127 videos for 

a total of 4,79 minutes in duration. The TACoS dataset 

comprises 18818 video-query pairings for the video grounding 

task. TACoS contain more video segments with queries per 

video than ActivityNet Captions dataset. An average of 148 

queries is run through each video. This makes TACoS dataset 

very tough, since searches cover just few seconds or even many 

frames, making it extremely time-consuming to analyses (Zeng 

et al. 2020). 

F. KTH  

The KTH is the most often used publicly available dataset on 

human behaviour. It has a resolution of 160 by 120 pixels and 

six different sorts of video activities (Pan and Li 2020) (Jaouedi 

et al. 2020). The basic surroundings, lack of camera movement, 

limited number of motions, and the presence of just one person 

in every movie with a single movement are all clear drawbacks 

of the KTH datasets. These datasets depict scenarios that are 

quite different from those that exist in the actual world. 

G. MPII-MD 

Movie datasets like the “MAX PLANK INSTITUTE FOR 

INFORMATICS - MOVIE DESCRIPTION (MPII-MD)” are 

often used. The average duration of each movie is 3.9 seconds, 

or about one line, and the transcripts for 94 Hollywood films are 

included (Sun et al. 2021). Almost 73.6 hours of video content 

and 653,467 words make up the dataset. There are 56,861 

training videos, 4,930 validation videos, and 6,584 testing 

videos. 

H. M-VAD 

There are 48,986 video clips in the Montreal Video Annotation 

Dataset (M-VAD) that were taken from 92 movies. An average 

of 6.2 seconds is spent on each clip, and there are 55,904 

phrases in total (Saleem et al. 2019). To put it another way, there 

are 84.6 hours’ worth of video clips in the collection. Video 

clips with more than one phrase make up the majority of the 

55,904 sentences available. Data for training and validation is 

38,949 videos and testing data is 4,888 videos. 

I. MSRVTT 

In all, there are 10,000 YouTube videos and 200k descriptors in 

this dataset. The videos are 14 seconds long on average. 

Multiple humans provide annotations to each video (Tu et al. 

2021). 

J. MSVD 

Among the themes covered by the MSVD dataset for video 

captioning include sports, wildlife, and music. It includes 1,970 

YouTube videos. Approximately 8,000 English descriptions are 

available, with an average of 40 explanations for each movie 

(Jin et al. 2019). 
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K. YouCook 

One hundred and eighty-eight YouCook recipes from a wide 

range of different YouTubers are included in the dataset (Shin 

et al. 2022). In majority of the videos, the kitchen/scenery is 

different. Compared to the MP-II Cooking dataset, which was 

filmed with a fixed camera perspective in the same kitchen and 

with the same backdrop, this dataset poses a more difficult 

visual difficulty. Grilling, baking, and so on are among the six 

culinary methods included in the dataset. The training set for 

machine learning includes 49 videos, whereas the test set 

includes 39 videos. 

L. TACoS multilevel 

There are many levels of depth in the description provided by 

TACoS-MultiLevel (Bhowmik et al. 2021). For each of the 

three types of descriptions, workers were instructed to use no 

more than 15 words and no less than three to five phrases, and 

no more than one sentence for each kind of description. Each 

video's description is represented by around 20 triples in the 

dataset. 

M. Sports 1M 

One million YouTube videos belonging to 487 sports 

classifications are included in Sports1M, another large-scale 

video collection (Zhang et al. 2019). Classes including boxing, 

soccer, and volleyball may be found here. There is video 

annotation for the complete untrimmed movie, but the temporal 

bounds of the acts are unknown (Poorgholi et al. 2021). 

N. THUMOS 

THUMOS 14 dataset contains videos across 20 categorizes of 

sports classes (Gao et al. 2020) [7]. Long uncut films may be 

found on THUMOS, however the most of them (85%) only 

have one action class (Yeung et al. 2018) [30]. 

O. UCF 50 

The UCF-50 dataset comprises footage of 50 acts in unrestricted 

settings. There are 6700 videos in total, with an average of 100-

150 films each category. The UCF-11 dataset is a subset of this 

one (Roy et al. 2021) [31]. 

P. UCF101 

With at least 100 video clips for each of the 101 action courses, 

UCF101 has a total of 101 classes. It's broken down into 25 

categories based on the kind of performance. This dataset 

contains 13,320 clipped video segments (Zuo et al. 2019) [32]. 

TABLE 4: DATASET USED IN VIDEO INTERPRETATION 

Dataset Domain # 

class

es 

#vid

eos 

#av

g 

len 

#clips #sent #words #voca

b 

#len 

(hrs

) 

MSVD  open 219 1971 11s 1,97

1 

71,02

8 

607,339 13,01

0 

5.3 

MPII cooking 66 45 601 - 5,608 - - 7.1 

Cooking  s 

YouCook  cooking 7 87 - - 2,687 41,458 3,712 2.4 

TACoS  cooking 25 128 361

s 

7,20

5 

17,22

7 

146,771 28,29

2 

15.9 

TACos-

MLevel  

cooking 2 186 361

s 

15,10

5 

52,59

3 

2K - 28.1 

MPII-MD  movie 2 95 3.8

s 

67,33

7 

68,37

5 

653,467 24,54

9 

73.6 

M-VAD  movie 1 91 6.3

s 

49,98

6 

55,90

4 

519,933 17,60

9 

84.6 

MSR-

VTT  

open 21 7,18

2 

21s 11K 200K 1,856,52

3 

29,31

6 

41.2 

YouCook 

II  

cooking 88 1K 317

s 

16.5

K 

16.5

K 

- 2,602 176.

2 

ActivityN

et 

Captions 

Human 

activity 

200 20K 120

s 

- - 13.65 - 648 

 

VI. FEATURE EXTRACTION  

The visual information in real-world online videos is 
typically supplemented with clues that may be used to generate 
natural language descriptions. Video data's rich temporal 
information, which may be used for activity analysis in addition 
to geographical distribution research, is a unique advantage 
(Mou and Zhu 2016) [33]. Visual words are quantized local 
descriptors used to describe images and videos. The visual and 
linguistic modalities are not effectively represented by these 
hand-crafted elements; therefore, they cannot be directly 
compared. A common latent subspace is therefore discovered 
where the two modalities may be more accurately represented 
and an estimate of their similarity can be derived (Dong et al. 
2018). Two major categories of video features are Single Stream 
(either spatial or temporal) and two stream features. The spatial 
stream recognizes activity from static video frames, but the 
temporal stream is taught to recognize action from intense 
optical flow motion. For video interpretation, two stream 
characteristics incorporate both spatial and temporal 
information. As shown in table 5, video interpretation using two 
stream features is more accurate than single stream features. 
Table 6 illustrates the merits and demerits of video interpretation 
features. 

TABLE 5: ASSESSMENT OF MAIN FEATURE CATEGORIES IN VIDEO CAPTIONING 

(SUN ET AL. 2021) [108] 

Features Accuracy (%)  

Single Stream 

Features 

Spatial Features 73 

Temporal 

Features 

83 
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Two Stream Features (Spatial + 

Temporal features) 

87 

 

A. ResNet-50 

Choi et al. 2021 investigated whether two models, “Vanilla-
RNN with ResNet50” and “Bi-directional RNN with 
ResNet50”, can prepare sequential data in a stable manner while 
considering RNN consequences. They analyzed the effects of 
feature extraction of these two models. For action recognition, 
Suresh and Visumathi 2020 proposed a novel deep neural 
network architecture that uses transfer learning. Convolutional 
neural networks (CNNs) and a long-term model were used to 
build the model (LSTM). Extracting feature vectors from 
Inception ResNet v2 is used to train the model. For video 
captioning, Hammad et al. 2020 used ResNet 50 to extract scene 
recognition characteristics. In order to extract visual elements 
needed for caption development, Lee and Kim 2018 used 
ResNet. Figure 2 shows the results of feature extraction using 
ResNet 50 as the training network. ResNet-based features 
outperform GoogleNet and VggNet-based features in terms of 
performance (Song et al. 2018). Figure 3: Feature Extraction 
using ResNet-50 

 

B. ConvNet-LSTM 

For extracting spatial information and learning temporal 
models, ConvNet-LSTM-based approaches use both the CNNs 
and the LSTMs. After 8 epochs, the Adam optimizer is 
employed with the initial learning rate set at 104 and reduced to 
105 after 8 epochs for the ConvNet-LSTM and Two-Stream 
models (Pang et al. 2020). Adding a recurrent layer to a 2D 
ConvNet-LSTM model makes it more suitable for dynamic 

expression, since it introduces temporal information (Wang et al. 
2022). Since there are 1024 hidden units, they use an LSTM 
layer with batch normalization. The development and 
assessment of activity proposals rely on frame-level elements 
like C3D. 

C. TwoStream Networks 

Because it only gets one kind of input, a single stream CNN 
is unable to comprehend the spatial and temporal aspects of 
human activities at the same time. Xiong et al. 2020 employed a 
spatial and temporal stream-based transferrable two-stream 
CNN architecture. To enhance action recognition, the recovered 
spatial and temporal information is concurrently analyzed by a 
two stream CNN structure. Using CNN to represent a spatial cue 
is easier and more economical in the two-stream architecture 
since the displacement values correspond to the moving scene 
points at the similar spatial location in many frames at the same 
temporal interval. Just a few frames in length are used to 
represent temporal cues because of the limited amount of time 
available. The two-stream CNN is employed to extract the 
spatial and short-term features of video frames. 

D. C3D 

C3D is a commonly used 3D CNN for extracting video's 
motion characteristics (Li et al. 2019). Fine motion information 
between successive frames is captured by this method by 

modelling a video in 3D spatiotemporal cuboid, this local motion  
 
information is collected and maintained in higher-level 

representations. The identification of video events has been a hot 
topic in the scientific community for the last several decades. 
C2D (Convolution 2-dimensional) and other machine learning 
approaches have been employed, however C3D (Convolution 3-
dimensional) has not been used for this purpose. Deep 
convolution networks are built to emphasize different video 
events by using C3D (Convolution 3-dimensional) to fully 

Figure 3: Feature Extraction using ResNet-50

 

Figure 4: C3D feature extraction 
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leverage spatiotemporal relationships (Chen et al. 2020). C3D 
multimodal feature extraction is used by Peng et al. 2021 for 
video captioning. Figure 4 depicts the C3D feature extraction. 

 

E. ImageNet Shuffle and Motion Boundary Histogram 

The global video-level features, such as ImageNet Shuffle 
and motion boundary histogram (MBH), are used for untrimmed  

 
video classification task (Daune et al. 2022). Specifically, for 

discrete semantics, the models are trained on ImageNet Shuffle  
 
 
features for detecting both static and dynamic visual 

concepts. Training models on large-scale ImageNet shuffles 
based on encoding is beneficial for event detection. Febin et al. 
2020 extracted motion boundary histogram features for violence 
detection in video surveillance. MBH is more robust to camera 
motion than optical flow, and thus more discriminative for action 
recognition. 

F. Inflated 3D Convnet 

Inflated 3D kernels may be seen as the orderly combination 
of 2D kernels. The video sequence training technique may teach 
the inflated 3D ConvNets abstract spatio-temporal 
representation. Clutters and confusing backdrops might have a 
negative impact on existing approaches, such as RGB image or 
optical flow. In order to deal with this problem, Wu et al. 2021 
suggested a new Pose-Guided Inflated 3D ConvNet architecture. 
Based on the reuse of 2D architecture, an inflating 3D convnet 
achieved astounding results (Huang et al. 2020) [123]. 

TABLE 6: COMPARISON OF VIDEO INTERPRETATION FEATURES 

Features Description Advantages Limitations 

Two Stream 

Network 

Novel two-

stream 

network 

consists of a 

“uniform 

sampling 

stream (USS) 

and an action 

pooling 

stream (APS)” 

to extract 

visual features 

(Yu et al. 

2019) [107] 

It is potential of 

capturing both 

global and 

action-local 

aspects of 

videos, and it's 

useful for 

comprehending 

lengthy, uncut 

footage. 

The expressive 

potential of the 

two-stream 

characteristics is 

affected by the 

attentive model's 

reasoning 

ability. 

Two stream 

models 

extracts 

spatial and 

temporal 

Effective for 

action 

recognition when 

the training 

False label 

assignment 

problem 

features (Zhu 

et al. 2018) 

[109] 

dataset size is 

limited 

ResNet 50 Multi-modal 

stochastic 

RNNs 

networks with 

ResNet 50 

based feature 

extraction 

(Song et al. 

2018) [38] 

Efficiently 

extracts video 

representative 

features and 

outperforms 

GoogleNet and 

VGGNet 

Higher training 

time for deeper 

network 

ConvNet-

LSTM 

In this model, 

spatial 

information is 

extracted via 

ConvNets, 

and temporal 

patterns are 

modeled via 

LSTMs 

(Zalluhoglu 

and Ikizler-

Cinbis 2020) 

[111] 

Well suited for 

variable-length 

sequence 

prediction in 

videos 

Relatively less 

successful than 

3D convent 

C3D C3D network 

extracts 

motion 

features from 

videos (Peng 

et al. 2021) 

[39] 

Single stream 

C3D features 

represent long-

term temporal 

structure of 

actions from 

sparsely sampled 

short segments 

of video. 

Does not 

consider spatial 

features 

ImageNet 

Shuffle 

It includes 

bottom-up and 

top-down 

shuffle for 

reorganization 

of the 

ImageNet 

hierarchy 

(Daune et al. 

2022) 

Tackles the 

image imbalance 

and over-specific 

class problems 

Video Story 

embedding 

features slightly 

outperforms the 

ImageNet 

Shuffle 
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Motion 

Boundary 

Histogram 

MBH encodes 

the gradients 

of optical flow 

for video 

representation 

(Febin et al. 

2020) 

Efficiently 

captures 

information from 

datasets which 

may have taken 

while the camera 

might be moving 

Computational 

complexity 

Inflated 3D 

convnet 

I3D convnet 

approaches 

capture RGB 

video frame 

features 

(Huang et al. 

2020) [48] 

Beneficial for 

action 

recognition 

where depth data 

is not required 

Does not suit for 

dense video 

captioning 

 

 

VII. DEEP LEARNING IN VIDEO INTERPRETATION TYPES  

A. Image Captioning  

Image captioning, is the act of providing a textual description 

that best conveys the visual scene or images in videos.  The 

overfitting issue affected most contemporary image captioning 

methods in remote sensing, which failed to leverage semantic 

information in images. Shen et al. 2020 [110] suggested a Two-

stage Multi-task Learning Model based on Variational 

Autoencoder and Reinforcement Learning for image 

captioning. Gupta and Jalal 2020 [112] suggested a model that 

combines a deep CNN and LSTM to improve image captioning 

accuracy by combining text information in an image with visual 

data. Chu et al. 2020 [113] proposed a combined model that can 

do automated image captioning using ResNet50 and LSTM 

along with soft attention. 

B. Dense Image Description 

Image Captioning creates simply a single description of 

the image. But it is less instructive. Hence, describing various 

Regions of Interest from a single image, also known as dense 

captioning is developing. The dense image captioning describes 

numerous parts of the image that include objects and some 

interactions between them. Dense description of 

different image areas is recognized as a superior understanding 

of the visual information. Particularly, the produced captions 

are able to give more fine-grained semantic information for 

image areas, which further allows complicated reasoning on 

visual context. Hence, dense captioning job may be applied in 

visual question answering (Liu et al. 2021) [98].  Therefore, it 

is seen as a more informative method for describing visuals, but 

also a more complex one. Kim et al. 2021 developed multi-task 

triple-stream network, a unique dense image captioning 

model which tries to create numerous captions with regard to 

relational data between objects in a visual picture. Duan et al. 

2022 offer a Position-Aware Transformer (PAT) framework 

that captures static and regional visual characteristics and 

integrate these characteristics by including spatial information 

matched to each visual feature for dense captioning. Zhao et al. 

2020 [105] introduced a unique Cross-scale Fusion with Global 

Attribute model (CSGA) that allows the dense caption model to 

execute regular end-to-end activation without mutual 

interference. 

C. Activity Recognition and localization 

In video interpretation and surveillance, recognizing human 

actions from videos has been a major challenge (Roy et al. 

2021) [31]. Activity recognition is a popular study area right 

now. Recognition of human actions, e motions and gestures, are 

all included in activity recognition. The area of activity 

recognition has necessitated the development of several deep 

learning algorithms in the past. Previous techniques to video 

action recognition have always used the same principles as 

those used in image recognition. Human acts, on the other hand, 

are dynamic and constantly shifting, with a variety of target 

objects and diverse appearances in different contexts. Due to the 

enormous dimensions of the video data and the chaotic 

backdrop, human action detection from the wild films is still a 

difficult task. Video-based action recognition currently relies on 

two kinds of inputs: RGB pictures and the accompanying 

optical flow fields (Shi et al. 2022) [49]. For action recognition, 

Wang et al. 2018 [88] employed CNN, LSTM units, and a 

temporal-wise attention model. The action recognition task has 

been suggested to employ a variety of local space-time 

Figure 5: Activity Recognition Process 
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representations. A few examples are space-time interest points 

(STIPs) and dense trajectories. Figure 4 illustrates the use of 

dense trajectory characteristics for activity identification. Both 

STIPs and dense trajectories are plagued by the problem of 

overemphasizing non-static portions of the video while 

neglecting or ignoring static elements. Figure 5: Activity 

Recognition Process 

Computer vision researchers are becoming interested in action 

localization, which is the process of locating distinct action 

sequences in videos (Zhao et al. 2020) [105]. Video label is 

called "weak" and may be used to develop models that can 

identify and locate activities in continuous videos (Luo et al. 

2020) [102] (Zhai et al. 2020) [104]. Recent years have seen a 

flurry of research on the topic of temporally locating actions in 

untrimmed recordings (Min et al. 2020) [51]. For the newly 

suggested job of Temporal Activity Localization through 

Language (TALL) in video, fine-grained knowledge of the 

video material is required; unfortunately, most of the previous 

efforts fail to address this issue. The new TALL technique we 

provide in this research develops a hierarchical visual-textual 

graph to describe interactions between objects and words, as 

well as between objects themselves, to simultaneously grasp the 

video's content and the language used in the movie (Chen et al. 

2020) [63]. 

D. Video Summarization 

For an efficient browsing experience, video summarization 

seeks to provide a concise summation while still providing all 

of the relevant information. The perfect video summary is one 

that can deliver the most information in the least amount of time 

possible (Ji et al. 2019) [53]. Video indexing, video retrieval, 

and event recognition are just a few of the numerous practical 

uses for it. Storyboards and video skims are the two most used 

methods of video summary. A video skim is made up of a series 

of sample video segments known as key-shots, while a 

storyboard is based on a collection of keyframes. Video skim is 

the subject of this study. However, by choosing one or more 

keyframes from each key-shot, it may be easily transformed into 

a storyboard. Encoder-decoder video summary is shown in 

Figure 6. For the summarization of surveillance films acquired 

in IoT environments, Muhammed et al. 2019 employed a deep 

CNN architecture with hierarchical weighted fusion. 

 

Figure 6: Video Summarization using encoder-decoder model 

E. Video Captioning or Description 

Template-based language models and sequence learning 

models dominate current techniques to video captioning. Before 

generating any sentences, the first step is to design a collection 

of language templates that adhere to specified grammatical 

norms. The produced sentences are constrained to a fixed 

syntactical structure since this technique heavily relies on 

predetermined templates and easily recognized phrases from 

films. Video footage may be immediately translated into a 

sentence using sequence learning models, which are extensively 

utilised in the machine translation sector (Xu et al. 2017) [94]. 

An encoder by CNNs with RNNs reads the entire video 

sequence and produces the video representation, and a decoder 

by RNNs then generates a natural sentence depending on 

syntactical structures learned from training data. This kind of 

network architecture is common. In video description, the 

technique of "temporal attention" has been frequently utilised 

to selectively concentrate on key frames. As a result, many 

current systems relying on temporal attention suffer from issues 

such as incorrect recognition or a lack of information. In light 

of recent successes in picture description utilizing spatial 

attention, Tu et al. 2017 suggest a spatial temporal attention 

(STAT) strategy to deal with these issues. This model is shown 

in Figure 7. Video Captioning using spatio-temporal attention 

Figure 7: Video Captioning using spatio-temporal attention model 
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model the procedure of the video description system is 

described below: 

Input Data: Videos that have had explanations demanded are 

sent to the system for interpretation. 

Scene Segmentation and Key Frame Extraction: The video 

is divided into a series of sections with varied lengths of time. 

To keep the scene's resolution adequate for creating the 

characterization, key frames are collected. 

Feature Extraction: The significant visual features of the key 

video frames are extracted in the encoding stage. 

Generating Video Description: In the decoding step, the 

model processes the visual properties of key frames to provide 

descriptions that best describe the scenario in the video. Any 

writing in the key frames, persons with ID (to manage 

reappearances), gender, mood, hair color, age, items, and 

surroundings are all included in the description.  

F. Dense Video Captioning 

The majority of video captioning research has concentrated on 

creating a single caption phrase for short recordings. A single 

phrase, on the other hand, is insufficient to comprehend or 

express multiple elements in extended films. We humans learn 

from films like this by paying attention to the subtitles. As a 

result, difficult projects like dense video captioning, which aims 

to describe all identified contents inside a lengthy movie with 

many natural language phrases at the same time, have gotten a 

lot of attention (Lin et al. 2018) [114]. Dense Video Captioning 

primarily entails two tasks: event detection, which identifies all 

occurrences in a brief video, and caption generation, which uses 

natural language phrases to explain the event suggestions 

(Fujita et al. 2020) [116]. For dense video captioning, Chang et 

al. 2022 [116] presented an event-centric multi-modal fusion 

technique. For dense video captioning, Zhang et al. 2020[118] 

presented a graph-based partition-and-summarization (GPaS) 

methodology. 

VIII. COMMON FLOW OF VIDEO INTERPRETATION BY DEEP 

LEARNING 

Deep learning architectures for encoding and decoding stages 

in video interpretation are explained below. 

A. CNN - RNN Video Interpretation:  

In this model, convolution architectures are used for visual 

encoding and recurrent structures are used for decoding 

(Khamparia et al. 2020) [118] (Emon et al. 2020) [120]. This is 

the most common architecture employed in deep learning-based 

video description methods. Garg et al. 2021[119] suggested an 

Encoder-Decoder approach where VGG19 CNN is working as 

Encoder; LSTM is working as Decoder to generate the text 

interpretation of video frames.  

B. RNN - RNN Video Interpretation:  

Here recurrent networks are used for both encoding and 

decoding stages (Feng et al.) [121]. Kumar and Verma 

2021[124] described RNN-LSTM for caption generation for 

image or video frames. 

C. Deep reinforcement networks:  

They are a very recent topic of video description study. To 

improve the quality of the produced phrases for video frames, 

Reinforcement Learning is used (Hua et al. 2022) [123]. 

Gradient decay across layers may be caused by sigmoid and 

hyperbolic activation functions in LSTM and gated recurrent 

unit (GRU) based models employed in recent work on video 

summarization. Furthermore, due of the entanglement of 

neurons on RNN, analyzing and building network models is 

challenging. To address these challenges, Yaliniz and Ikizler-

Cinbis 2021 [122] suggested an approach for unsupervised 

video summarizing that combines deep reinforcement learning 

and machine learning.  

IX. EVALUATION METRICS 

It is impossible to compare the total quality of all sorts of 

models against the ground truth using any other evaluation 

criteria. A model's video captioning may be judged on how near 

it is to human annotation by evaluating metrics. The most 

significant metrics— “Bilingual Evaluation Understudy 

(BLEU), Consensus-based Image Description Evaluation 

(CIDEr), Metric for Evaluation of Translation with Explicit 

ORder-ing (METEOR), Recall-Oriented Understudy for 

Gisting Evaluation (ROUGE)”, and so on—have been fully 

discussed in this part. 

A. BLEU 

BLEU is a machine translation evaluation method. The range of 

values [0, 1] is obtained by calculating the cooccurrence word 

frequency of two sentences. The higher the score, the closer the 

machine translation is to the original human translation. 

Because the computation is so rapid and so near to human 

judgement, it has an advantage. The drawback is that no 

consideration is given to grammar, synonyms, or other related 

semantics, and the accuracy of short statements is easily abused. 

N-gram matching rules may be used in conjunction with the 

shortness penalty (BP) computation in BLEU (Deng et al. 2021) 

[58]. BELU can be calculated using equation 1. 

 (1) 

Where bj/bx refers to the ratio of the length of the reference 

corpus to the length of the candidate description, lq means the 

positive weight, and Tq denotes the geometric mean of the 

modified n-gram precisions. 

B. METEOR 

As BLEU has intrinsic flaws, METEOR is an algorithm to 

address them. In the range of [0, 1], it returns. To broaden the 

pool of possible synonyms and take the word form into account, 

it consults a knowledge base like WordNet. The harmonic mean 

of accuracy and recall of unigram matches between texts is used 

to calculate the results. The idea of chunks is used to evaluate 

the fluency of sentences. It is calculated using equation 2. 

METEOR=S(1-T)    

                                 (2) 

Where T means penalty and S means the F-measure 
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C. ROUGE 

Automated summaries and machine translations are evaluated 

using ROUGE, a computer programmer. It is similar to BLEU 

in that the co-occurrence frequency is calculated using n-grams. 

Because the recall ranges from 0 to 1, it is utilized as an 

indication rather than a metric. The most important thing to 

notice is how many times a cited phrase appears in the text. It is 

determined using equation 3. 

(3) 

Where q means the n-gram length, kq, and Xm(kq) denote the 

maximum number of n-grams that are available in candidate 

and ground truth summaries respectively and Jsum means the 

reference summaries. 

D. CIDEr 

Unlike the other three assessment measures for machine 

translation, CIDEr uses an algorithm for assessing picture 

captions. When using CIDEr, every phrase is treated as a 

separate document by the software. The n-gram mass is 

calculated using the TF-IDF algorithm. Using the cosine 

distance, its similarity may be determined. As part of the n-

grams computation, the accuracy and recall are taken into 

account (i.e., the higher and the better). TF-IDF weights for 

various n-grams are different because less information is 

included in more frequent n-grams in the corpus. Due to the 

importance of capturing critical data, non-keyword reduction is 

required for assessment. It is determined using equation 4. 

(4) 

E. Rank Based Measures 

The video captions are ranked according to how well they match 

the video or image query in terms of visual feature similarity. 

The caption rating is used to assess the performance. R@K 

(Recall at K) is one of the rank-based measures in video 

description (Dong et al. 2018) [55]. For each test image or 

video, R@K calculates the proportion of valid descriptions 

found in top-K recovered captions. Higher R@K results in 

improved video description performance. 

F. WMD 

Word embeddings, which are vector representations of words 

learned from text corpora, are used in Word Mover's Distance  

 (WMD). Dissimilarity between two papers is measured using 

WMD distance. Even though the words in two captions are 

spelled differently, their semantic meanings may be the same. 

If many captions have similar properties, objects, and relations 

but convey radically distinct meanings, this is possible. This 

issue was addressed by the use of WMDs (Fujita et al. 

2020)[116]. 

G. Semantic Textual Similarity (STS) 

This metric compares the provided description to one of the 

ground truth explanations in terms of semantic similarity 

(Smeaton et al. 2019) [61]. STS determines the inter-caption 

semantic similarity. 

H. Direct Assessment 

In 2018, Graham et.al., [59]. released Direct Assessment, a 

technique for manually evaluating the quality of automated 

video captions. Crowdsourcing the quality of a caption's 

description of a video adds human judgement to the review 

process. In the major Machine Translation benchmark 

assessments, DA is currently the official technique of ranking. 

To evaluate video captions, DA presents a film and a single 

caption to human evaluators. Assessors are asked to give a score 

between 0 and 100 based on how effectively the video's 

captions capture the action. 

I. PR 15 

Percentage miss (Pmiss) and the rate of false alarms (RFA) were 

used to calculate the decision threshold, which was Pmiss at 

RFA = 0.15. (PR.15). False Alarm (FA) indicates that a 

captioning instance in the system output has no connectivity to 

the reference, while Missed Detection (MD) indicates that a 

captioning instance in the reference has no connectivity to the 

system output. PR 15 is computed using equation 5 and 6. 

   

  (5) 

   

  (6) 

Where QBS(p) refers to the quantity of missed detections at the 

threshold p, QSZ(p) means the number of false alarms, and 

QTrueInstance refers to the number of reference examples 

labeled in the video sequence. 

J. nAUDC 

The normalized Area Under the Detection Error Tradeoff 

(DET) curve (nAUDC) metric focus more on recall rather than 

precision, and the alignment is strictly for short activities and 

loosely for long activities (Godil et al. 2021) [62]. 

K. Human Evaluations 

Human evaluations involve manual judgment of reliability 

regarding video interpretations made by automatic models. 

Relevance and Grammar Correctness are two examples of 

metrics that may be used to shape human judgments. 

X. BENCHMARK RESULTS  

Deep learning-based video interpretation consists of two main 

events like visual content extraction and its representation using 

dynamic feature vector and text generation from feature vectors. 

Table 4 shows the performance of various deep learning models 

on benchmark datasets in recent years. Some of the popular 

datasets in the recent years include “MSRVTT, M-VAD, MPII-

MD, MSVD, TACoS-Multi-Level, ActivityNet”, and so on. 

The evaluation metrics used for the comparison includes BeLu, 

CIDER, ROUGE, and METEOR. MSVD is the most widely 

used dataset, and it may perform the best in many video 

captioning algorithms. The quantity of natural language phrases 

supplied each video clip in a dataset has a big impact on the 
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captioning algorithms' reliability. When contrasted to other 

datasets, MPII-MD performs poorly. 

 

XI. FUTURE AND EMERGING TRENDS 

Deep learning (DL) architectures have recently evolved and 

gotten more complex in terms of architecture and processing, in 

order to keep up with the newest advances in video processing 

applications. Still, in terms of processing power, DL 

architectures need to be more prominent. Each computer vision 

application has its own unique features. Some computer vision 

applications, for example, need pixel-level annotations, while 

others want object-level annotations, and still others demand 

scene-level annotations. Deeper DL architectures must be 

constructed by employing additional layers to enhance the 

video analysis performance. Hierarchical learning of features 

(learning variant features from variant layers) is one of the 

useful solutions in this field. Multidimensional features other 

than conventional features must be employed in model training. 

Each computer vision application has its own unique features. 

Some computer vision applications, for example, need pixel-

level annotations, while others want object-level annotations, 

and still others demand scene-level annotations. To improve 

performance and achieve state-of-the-art results, contemporary 

improvements in video captioning include "reinforcement 

learning and teacher-recommended object relational learning". 

The keyframe's capacity to interpret complex behavior’s aids 

researchers in developing more efficient activity identification 

systems (Dang et al. 2020) [106]. An important emerging trend 

in video captioning is the application of transfer learning in 

video analytics. For video preprocessing, compression, 

analysis, and interpretation, new highly powerful algorithms 

must be developed. The algorithms must be able to detect and 

remember significant occurrences, as well as alert anything that 

would be considered strange. They must be able to comprehend 

each case based on the participants and circumstances, as well 

as synthesize findings, draw inferences, and make forecasts. On 

the other hand, clearer and explicit privacy and data security 

protocols must be created and executed with narrow tolerance 

in activity recognition. An essential expansion of Video 

Captioning, Stylized Captioning integrates the notion of style-

transfer (or feature switching) from the vision domain with a 

technique of producing captions from visual input. For 

example, in this area of study, the development of robust models 

may improve a model's capacity to create better captions by 

using vision-inspired techniques like representation learning 

and disentanglement. It's been a decade since the task of visual 

question answering (VQA) has multiplied by the development 

of attention frameworks that promote improved comprehension 

abilities in modern VQA systems. Explainability-driven 

frameworks like hierarchical and graph-based attention have 

been quite useful in this study. Free-form question-answering is 

becoming more common in VQA due to recent advances in 

different language generating tasks, whereas MCQ responses 

are becoming less common. Co-attention based VQA has 

emerged as the most often used attention framework because of  

XII. SUMMARY AND DISCUSSION 

A brief history of video interpretation is provided in the survey's 

introduction. Examining in a replay version to identify any 

activity or scene might be tiresome work since there would only 

be motion for a brief period of time in the video. Analyzing the 

video by this manual technique would take a long time, and it 

would be hard to always describe the video accurately. Hence, 

there is a need for an automatic video interpretation approach. 

But developing these models and analysis has certain 

challenges. Some of the difficulties arise from the wide variety 

of videos. A model's video description performance may suffer 

if there are several activities in a video, but only part of the 

activities are represented by captions. Some elements of dataset 

videos, such as the similarity of motions, cluttering backdrop 

and views, lighting change and occlusion, may be seen to have 

limits. In the absence of a huge video dataset with many 

different activity classifications and massive numbers of films 

and subtitles, this poses a significant problem. Longer videos 

also present additional challenges, as most action features, such 

as trajectory and C3D, shall only encode short-term actions 

because of the reliance on video segment lengths. Different 

video feature extractors have difficulty dealing with sudden 

changes in the scene. The visual encoding process is now 

simplified by expressing movies or frames as a whole. Further 

attention models may be needed to concentrate on the video's 

most important spatial and temporal aspects. Instead of 

untangling the graphical depiction from the temporal model and 

the temporal model itself from language, more focus should be 

placed on constructing stronger temporal modeling structures. 

Deep learning models exhibit promising results in video 

interpretation. 

XIII. CONCLUSION 

We have provided a comprehensive literature review for video 

interpretation research, ranging from traditional methodologies 

to more modern statistical and deep learning-based techniques. 

The benchmark datasets for video description models were 

investigated in this survey research. We also looked at the 

presently available assessment measures for evaluating the 

video captions produced, emphasizing the necessity for 

particular and defined datasets and evaluation criteria to 

improve performance. Single stream features like C3D only 

considers temporal features or spatial features which is not 

efficient for video interpretation. Two stream features are 

beneficial for video understanding compared to single stream. 

From the analysis, it is observed that ResNet 50, C3D features 

are better than VGGNet and GoogleNet, for video 

interpretation. MSVD is the most widely used dataset compared 

to other datasets like MSRVTT, Activitynet, MPII-MD, TACoS 

and so on, and it may perform the best in many video captioning 

algorithms. Finally, we provide some suggestions for future 

study approaches that are likely to further this field's frontiers 

of exploration. Dense video captioning, visual question 

answering, stylized video captioning, transfer learning in video 

analytics are all emerging trends in video interpretation. 
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Table 4: Bench mark results of DL models and datasets 

Year Dataset Models METEOR CIDEr ROUGE BLEU@4 Core Idea 

2020 MSVD “ResNeXt-101 + ECN (Efficient Convolutional 

Network)” (Chen et al.2020) [63] 

42.1 – 79.7 66.5 Video 

Captioning 

  Inception-Resnet-v2 + C3D (Hou  et al. 2020)[70] 34.7 80.1 71.5 47.9 Video 

Captioning 

  InceptionV4 + LSTM-based Guidance Module 

(Zhang et al.2020) [117] 

33.5 83.1 70.7 52.1 Video 

Summarization 

  “2D-CNN + 3D-CNN + compositional decoder” 

(Perez-Martin et sl.2020) [66] 

39.2 107.7 78.3 62.3 Video 

Description 

  “2D-CNN + 3D-CNN + compositional LSTM” 

(Perez-Martin et al.2021) [67] 

41.9 111.5 79.5 64.4 Dense video 

captioning 

 MSR-VTT “InceptionV3 + C3D and VGG + LSTM” (Xiao et 

al. 2020) [68] 

28.7 48.9 62.3 44.7 Video 

Captioning 

  I3D + Transformer (Liu et al. 2020) [69] 28.5 – – 41.7 Video 

Recognition 

  “Inception-Resnet-v2 + C3D” (Hou et al.2020) [70] 27.9 45.3 60.1 40.4 Video 

Captioning 

  “2D-CNN + 3D-CNN + compositional decoder” 

(Perez-Martin et al.2021) [66] 

31.4 50.6 64.3 45.5 Video 

Description 

  “2D-CNN + 3D-CNN + compositional LSTM” 

(Perez-Martin et al.2021) [67] 

30.1 48.0 63.1 45.6 Dense video 

captioning 

 Activity Net 

Captions 

Mask RCNN + GRU (Iashin et al.2020) [71] 11.72 – – 2.86 Dense video 

captioning 

  RestNet-200 + BN Inception + Transformer (Lei et 

al.2020) [72] 

15.57 22.16 5.44 9.78 Video 

Paragraph 

captioning 

  multimodal neuro-symbolic representations using 

dictionary learning (Sur et al.2020) [73] 

9.78 29.68 20.42 4.01 Video 

Summarization 

  
I3D + Transformer (lashin et al.2020) [74] 8.44 – – 1.88 Dense video 
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captioning 

  ResNet-200 + LSTM (Suin  et al. 2020)[75] 5.7 11.68 – 1.1 Dense video 

captioning 

2020 MPII-MD GRU + LSTM [Hao et al. 2020) [76] 6.1 10.1 14.6 0.6 Video 

Recognition 

 YouCook2 LSTM (Wang et al. 2020) [93] 13.65 – – – Video 

Description 

  Self-aware composition Transformer + Transformer 

(Sur et al.2020) [73] 

7.34 – – 0.48 Action 

Recognition 

  multimodal neuro-symbolic representations using 

dictionary learning (Sur et al.2020) [73] 

10.19 50.22 28.17 4.50 Video 

Summarization 

2019 TACOS-

MULTILEVEL 

JEDDi-Net (Xu et al 2016) [78] 23.9 104.0 50.9 18.1 
Video 

Paragraph 

captioning 

 Activity Net 

Captions 

C3D + LSTM (Zhang et al. 2019) [79] 10.33 12.93 21.21 2.09 Video 

Summarization 

  “ResNet-152 + ResNext-101 (R3D) + (LSTM, 

GAN)” (Park et al. 2019) [80] 

16.48 20.60 – 9.91 
Dense video 

captioning 

  “3D CNN + I3D + Bi-directional LSTM + attention-

based LSTM” (Wang et al. 2019) [81] 

9.96 28.23 21.17 3.68 Video 

Captioning 

2019 MSVD AGHA [Zhang et al.2019a) [82] 35.3 83.3 – 55.1 
Video 

Captioning 

  STAT (Yan et al.2019) [83] 33.5 73.8 – 52.0 Video 

Summarization 

  GoogleNet + VGG + Faster RCNN + LSTM (Guo et 

al .2019) [84] 

35.3 83.3 – 55.1 Video 

Description 

  GoogleNet + Faster RCNN + C3D + LSTM (Yan et 

al.2019) 

33.3 73.8 – 52.0 Dense video 

captioning 

  LSTM + LSTM (Aafaq et al.2019a) [85] 34.3 75.9 – 52.7 Video 

Captioning 

 MSR-VTT STAT (Chen et al. 2019b) [86] 27.1 44.0 – 39.3 Dense Video 

Interpretation 

  “2D CNN + 3D CNN + Neuron-wise Short Fourier 

Transform +fully-connected layer + multi-layer 

GRU” (Chen et al. 2019) [87] 

28.4 48.1 60.7 38.3 Video 

Recognition 

  
“CNN + temporal deformable convolutional encoder 

+ convolutional decoder+ temporal attention 

mechanism” (Wang et al.2018) [88] 

39.5 42.8 – 38.3 Video 

Analysis 

  
“GoogleNet + Inception-Resnet-V2 + C3D + 

LSTM” (et. Al. Wang 2018) [88] 

27.6 47.5 – 42.4 Video 

Understanding 

  “3D CNN + I3D + Bi-directional LSTM + attention-

based LSTM” (Wu et al. 2018) [89] 

29.4 48.9 62.0 42.2 Dense Video 

Captioning 

2018 MSVD RecNetlocal (Yang et al.2018) [93] 34.1 80.3 69.8 52.3 Video 

Understanding 

  ResNet + LSTM + LSTM (Wang et al. 2018c) [88] 34.0 74.9 – 51.7 Dense Video 

Interpretation 
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  “Joint LSTMs with adversarial learning” (Xu et 

al.2018) [94] 

30.5 – – 42.9 Video 

Recognition 

  “2D CNN + 3D CNN + LSTM” (Wang et al. 2018a) 

[88] 

33.31 – – 52.82 Video 

Analysis 

  “Attentive Multi-Grained Encoder (LSTM) + Dual-

Stream Decoder (LSTM)” (Yang et al.2018) [93] 

34.7 79.4 65.9 53.0 Dense Video 

Interpretation 

 MSR-VTT RecNetlocal (Wang et al.2020a) [88] 26.6 42.7 59.3 39.1 Dense video 

description 

  Joint LSTMs with adversarial learning (Xu et 

al.2018) [78] 

26.1 – – 36.0 Video 

Summarization 

  “2D CNN + 3D CNN + LSTM” (Long et al. 2018) 

[95] 

26.58 – – 38.13 Video 

Analysis 

  “Attentive Multi-Grained Encoder (LSTM) + Dual-

Stream Decoder (LSTM)” (Wang et al.2018b) [88] 

29.4 46.1 62.3 42.3 Video 

Interpretation 

  
ResNet-152 + C3D + LSTM (Wu et al. 2018) [89] 26.7 – – 39.1 Video 

Summarization 

2018 M-VAD “Joint LSTMs with adversarial learning” (Yang et 

al.2018) [93] 

6.3 – – – Video 

Captioning 

 MPII-MD “Joint LSTMs with adversarial learning” (Yang et 

al.2018) [93] 

7.2 – – – Video 

Captioning 

  “Attentive Multi-Grained Encoder (LSTM) + Dual-

Stream Decoder (LSTM)” (Xu et al. 2018) [94] 

7.9 – – 1.9 Video 

Captioning 
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