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Abstract—This paper introduces an innovative method for determining the switching surface within an equivalent pole placement control 
framework designed specifically for multivariable systems. Moreover, it showcases adaptability across both minimum phase and non-minimum 

phase systems. The sliding mode control system offers significant flexibility in shaping the closed-loop eigenvalues, providing considerable 

freedom in customizing the system's characteristics. The formulation of the sliding surface plays a crucial role in defining the performance 

features of the control system, as the representative point of the system is constrained to follow a predetermined switching surface. Researchers 
are actively addressing the pole assignment problem within sliding mode control, presenting a unique geometric approach for designing sliding 

surfaces. This contribution introduces a fresh perspective to the domain of control system design, and the inclusion of numerical examples 

serves to highlight the simplicity and effectiveness of the proposed method. 
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I.  INTRODUCTION  

 

The Variable Structure Control (VSC) design 

comprises two essential steps. The initial phase involves 

defining the sliding surfaces to ensure that the system behaves 

like a linear system and remains impervious to parameter 

changes and disturbances during the sliding operation. 

Secondly, identify the control law that facilitates the system in 

reaching and progressing through the crossings of the sliding 

surfaces.  

The effectiveness of the control system hinges on the design of 

the sliding surface [1]. The representative point of the system is 

constrained to move exclusively along a predetermined 

switching surface. Considerable research attention has been 

devoted to the sliding mode pole assignment problem [2]. These 

techniques facilitate the implementation of geometric and 

algebraic sliding surface designs, employing equivalent control 

methodologies, especially within the domain of large-scale 

multivariable systems [2]. The algebraic determination of all 

sliding surface characteristics is a distinctive feature.  

This paper introduces a systematic approach for 

determining the switching surface in an equivalent pole 

placement control system applied to multivariable systems. 

This method is applicable to systems with both minimum and 

non-minimum phases, showcasing its versatility. Furthermore, 

in the sliding mode, the control system's closed-loop 

eigenvalues exhibit remarkable flexibility, allowing for 

allocation in a highly customizable manner. To showcase the 

effectiveness of the proposed approach, two illustrative cases 

are examined.  

 

The chapter unfolds in the following sequence: Section 

2 introduces algebraic methods for the design of sliding 

surfaces. Section 3 illustrates the effectiveness of the proposed 

method through its application to the oblique-winged research 

aircraft. Section 4 presents an additional example related to the 

fixed-winged research aircraft. Finally, Section 5 encapsulates 

the conclusion of this chapter. 

 

II.  DESIGN OF SLIDING SURFACES 

 

Examine a dynamic multivariable system subject to 

uncertainties, described by a differential equation, given as 

)],,([),,()],([ utxwuBuxtfxtxAAx ++++=
•

    (1)  

                                 

Here, the state vector is denoted by x, the control input by u, 

and the matrix B is specified to be of full rank. The term 
),( txA and ),,( uxtf  represent the linear uncertainty and 

nonlinearities inherent in the plant, while 
),,( utxw

can be 

considered as input disturbances. For ease of analysis, we 

assume, A , f, and w are bounded. Furthermore, we impose 

matching requirements as follows 

 

Assumption 1: There exist functions  

h (.) and d (.) such that  
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f ( t, x, u ) = B h( t, x, u )                      (2)                                  

A( t, x, u ) = B d( t, x, u )                      (3) 

                                                                        

Under the matching conditions (2) and (3), system (1) can be 

simplified to  

)],,([ utxvuBAxx ++=
•

                      (4)                                                           

Where v( t, x, u ) represents the lumped uncertainties and/or  

nonlinearities; 

v( t, x, u )= h( t, x, u )+ d( t, x )x+ w( t, x, u ).                                                                   

                                                                  (5) 

Assumption 2: The pair (A, B) is completely controllable. 

 

Assumption 3: There exists a continuous positive bounded 

real-valued function  (.) such that 

),(),,( ututxv                                 (6)     

                                                                           

Variable Structure Controller design involves two primary 

steps: 

1.Defining the sliding surface to dictate specific system 

behavior while on the surface. 

2.Implementing a control strategy to guide the system onto the 

sliding surface and subsequently sustain it. 

 

In general, the sliding surfaces are defined as  

0=Gx , R
P                             (7)                                                                   

Upon reaching the sliding surfaces, it is stated that the system 

has entered the sliding mode. In the sliding mode, the linear 

control equivalent control ueq is obtained by setting 0=
•

 , that 

is 0=+=
•

GbuGAx , and hence 

( ) .
1

vGAxGBueq −−=
−

                         (8)                                                                          

The closed loop equivalent system becomes  

( ) AxGGBBIx n

1−
•

−= xAeq             (9) 

At the origin, it encompasses p eigenvalues [17]. It is feasible 

to diminish the system's order to n-p, a crucial aspect inherent 

to Variable Structure Control (VSC) in sliding mode [2]. To 

achieve the desired system performance in the closed-loop 

characteristic polynomial, n-p eigenvalues are arbitrarily 

assigned, with p eigenvalues positioned at the origin.  

i denotes the closed-loop poles in the sliding mode in equation 

(10). 

                                                                                              

( ) ( )( ) ( ) pn
P ssssAeqI ns

−−−−=−
21

det

( )ss
P                                            (10)                                                                 

Lemma 1[12]: The controllability of the n-dimensional linear 

time-invariant system (4) is established if and only if any of the 

subsequent equivalent conditions are met.  

(a) The linear independence of all rows of matrix 
( ) BAI ns −

−1

over C. 

 

(b) The controllability matrix 

 BABAABBU n 12 − 
 of dimensions n×np has a 

rank equal to n. 

 

Examining the multivariable system in (4), assume that B is of 

full rank where 
 bbbB p,, 21=

. Following the 'crate search 

by rows' method [19], a crate diagram can be depicted as 

illustrated in Figure 1. 

Sequential exploration of the rows allows identification of a 

vector bAk
i

i

 that is linearly dependent on all preceding 

vectors in that column. Subsequently, eliminating all linearly 

dependent vectors results in a collection of n linearly 

independent vectors, which can be represented as a matrix. 

 bAmbAbbAmbAbbAmbAbM ppp
p

1
222111 ,,,;;,,,;,,, 211

−= 

                   (12) 

where  nm
p
j j = =1 . Since the matrix M is non-singular, the 

inverse of M exists.  

 

m1=4 m2=3 … mi=ki+1 … mp=2 

b1 b2 … bi … bp 

Ab1 Ab2 … Abi … Abp 

A2b1 A2b2 … A2bi … x 

A3b1 x  .  x 

X x  Ak bi  . 

X .  x  . 

. .  .  . 

Figure 1: A typical crate diagram corresponding to the 

controllability matix. 

 

The formulation of sliding surfaces can be effectively 

accomplished by applying the principles outlined in the 

following theorem. 

Theorem 1: When the multivariable system in (1) enters the 

sliding mode and the linear equivalent control is applied, the 

closed loop system in (9) has p eigenvalues at zero and n - p 

eigenvalues exactly located at the roots of ( )s =0 as given in 

(10) if the sliding surfaces (7) are chosen according to 

 

 T
pgggG ,,

2,1
=                       (15a)                                                                      

),(Afqg i

T

i

T

i
=                       (15b)                         

..)(
1,

2

1,

1
If

mAmfAmAf niii
i

ii
−

−− +++=      (15c)                                

 

Proof:   Initially, it can be confirmed that, when adopting the 

selection (13) and constructing the M matrix as described in 

(12), the vectors qi satisfy the following conditions.  

 

0=BAq kT

i
,  k=0,1,….,mi-2            (16a)                                     

,11 =−
bAmq i

T

i
i                       (16b)   

,01 =−
bAmq j

T

i
i for mimj, .ji       (16c)                                    
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Emphasize that the matrix product GB is a pivotal component 

in this strategy and is demonstrated to be non-singular, as 

indicated below. Utilizing (15) and (16a), the expression for GB 

can be reformulated as: 

.

1

1

2

1

1

1

21

1





















=

−

−

−

BAmq

BAmq

BAmq

GB

p
T

p

T

T


             (17)  

                            

Let the column vectors in the matrix M be recorded and 

renamed as  
 bAmbAbbAmbAbbAmbAbM

ppp
p

~~
,,~,~;;~~

,,~,~;~~
,,~,~~ 1

222111
21

−=                                                             

(18) 

                                                            

where mi
~  must satisfy the condition 

mmm p
~~~1 21   with nm

p
j j = =1

~ . 

Then (17) for the recorded system becomes 

.

~~~

~~~

~~~

~~

1

1

2

1

1

2

1





















=

−

−

−

BAmq

BAmq

BAmq

BG

p
T

p

T

T


             (19)              

    

This condition (16), which is applied to the reordered system, 

remains valid as both GB and differ solely in row and column 

reordering while retaining the same absolute value for the 

determinant. 

,11 =−
bAmq i

T

i
i             (20) 

,01 =−
bAmq j

T

i
i pji 1  (20b)                          

 

As an illustration, each diagonal element of GB is unity, and the 

upper triangular part consists entirely of zeros. Consequently, 

both BG
~~

and GB are non-singular. 

 

Next, the closed-loop characteristic polynomial of (9) is 

considered: 

 

])(det[)(
1
GAGBBAIssd n

−
+−=  

])()(det[)det(
11
GAGBBAI nsIAIs nn

−−
−+−= .  (21) 

            

Employing the matrix properties  

det (In + XY) = det (Ip +YX), where X and Y are nxp and pxn 

matrices respectively [9], the following is obtained: 

 

])()(det[)det()(
11
BAI nsGAGBIAIssd nn −+−=

−−

].)(det[)(det)det(
11
BAI nsGAGBGBAIs n −+−=

−−  (22)    

For convenience, let 

  T

spsss )()(2)(1)( =  BAI nsGAGB )(
1

−+=
−                         

(23)                

Then according to (15a), (15b), and (17), the )(s element is 

seen to be 

.)()()(
11 BAI nsAAfqBAmqs

i

T

i

T

i

T
i

i −+=
−−    (24)   

which can be further arranged as [17] 

.)()()(
1
BAI nsqsfss

T

ii

T
i −=

−
         (25)              

     

Using (23) and (25), (22) can be written as 

.

)()(

)()(

)()(

det

)(det)det()(

1

1

22

1

11

1





















−

−

−



−=

−

−

−

−

BAI nsqsfs

BAI nsqsfs

BAI nsqsfs

GBAIssd

T

pp

T

T

n



 

.)(

)(

)(

)(

det

)(det)det()(

12

1

1

























−























−=

−

−

BAI nsQ

sfs

sfs

sfs

GBAIssd

p

n



   (26)             

where Q=[q1, q2, ....... qp ]
T. 

By exploiting (15c) and the matrix property 

 

),det(.det
0

det 1YXZX
Z

YX
−−=







            (27)  

                

the characteristic polynomial d(s) becomes 

.
0

det)(det)()(
1










−

−
=

−

Q

BAIs
GBsssd

np      (28)                            

As both sides of equation (28) represent polynomials, and since 

(28) holds true for an infinite set of s values, equating 

coefficients on both sides reveals that the product can be 

expressed as . 

 

.
0

det)(det
1










−

−−

Q

BAIs
GB

n  

must be unity (note that d(s) and sp(s) are monic polynomials 

of degree n). Hence  

).()( sssd p=                                    (29) 

 

Corollary 1: In the specific scenario of a single-input system 

(p=1), is simplified to a row matrix which is expressed as 

).(Aqg
TT
=

                (30) 

             

where qT is the last row of U-1 , in which U is the controllability 

matrix (11) of the open-loop system. 

 

Example 1: Oblique-winged Research Aircraft 

The state vector (x) for the tenth-order linear model of the 

oblique-winged research aircraft can be defined as follows 

 ,rqphux
T =        (31)             

     

where, u   denotes the forward velocity,  

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 11 

Article Received: 10 September 2023 Revised: 20 October 2023 Accepted: 30 October 2023 

____________________________________________________________________________________________________________________ 
 

 

    636 

IJRITCC | December 2023, Available @ http://www.ijritcc.org 

h   denotes the height,  

   denotes the angle of attack, 

  denotes the side-slip angle, 

  denotes the roll angle,  

  denotes the pitch angle, 

  denotes the yaw angle, 

 p  denotes the roll rate, 

 q  denotes the pitch rate , 

 r  denotes the yaw rate. 

This state vector captures the key dynamic variables for the 

tenth-order linear model of the oblique-winged research 

aircraft. 

The aircraft has been provided with three controls, such as  

uT = [E  A  R ],               (32) 

                   

where,E denotes the stabilizer deflection, 

A denotes the aileron deflection, 

R denotes the rudder deflection. 

 

For a particular flight condition, the corresponding matrices A 

and B are 

 

.

67.01.013.000014.6000

1.071.0002.000003.600

84.003.086.500039.24000

1000000000

0100000000

0010000000

10006.00005.024.0000

0000000100

00004.634004.63400

00002.320019.000075.0







































−−−

−−

−−−

−−

−

−−

−−

=A

  

.

3.400

0012.053.6

1.600

000

000

000

054.000

004.009.0

000

077.0734.1







































−

−−

−−

−

=B

                      (34)             

                

Given that the pair (A, B) is controllable, multiple options exist 

for the free choices of M in (12). As an illustration, one can opt 

for m1 = 4, m2 = 3, and m3=3. Utilizing MATLAB software 

facilitates obtaining the following results easily: 

.

26.3042.230.4027.00012.0094.698.065.00

46.042.0036.026.0012.068.9994.3620.553.6

95.13468.4010.60089.00004.0039.1876.020.00

42.23.400012.00098.065.000

42.00026.0012.0094.3620.553.60

68.4010.600004.00076.020.000

40.332.4054.00012.000145.165.000

42.00023.0028.004.03.2564.1144.609.0

00038.25376.2505.408510.5710.570

00039.00018.077.09.16604.20903.073.1

M







































−−−−

−−−−−

−−−

−−

−−−

−−

−−−

−−−−

−−−

−−−−

=

                                                

(35)                

Suppose that we want to place the eigenvalues of the closed 

loop system (9) at {0, 0, 0, -10, -10, -20, -20, -20, -30, -30}. 

Then, (s) of the closed loop system is 

(s) = (s+10)2 (s+20)3 (s+30)2           (36) 

                   

There are many free choices for fi(A) according to (15c). One 

may freely choose 

f1(A) = (A+10I10) (A+20I10) (A+30I10)     (37)          

f2(A) = (A+20I10) (A+30I10),                  (38)                     

f3(A) = (A+10I10) (A+20I10) ,              (39)                          

such that  

f1(s) f2(s) f3(s) = (s). 

Restoring to (13) and (14), the sliding surface parameters are 

calculated easily using MATLAB as 

.

9298.11066712.19037.504

01046469.61531.0

9299.51073798.10273.648

3439.5371094528.11051505.1

3709.01060481.30405.22

9931.341077950.71026688.3

7132.5341094256.11051279.1

01064203.20

01031657.30

01052469.10







































−

−

−−

−

−

−−

−

−





=

T

G

   (40)    

The validity of the result can be confirmed by employing (9) 

and (40). Indeed, the closed-loop poles align with the desired 

positions at {0, 0, 0, -10, -10, -20, -20, -20, -30, -30}. 

 

Example 2: Fixed-wing Research Aircraft 

The state vector (x) for the seventh-order linear model of the 

fixed-wing aircraft [17][18] can be defined as follows: 

 ,rpvx
T =

    (41)                          

     

Where, v   defines the sideslip velocity, (m/s),  

p   defines the roll rate, (rad/s),  

r   defines the yaw rate, (rad/s),  

  defines the roll angle, (rad),  

  defines the heading angle, (rad), 

  defines the rudder angle, (rad),  

 defines the aileron angle, (rad). 

 

This state vector captures the key dynamic variables for the 

seventh-order linear model of the fixed-wing aircraft in a stick-

linearized form 

 

The aircraft has been provided with two controls, such as  

uT = [c    c ],                                      (42)                        

Where, c denotes the rudder angle demand, (rad), 

c denotes the aileron angle demand, (rad), 

For a particular flight condition, the corresponding matrices A 

and B are 

 

.

5000000

01000000

0000100

0000010

049.900639.003649.0

64.2800075.3325.81033.0

0432.5081.99.320277.0





























−

−

−−

−−−

−−−

=A

 (43)            

.

100

020

00

00

00

00

00





























=B

                         (44)   

 

Since the pair (A, B) is controllable, there are various 

permissible choices for the transformation matrix M in equation 
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(12). As an example, we select m1=4 and m2=3. Utilizing 

MATLAB software facilitates the straightforward computation 

of the transformed system as: 

.

25050100000

00020000200020020

0006.19798.18900

4.286005275.700000

000175596.19798.1890

3.38164.2860124955275.70000

000780339.736064.1080





























−

−−

−

−−

−−

−−

−−

=M

 (45) 

 

Suppose that we want to place the eigenvalues of the closed 

loop system (9) at {0, 0, -1, -2, -2.5, -9, -12}. Then, (s) of the 

closed loop system is 

 

(s) = (s+1) (s+2) (s+2.5) (s+9) (s+12) (46)             

    

There are many free choices for fi(A) according to (15c). One 

may freely choose 

f1(A) = (A+I7) (A+2I7) (A+2.5I7),             (47)               

f2(A) = (A+9I7) (A+12I7),                   (48)                                      

  

such that  

f1(s) f2(s)  = (s).                         (49)   

               

Reverting to equations (13) and (14), the parameters for the 

sliding surface can be effortlessly computed using MATLAB as 

follows: 

 

.
1000.008646.22144.00456.00363.00796.0

0929.00500.00542.00229.00349.00107.00021.0









−−−

−−−−
=G

     

                                                           (50) 

The validity of the obtained result can be confirmed by 

comparing it to equations (9) and (50). Notably, the closed-loop 

poles are found to be precisely positioned at the desired 

locations: {0, 0, -1, -2, -2.5, -9, -12}. 

 

III. CONCLUSION 

 

In conclusion, this paper presents a novel methodology for the 

design of a switching surface in Variable Structure Control 

(VSC) by pole placement approach, enabling the arbitrary 

placement of n-p closed-loop eigenvalues within a 

multivariable system. Leveraging the presumption of complete 

state controllability, our employed design algorithm is not only 

direct and algebraic but also offers a stark departure from the 

intricate algorithms required for designing sliding surfaces in 

linear multivariable structural systems [4]. The flexibility in 

selecting n linearly independent vectors in the M matrix affords 

substantial freedom in defining each segment of the desired 

closed-loop characteristic polynomial. A numerical example is 

provided to underscore the efficacy and straightforward nature 

of the proposed method. 
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