GSM Based Automatic Water Quality & Measurement Reporting System

Samiha khan
Dept. of electronic and communication engg
Anjuman college of engineering and technology
Nagpur, India
Khansamih0@gmail.com

Prof. M.T.Hasan
Dept. of electronic and communication engg
Anjuman college of engineering and technology
Nagpur, India
Mthasan21@gmail.com

Abstract—The common method of water quality testing is to collect samples manually and then send them to laboratory for analysis. However, it has been unable to meet the demands of water quality monitoring today. So a set of automatic measurement and reporting system of water quality has been developed. The system consists of pH sensor, turbidity sensor and conductivity sensors of water quality testing, single-chip microcontroller data acquisition module, information transmission module, monitoring center and other accessories. Various parameters of water quality are automatically detected under the control of single chip microcontroller all day. The single chip gets the data, and then processes and analyzes them. After that, the data are instantaneously sent to monitoring center by GSM network in the form of SMS. If the water quality is unusual, the data will be sent to monitoring center and management’s mobile in the same way at the same time. It is agreeable for management to take corresponding measures timely and be able to detect real-time situation of water quality remotely. The system has, recognize, the automation of water quality monitoring, intelligence of data analyzing and networking of information transferring. It is characterized by advantages of shortcut, accuracy and using manpower and material resources sparingly. The system has widespread application value and can be extended and transplanted to other fields of automatic monitoring where needed.

Keywords—Water Quality Monitoring; Measurement and Reporting; Sensors; SMS; Remote

I. INTRODUCTION

With the rapid development of the economy, more and more serious problems of environment arise. Water pollution is one of these problems. Routinely monitored parameters of water quality are pH, turbidity and conductivity.

The most common method to detect these parameters is to collect samples manually and then send them to laboratory for detecting and analyzing. This method wastes too much manpower and material resource, and has the limitations of the samples collecting. Long-time analyzing, the aging of experiment equipment and other issues. Sensor is an ideal detecting device to solve these problems. It can convert non-power information into electrical signals. It can easily transfer process, transform and control signals, and has many special advantages such as good selectivity, high sensitivity, and fast response speed and so on. According to these characteristics and advantages of sensors, automatic Measurement and reporting system of water quality is designed and developed. It bases on SMS (Short Messaging Service) in the GSM (Global System for Mobile Communications) network to instantaneously transfer the collected data. It also can remotely monitor the water quality on line. The system implements automation, intelligence and network of water quality monitoring, and uses manpower, material and financial resources sparingly. Moreover, the current methodologies include analysis of various kinds of parameters of water quality such as physical and chemical. Traditional methods of the water quality detection have the disadvantages like complicated methodology, long waiting time for results, low measurement precision and high cost [4]. Therefore, there is a need for continuous monitoring of water quality parameters in real time.

The specific objective of the research is to develop a water pollution monitoring system, which is able to measure the level of different pollutants in water and forward that information. Data are instantaneously sent to monitoring center by GSM network in the form of SMS where this information can be stored, processed, and analyzed and presented to the end user.

II. LITERATURE SURVEY

Water quality refers to the chemical, physical, biological, and radiological characteristics of water. The most common standards used to assess water quality relate to health of ecosystems, safety of human contact and drinking water. [1] Environmental monitoring describes the processes and activities that need to take place to characterize and monitor the quality of the environment [2].

Sensor use and monitoring have recently become hot topics in water management. Water companies, as well as wastewater treatment companies, more and more realize that significant improvements can be reached using modern techniques to gain more insight in the process of cleaning water. Continuous knowledge about the quality of the raw or partially treated water can be employed to adapt the treatment process and reduce costs by using fewer chemicals when possible or optimizing the use of filters. The system would enable monitoring of the water quality remotely via GSM. The system would also be able to send alert messages upon detecting degradation of water quality in the pond via SMS. [3] GSM is a cellular network, which means that cell phones connect to it by searching for cells in the immediate vicinity. [4]. This research paper proposes architecture for implementing a water quality monitoring system for the...
aquaculture industry. The system would enable monitoring of the water quality remotely via GSM. Conventional method used by aqua farms requires technical staff to visit ponds at designated time and perform manual testing on the water quality. Consequently, the technique consumes a lot of time and effort. This research project would focus on developing a prototype that can evaluate data collected through three criteria: Dissolved oxygen level, pH level, and temperature level. The system would also be able to send alert messages upon detecting degradation of water quality in the pond via SMS. [5]

III. SYSTEM HARDWARE ARCHITECHTURE

A. Overall Design of the System

The system consists of multiple water detection sensors, single-chip microcontroller data acquisition module, information transmission module, monitoring center and other accessories. Other water quality sensors transform the detected chemical signals into electrical signals, amplified by the signal conditioning circuit. The multiplexers select one road signal and send to A/D converter. Then it is converted into a digital signal. Single-chip reads and processes the digital information. It also controls the GSM module sending the collected data to the monitoring center in the form of SMS by GSM network instantaneously. Monitoring center receives the data and then analyzes, classifies, saves them and draws corresponding graphs. That can instantaneously monitor and alarm the situation of water quality. If the water quality is abnormal, single-chip will control the GSM module to send data to the monitoring center in the form of short message. The alarm in the monitoring center is activated. At the same time, the data are sent to management mobile phone in this way. It is easy for management to take corresponding measures immediately. The system can do all-weather real-time monitor to water’s pH, conductivity, turbidity. The design is beneficial for management to know the real-time water quality information, and make man-machine interaction with the system by mobile.

B) Water Detection Sensors

Water detection sensors determine the system’s accuracy and cost. Generally, they are very expensive on the market. In order to reduce the cost, we choose DS18B20, make conductivity sensors, turbidity sensors and pH sensors, by ourselves, and purchase dissolved oxygen sensor of U.S. Global Water.. Conductivity sensors are generally divided into two types: two electrodes or multiple electrodes. Conductivity of two electrodes is commonly used interiorly. Generally, two conductivity electrodes in laboratory can be made by using two platinized platinum to sinter on two parallel glass, or inner wall of the round glass tube. Changing the size of platinum pieces and adjusting the distance between them can make different constant value of two conductivity electrodes. Turbidity is caused by suspended particles in water. Suspended particles block a lot of incident light and scattered light. It also diffuse the incident light. Therefore, photoelectricity sensor is used to detect turbidity. pH value is tested by the method of electric potential. Primary cell made by a constant potential reference electrode and measuring electrode is used in the method.

A pH glass probe, which is sensitive to pH, is on measurement electrode. It is made of a special glass that can conduct electricity and permeate hydrogen ion. The potential can be produced when the glass probe touch the hydrogen ion. Different pH in the water generates corresponding potential. It can be converted into 4~20mA output by the transmitter. Conductivity sensors are generally divided into two types two electrodes or multiple electrodes. conductivity of two electrodes is commonly used interiorly conductivity measurements are used routinely in many industrial and environmental applications as a fast, expensive and reliable way of measuring the ionic content in a solution. As shown in figure 3.1 the diagram the system consists of assorted water quality measuring sensors like pH, turbidity, conductivity, PIC microcontroller, GSM module and LCD. The water quality measuring system uses pH, turbidity, conductivity device to measure the standard of water. This device then measures the corresponding values of the water. Since the outputs of the sensors measured are analog in nature and microcontroller will handle solely digital signals thus there’s a necessity of a tool that converts analog signals into digital signals. The system makes use of ADC for this purpose. The outputs of sensors are directly given to ADC, which converts the analog signals into the corresponding digital signals. These digital signals are then given to the PIC microcontroller System uses GSM module for communication. GSM module makes use of interface of the PIC microcontroller for communication. Microcontroller sends the measured values to the watching centre by SMS via the GSM module. Since it is a true time system, thus microcontroller can send the measured values to the watching centre after the particular time as per the program. With the information to the watching centre, the microcontroller conjointly displays the values of the measured quantities on the LCD. It is a true time system thus it does not need any man machine interaction for activity the standard of water.

![Figure 1. Block diagram of the proposed system](http://www.ijritcc.org)
This model uses sensors, GSM module (SIM900), LCD and a PIC 16F877 microcontroller. The GSM module is connected to PC through RS232 cable. The system model is shown in Figure which says about the connectivity of all mentioned devices. The LCD is attached to PIC 16F877 to simultaneously display the measured values, through which we can experimentally check whether the data that is being sent is correct.

C) Overview of the device used

1. PIC16F877A microcontroller

The PIC16F877A microcontroller is the main component. The microcontroller that has been used for this project is from PIC series. PIC microcontroller is the first RISC based microcontroller fabricated in CMOS (complementary metal oxide semiconductor) that uses separate bus for instruction and data allowing simultaneous access of program and data memory. The microcontroller is mounted on a development board that provides an RS232 serial communication to the GSM modem.

2. Photo resistor

A photoresistor (or light-dependent resistor, LDR, or photocell) is a light-controlled variable resistor. The resistance of a photoresistor decreases with increasing incident light intensity; in other words, it exhibits photoconductivity. A photoresistor can be applied in light-sensitive detector circuits, and light- and dark-activated switching circuits. A photoresistor is made of a high resistance semiconductor. In the dark, a photoresistor can have a resistance as high as several megohms (MΩ), while in the light, a photoresistor can have a resistance as low as a few hundred ohms. If incident light on a photoresistor exceeds a certain frequency, photons absorbed by the semiconductor give bound electrons enough energy to jump into the conduction band.

3. GSM Modem

The GSM net used by cell phones provides a low cost, long range, wireless communication channel for applications that need connectivity rather than high data rates. Machinery such as industrial refrigerators and freezers, HVAC, vending machines, vehicle service etc. could benefit from being connected to a GSM system.

An onboard service application can then notify the garage when the vehicle approaches its service interval. The system has good flexibility. This system is used in hydrologic, industrial effluent, HVAC, vending machines, vehicle service etc. The system has good flexibility. This system is used in commercial and domestic use. It can be used in water supply agencies for health department to identify the reason of water Diseases so that it can able to measure the water quality automatically, and it is low type of system requires less man power for operation. This type of system requires less man power for operation. The system can monitor water quality automatically, and it is low in cost and does not require people on duty. The water quality testing is likely to be more economical, convenient and fast. The system has good flexibility. This system is used in commercial and domestic use. It can be used in water supply agencies for health department to identify the reason of water Diseases so that it can able to measure the water diseases.

IV. SOFTWARE MODULE

The program is written in Embedded C in MPLAB IDE. MPLAB is an Integrated Development Environment (IDE) for the development of embedded applications on PIC microcontrollers and is developed by microchip technology. MPLAB support project management, code editing, debugging and programming of Microchip 8-bit, 16-bit and 32-bit microcontrollers. The HEX file is dumped into the PIC 16F877 microcontroller using Top Win programmer.

The front end has been designed in visual basic. Visual Basic is a third-generation event-driven programming language and integrated development environment (IDE) from Microsoft for its COM programming model first released in 1991 and declared legacy in 2008. Microsoft intended Visual Basic to be relatively easy to learn and use. Visual Basic was derived from BASIC and enables the rapid application development (RAD) of graphical user interface (GUI) applications, access to databases using Data Access Objects, Remote Data Objects, or ActiveX Data Objects, and creation of ActiveX controls and objects.

V. ADVANTAGES

1. Due to automation it will reduce the time to check the parameters.
2. This is economically affordable for common people.
3. Low maintenance.
4. Prevention of water diseases

VI. CONCLUSION

Automatic measurement and reporting system of water quality based on GSM makes use of water detection sensor with unique advantage and existing GSM network. This type of system requires less man power for operation. The system can monitor water quality automatically, and it is low in cost and does not require people on duty. So the water quality testing is likely to be more economical, convenient and fast. The system has good flexibility. This system is used in commercial and domestic use. It can be used in water supply agencies for health department to identify the reason of water Diseases so that it can able to measure the water diseases.

Only by replacing the corresponding sensors and changing the relevant software programs, this system can be used to monitor other water quality parameters. The operation is simple. The system can be expanded to monitor hydrologic, air pollution, industrial and agricultural production and so on. It has widespread application and extension value.

VII. REFERENCES

