
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 5 113 - 117

113

IJRITCC | May 2016, Available @ http://www.ijritcc.org

VHDL Based Bridge Interface Performance of Reduced Power Open Core

Protocol

Vinay Dhok

M.Tech Student

Department of Electronics and Telecommunication

Engineering

Nuva College of Engineering and Technology

Nagpur, Maharashtra, India

dhok.vinay@gmail.com

Prof. Mrs. Pooja Thakre

HOD

Department of Electronics and Telecommunication

Engineering

Nuva College of Engineering and Technology

Nagpur, Maharashtra, India

poojathakre24@gmail.com

Abstract— Framework on Chip configuration is getting to be testing because of its intricacy and the need of Scholarly Properties (IP) reuse

to abbreviate the outline time. An productive transport convention for the center correspondence between IP square is OCP. Open Core Protocol

(OCP) characterizes the main nonproprietary, transparently authorized, center driven convention with high performance, transport autonomous

interface between IP centers that diminishes plan time, outline hazard, and assembling costs and advance IP center reusability for SOC outlines.

Transport Bridge interconnects different transport standard to OCP. I2C is a basic bidirectional two wire transport for productive bury IC control

.This paper concentrate on the outline and execution of Bus Bridge utilizing OCP expert and I2C slave convention. The force decrease utilizing

Multi voltage configuration is the vital component of the paper. The built up FSM's for OCP and I2C were executed in VHDL and the Synthesis

is done utilizing Xilinx ISE 10.1 and Synopsys ASIC union instrument plan compiler.

Keywords—OCP Bridge Master; Slave; OCP compliant; Interface; Power Analysis ;Power reduction; Multi voltage Design Memory ontroller,

Memory, Burst Transfer.

__*****___

I. Introduction

The Open Core Protocol (OCP) is a center driven

convention which characterizes an elite, transport free

interface between IP centers that decreases plan time, outline

hazard, and assembling costs for SOC plans. Principle

property of OCP is that it can be designed concerning the

application required. The OCP is picked on account of its

propelled supporting elements, for example, configurable

sideband control flagging and test tackle signals, when

contrasted with other center conventions.

Alternate transport and segment interfaces address just the

information stream parts of center correspondences, the ocp

brings together all between center interchanges, including

sideband control and test saddle signals. The OCP's

synchronous unidirectional flagging produces rearranged

center execution, incorporation, and timing examination. The

OCP promptly adjusts to bolster new center capacities while

restricting test suite alterations for center redesigns.

The Open Core Protocol™ (OCP) characterizes a superior,

transport free interface between IP centers that lessens outline

time, plan hazard, and assembling costs for SOC plans. An IP

center can be a basic fringe center, an elite microprocessor, or

an on-chip correspondence subsystem, for example, a wrapped

on-chip transport. The Open Core Protocol

 The objective of IP outline reuse. The OCP changes

IP centers making them free of the engineering and

plan of the frameworks in which they are utilized

 Compute pass on territory by designing into the OCP

just those elements required by the conveying centers

 Litigations of framework confirmation and testing by

giving a firm limit around every IP center that can be

watched, controlled, and approved

The approach adopted by the Virtual Socket Interface

Alliance‟s (VSIA) Design Working Group on On-Chip Buses

(DWGOCB) is to specify a bus wrapper to provide a bus-

independent Transaction Protocol-level interface to IP cores.

The OCP is equivalent to VSIA‟s Virtual Component Interface

(VCI). While the VCI addresses only data flow aspects of core

communications, the OCP is a superset of VCI additionally

supporting configurable sideband control signaling and test

harness signals. The OCP is the only standard that defines

protocols to unify all of the inter-core communication.

The Open Core Protocol (OCP) delivers the only non-

proprietary, openly licensed, core-centric protocol that

comprehensively describes the system-level integration

requirements of intellectual property (IP) cores. While other

bus and component interfaces address only the data flow

aspects of core communications, the OCP unifies all inter-core

communications, including sideband control and test harness

signals. OCP's synchronous unidirectional signaling produces

simplified core implementation, integration, and timing

analysis.

OCP eliminates the task of repeatedly defining, verifying,

documenting and supporting proprietary interface protocols.

The OCP readily adapts to support new core capabilities while

limiting test suite modifications for core upgrades. Clearly

delineated design boundaries enable cores to be designed

independently of other system cores yielding definitive,

reusable IP cores with reusable verification and test suites.

Any on-chip interconnects can be interfaced to the OCP

rendering it appropriate for many forms of on-chip

communications:

 Dedicated peer-to-peer communications, as in many

pipelined signal processing applications such as

MPEG2 decoding.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 5 113 - 117

114

IJRITCC | May 2016, Available @ http://www.ijritcc.org

 Simple slave-only applications such as slow

peripheral interfaces.

 High-performance, latency-sensitive, multi-threaded

applications, such as multi-bank DRAM

architectures.

The OCP supports very high performance data transfer

models ranging from simple request-grants through pipelined

and multi-threaded objects. Higher complexity SOC

communication models are supported using thread identifiers

to manage out-of-order completion of multiple concurrent

transfer sequences.

The Open Core Protocol interface addresses

communications between the functional units (or IP cores) that

comprise a system on a chip. The OCP provides independence

from bus protocols without having to sacrifice high-

performance access to on-chip interconnects. By designing to

the interface boundary defined by the OCP, you can develop

reusable IP cores without regard for the ultimate target system.

Given the wide range of IP core functionality, performance

and interface requirements, a fixed definition interface

protocol cannot address the full spectrum of requirements. The

need to support verification and test requirements adds an even

higher level of complexity to the interface. To address this

spectrum of interface definitions, the OCP defines a highly

configurable interface. The OCP‟s structured methodology

includes all of the signals required to describe an IP cores‟

communications including data flow, control, and verification

and test signals.

Here the importance of project comes into picture i.e.

“OCP (Open Core Protocol) plays a vital role by doing its

transaction between two different IP cores, which will make

the application fail when it doesn‟t work properly”.

II. Literature Survey

With the rapid progress of system-on-a-chip (SOC) and

massive data movement requirement, on-chip system bus

becomes the central role in determining the performance of a

SOC. Two types of on-chip bus have been widely used in

current designs: pipelined-based bus and packet-based bus.

For pipelined-based buses, such as ARM‟s AMBA 2.0

AHB, IBM‟s Core Connect and Open Core‟s Wishbone, the

cost and complexity to bridge the communications among on-

chip designs are low. However, pipeline-based bus suffers

from bus contention and inherent blocking characteristics due

to the protocol. The contention issue can be alleviated by

adopting multi-layer bus structure or using proper arbitration

policies. However, the blocking characteristic, which allows a

transfer to complete only if the previous transfer has

completed, cannot be altered without changing the bus

protocol. This blocking characteristic reduces the bus

bandwidth utilization when accessing long latency devices,

such as an external memory controller.

To cope with the issues of pipelined-based buses packet-

based buses such as ARM‟s AMBA 3.0 AXI, OCP-IP‟s Open

Core Protocol (OCP), and STMicroelectronics‟ ST Bus have

been proposed to support outstanding transfer and out-of-order

transfer completion. We will focus on AXI here because of its

popularity. AXI bus possesses multiple independent channels

to support multiple simultaneous address and data streams.

Besides, AXI also supports improved burst operation, register

slicing with registered input and secured transfer.

 Despite the above features, AXI requires high cost and

possesses long transaction handshaking latency. However, a

shared-link AXI interconnect can provide good performance

while requiring less than half of the hardware required by a

crossbar AXI implementation. This work focused on the

performance analysis of a shared-link AXI. The handshaking

latency is at least two cycles if the interface or interconnect is

designed with registered input. This would limit the bandwidth

utilization to less than 50%. To reduce the handshaking

latency, we proposed a hybrid data locked transfer mode.

Unlike the lock transfer in which requires arbitration lock over

transactions, our data locked mode is based on a transfer-level

arbitration scheme and allows bus ownership to change

between transactions. This gives more flexibility to arbitration

policy selection.

With the additional features of AXI, new factors that affect

the bus performance are also introduced. The first factor is the

arbitration combination. The multi-channel architecture allows

different and independent arbitration policies to be adopted by

each channel. However, existing AXI-related works often

assumed a unified arbitration policy where each channel

adopts the same arbitration policy. Another key factor is the

interface buffer size. A larger interface buffer usually implies

that more out-of-order transactions can be handled. The third

factor is the task access setting, which defines how the transfer

modes should be used by the devices within a system

III. Design of open Core Protocol

The block diagram which explains the basic operation and

characteristics of OCP is shown in Figure 2.1. The OCP

defines a point-to-point interface between two communicating

entities such as IP cores and bus interface modules. One entity

acts as the master of the OCP instance, and the other as the

slave. Only the master can present commands and is the

controlling entity.

The slave responds to commands presented to it, either by

accepting data from the master, or presenting data to the

master. For two entities to communicate there need to be two

instances of the OCP connecting them such as one where the

first entity is a master, and one where the first entity is a slave.

Figure.1 Basic block diagram of OCP instance

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 5 113 - 117

115

IJRITCC | May 2016, Available @ http://www.ijritcc.org

Figure.1 shows a simple system containing a wrapped bus

and three IP core entities such as one that is a system target,

one that is a system initiator, and an entity that is both. The

characteristics of the IP core determine whether the core needs

master, slave, or both sides of the OCP and the wrapper

interface modules must act as the complementary side of the

OCP for each connected entity. A transfer across this system

occurs as follows.

A system initiator (as the OCP master) presents command,

control, and possibly data to its connected slave (a bus

wrapper interface module). The interface module plays the

request across the on-chip bus system. The OCP does not

specify the embedded bus functionality. Instead, the interface

designer converts the OCP request into an embedded bus

transfer. The receiving bus wrapper interface module (as the

OCP master) converts the embedded bus operation into a legal

OCP command. The system target (OCP slave) receives the

command and takes the requested action.

Each instance of the OCP is configured (by choosing

signals or bit widths of a particular signal) based on the

requirements of the connected entities and is independent of

the others. For instance, system initiators may require more

address bits in their OCP instances than do the system targets;

the extra address bits might be used by the embedded bus to

select which bus target is addressed by the system initiator.

The OCP is flexible. There are several useful models for

how existing IP cores communicate with one another. Some

employ pipelining to improve bandwidth and latency

characteristics. Others use multiple-cycle access models,

where signals are held static for several clock cycles to

simplify timing analysis and reduce implementation area.

Support for this wide range of behavior is possible through the

use of synchronous handshaking signals that allow both the

master and slave to control when signals are allowed to change

The design of the Open Core Protocol starts with the initial

study based on which the development of FSM (Finite State

Machine) for the various supporting operation after which the

development of VHDL for the FSM. The development of the

FSM‟s are the basic step based on which the design can be

modelled. The FSM will ensure and explains the clear

operation of the OCP step by step and hence this development

will act as a basic step for design.

The notations used while designing the OCP are listed in

the TABLE I, TABLE II and TABLE III which are as follows.

TABLE I. Input Control Values

Control Notations Used Command

000 IDL Idle

001 WR Write

010 RD Read

011 INCR_WR Burst_Write

100 INCR_RD Burst_Read

TABLE II. Ocp master Command Value

MCmd Notations Used Command

000 IDL Idle

001 WR Write

010 RD Read

TABLE III. Slave Respones value

SResp Notations Used Response

00 NUL No Response

01 DVA Data Valid / Accept

The simple write and read operation in OCP has the

mandatory signals whose specification is mentioned in the

TABLE II.

FSM for OCP master

The Finite State Machine (FSM) is developed for the

simple write and read operation of OCP Master. The simple

write and read operation indicates that the control goes to

IDLE state after every operation. The FSM for the OCP

Master – Simple Write and Read is developed and is shown in

the Figure 3. Totally there are four states are available in this

FSM such as IDLE, WRITE, READ and WAIT.

Basically, the operation in the OCP will be held in two

phases.

 Request Phase

 Response Phase

Initially the control will be in IDLE state (Control = “000”)

at which all the outputs such as MCmd, MAddr and MData are

set to “don‟t care”. The system will issue the request to the

master such write request which leads to the WRITE state

(Control = “001”). In this state, the address and the data will

be given to the slave that is to be written and hence the process

will get over only when the SCmdAccept is asserted to high. If

SCmdAccept is not set, this represents that the write operation

still in process and the control will be in the WRITE state

itself. Once the write operation is over the control will go to

the IDLE state and then it will check for the next request.

When the read request is made, the control will go to the

READ state (Control = “010”) and the address is send to the

slave which in turn gives the SCmdAccept signal that ends the

request phase. Once the SCmdAccept is set and SResp is not

Data Valid (DVA), the control will go the WAIT state and will

be waiting for the SResp signal. When the read operation is

over which represents that the SResp is set to DVA and the

data for the corresponding address is taken. Hence the SResp

signal ends the response phase and the control will go the

IDLE state, then checks for the next request.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 5 113 - 117

116

IJRITCC | May 2016, Available @ http://www.ijritcc.org

Figure.2 FSM for OCP master - simple write and read

Figure.3 FSM for OCP slave - simple write and read

FSM for OCP slave

The FSM for the OCP Slave which has the simple write

and read operation is developed and is shown in the Figure 3.

The slave will be set to the respective state based on the

MCmd issued by the master and the output of this slave is that

the SCmdAccept and SResp. Initially control will be in the

IDLE state and when the master issues the command as write

request, and then the control will go the WRITE state in which

the data will be written to the corresponding memory address

location which is sent by the masters. Once the write operation

is finished, the SCmdAccept signal is set to high and is given

to the master. When MCmd is given as read request, then

the control will move to the READ state in which the data will

read from the particular memory address location that is given

by the master. Hence the SCmdAccept is set to high and the

SResp is set to the DVA which represents that the read

operation over and control goes to the IDLE state.

IV. Proposed Work

The architecture of the proposed on-chip bus is illustrated

in Figure.4, where we show an example with two masters and

two slaves. A crossbar architecture is employed such that more

than one master can communicate with more than one slave

simultaneously. If not all masters require the accessing paths

to all slaves, partial crossbar architecture is also allowed. The

main blocks of the proposed bus architecture are described

next.

Arbiter

In traditional shared bus architecture, resource contention

happens whenever more than one master requests the bus at

the same time. For a crossbar or partial crossbar architecture,

resource contention occurs when more than one master is to

access the same slave simultaneously. In the proposed design

each slave IP is associated with an arbiter that determines

which master can access the slave.

Figure.4 Proposed OCP block diagram

Decoder

Since more than one slave exists in the system, the

decoder decodes the address and decides which slave return

response to the target master. In addition, the proposed

decoder also checks whether the transaction address is illegal

or nonexistent and responses with an error message if

necessary.

FSM-M & FSM-S

Depending on whether a transaction is a read or a write

operation, the request and response processes are different. For

a write transaction, the data to be written is sent out together

with the address of the target slave, and the transaction is

complete when the target slave accepts the data and

acknowledges the reception of the data. For a read operation,

the address of the target slave is first sent out and the target

slave will issue an accept signal when it receives the message.

The slave then generates the required data and sends it to the

bus where the data will be properly directed to the master

requesting the data. The read transaction finally completes

when the master accepts the response and issues an

acknowledge signal. In the proposed bus architecture, we

employ two types of finite state machines, namely FSM-M

and FSM-S to control the flow of each transaction. FSM-M

acts as a master and generates the OCP signals of a master,

while FSM-S acts as a slave and generates those of a slave.

These finite state machines are designed in a way that burst,

pipelined, and out-or-order read/write transactions can all be

properly controlled.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 5 113 - 117

117

IJRITCC | May 2016, Available @ http://www.ijritcc.org

V. Simulation Result

In this work, we use multiple masters and multiple slaves

to perform open core protocol data transfer. Simulation

waveform shows the data transfer between two cores. Figure.5

shows the simulation with multiple masters and multiple

slaves.

Figure.5 simulation result of OCP architecture

Simulation result shows data transfers to the respective

slave when enable signal is enabled. When all enables are

„high‟ then data is transferred to all slave. That is one mater

can transfer data to all slaves. We can transfer the data to one

or more slave by giving „high‟ to enable signal.

VI. Conclusion

In this paper, the OCP design with numerous experts and

various slaves demonstrates information exchange in the

middle of expert and slave. We can exchange the information

to numerous slaves with a postponement of 4.310ns which is

less when contrasted with other center conventions. Our

design requires less territory with rapid which is critical

elements in framework on-chip conventions. In this work, we

can likewise incorporate burst exchange make it adaptable

with numerous exchange.

VII. References
[1] “Open Core Protocol Specification 3.0”, International

Partnership, 2000- 2009 OCP-IP Association, Document

Revision 1.0.

[2] Chih-Wea Wang, Chi-Shao Lai, Chi-Feng Wu, Shih-Arn

Hwang, and Ying-Hsi Lin, “On-chip Interconnection Design and

SoC Integration with OCP”, Proceedings of VLSI-DAT, 2008,

pp. 25– 28, April 2008.

[3] “Using the I2C Bus”, I2C tutorial, Robot Electronics

http://www.robot-electronics.co.uk/acatalog/I2C_Tutorial.html.

[4] “The I2C Bus Specification”, Version 2.1,January 2000,Philips

Semiconductor,pp 8-16.

[5] “Computer Architecture and Engineering”, Lecture 8, Designing

a Multicycle Processor, www.mips.com.

[6] David A. Patterson, John L.Hennessy, “Computer Organization

and Design”, Third Edition, Morgan Kaufmann Publishers,

pp.318-339.

[7] Shihua Zhang, Asif Iqbal Ahmed and Otmane Ait Mohamed,

“A Reusable verification Framework of Open Core Protocol”,

Circuits and Systems and TAISA Conference, 2009, pp. 1-4,

june 28,2009.

[8] W.-D. Weber, “Enabling reuse via an IP core-centric

communications Protocol”, In Proc. IP 2000 System-on-Chip

Conference, pages 217-224, Mar 2000.

[9] Prashant D. Karandikar, “Open Core Protocol (OCP) An

Introduction to Interface Specification”, 1st Workshop on SoC

Architecture, Accelerators & Workloads Jan 10 2010.

[10] Chien-Chun (Joe) Chou, Konstantinos Aisopos, David Lau,

Yasuhiko Kurosawa and D. N. (Jay) Jayasimha, “Using OCP

and Coherence Extensions to Support System-Level Cache

Coherence”, Technical Paper, pg. nos.10, April 2009.

[11] OCP-IP, “Open core protocol international partnership,”

http://www.ocpip.org/,2007.

[12] JamesAldis, “Use of OCP in OMAP 2420”,

http://www.ocpip.org/,2005.

[13] Qiang Ma and Evangeline F. Y. Young, Multivoltage Floor plan

Design, IEEE transactions on computer-aided design of

integrated circuits and systems, vol. 29, no. 4, April 2010 607.

[14] Bhakthavatchalu R,Deepthy G.R.,Shanooja S,” Implementation

of reconfigurable Open Core Protocol compliant memory system

using VHDL” Industrial and Information Systems (ICIIS), 2010

International Conference ,2010,pp.213-218 ,July 29,2011.

[15] Ramesh Bhakthavatchalu, Deepthy G.R,Vidhya S,Nisha V,”

Design and Analysis of Low power Open Core Protocol

Compliant Interface using VHDL” Emerging Trends in

Electrical and Computer Technology (ICETECT), 2011

International Conference.

http://www.ijritcc.org/

