
International Conference on Recent Trends in Computer and Electronics Engineering (ICRTCEE 17) ISSN: 2321-8169
Volume: 5 Issue: 5 28 – 33

28
IJRITCC | May 2017, Available @ http://www.ijritcc.org (Special Issue)

Improved Apriori Algorithms- A Survey

Rupali Manoj Patil

ME Student, Computer Engineering

Shah And Anchor Kutchhi Engineering College, Chembur, India

Abstract:- Rapid expansion in the Network, Information technology and Internet facilities causes more and more data generation from the users.

More importance is being given on handling of this data using the data mining rules for developing associations. Apriori algorithm is a standard

association rule mining algorithm and also is one of the most significant algorithms. It is used to extract frequent item sets from huge database

and get the association rule for discovering the knowledge but it has some limitations of frequently scanning database and generating a huge

number of candidate sets. This paper discusses about three improved Apriori algorithms, what new techniques used and how they are more

efficient as compared to traditional Apriori algorithm that is also discussed.

Keywords:- Data mining, Association rule mining, Apriori algorithm, Improved Apriori.

__*****___

1. INTRODUCTION
With the development in technology, all present applications

are generating and collecting huge amount of data. As a result,

data mining requires more effective and efficient algorithms to

convert this vast data into knowledge. Data mining can be

defined as a process of extracting hidden patterns and predictive

information from huge amount of data. This hidden knowledge

can be extracted using methods like, Association Rule Mining,

Clustering, Sequence analysis, Classification or Forecasting.

Association Rule mining is an important research direction in

data mining which is used to describe association between item

sets of transaction database. Many algorithms come under

association rule mining but Apriori Algorithm is one of the

standard algorithm. It was introduced by Agarwal et al. in 1993.

Apriori Algorithm is based on the property of frequent item sets

“All subsets of frequent item sets is frequent and all supersets

of a nonfrequent item set is nonfrequent.” This property is used

in Apriori Algorithm to determine all the frequent item sets.

1.1 Apriori algorithm

Apriori Algorithm works on two concepts:

a) Self-Joining and b) Pruning.

 Apriori uses a level wise search where k-item sets are used to

find (k+1) item set.

Simple steps of Apriori algorithm

1) First scan the whole transaction database and find

 1-candidate item sets which is denoted by C1.

2) Then support is calculated. Support means the occurrence of

the

 item in the database.

3) Next step is pruning step, it is carried out on C1. In this the

items which satisfies the minimum support criteria are only

considered for frequent-1 item set, L1.

4) Then self-joining step is carried out in which L1 joins itself to

get C2 i.e. candidate-2 item sets.

5) Then Pruning of C2 to get L2.

6) Self-joining of L2 to get C3 i.e. candidate-3 item set.

7) Repeat above steps till there is no frequent or candidate item

sets.

We can understand the concepts use by Apriori Algorithm

with the help of following example. Table 1 shows simple

database having 4 transactions. TID is transaction ID, an

unique identification for every transaction.

Table 1 Database D

TID Items

T1 1 2 4

T2 3 4 5

T3 1 3 4 5

T4 3 5

By performing the first step, which is scanning the whole

database to get C1 as shown in Table 2.

 Table 2 C1

Itemset Support

{1} 2

{2} 1

{3} 3

{4} 3

{5} 3

Here assuming minimum support as 2. Next step is the

pruning step in which each itemset support is compared with

the minimum support. Only those itemset whose support is

greater than or equal to minimum support are taken in L1.

http://www.ijritcc.org/

International Conference on Recent Trends in Computer and Electronics Engineering (ICRTCEE 17) ISSN: 2321-8169
Volume: 5 Issue: 5 28 – 33

29
IJRITCC | May 2017, Available @ http://www.ijritcc.org (Special Issue)

Table 3 L1

Itemset Support

{1} 2

{3} 3

{4} 3

{5} 3

Now Candidate-2 itemset are created from L1. Table 4 shows

all possible combinations that can made from Table 3 itemset.

 Table 4 C2

Itemset Support

{1 3} 1

{1 4} 2

{1 5} 1

{3 4} 2

{3 5} 3

{4 5} 2

Now again pruning step is carried out using minimum support

condition. We will get following Table 5.

 Table 5 L2

Itemset Support

{1 4} 2

{3 4} 2

{3 5} 3

{4 5} 2

Now from L2 create candidate-3 itemset which is denoted as

C3. Table 6 describes C3.

 Table 6 C3

Itemset Support

{1 3 4} 1

{1 3 5} 1

{1 4 5} 1

{3 4 5} 2

After pruning on the basis of minimum support condition

frequent-3 itemset, L3 is created. Table 7 describes it.

Table 7 L3

Itemset Support

{3 4 5} 2

Above steps continued till there are no frequent or candidate

set that can be generated.

Pseudo Code –

Ck: Candidate itemset of size k

Lk: frequent itemset of size k

L1: {frequent itemset};

For (k=1; Lk !=Ø; k++) do begin

Ck+1 = candidates generated from Lk;

for each transaction t in database do

Increment the count of all candidates in Ck+1 that are

contained in t

Lk+1 = candidates in Ck+1 with minimum support

end

returnᴗkLk;

Drawbacks of Apriori Algorithm:

♦ Scan database many times repeatedly for finding candidate

itemset which increases the CPU overhead.

♦ More time is wasted to hold vast number of candidate sets.

♦ In case of large dataset, this algorithm is not efficient.

♦ For large dataset large number of infrequent item set are

generated which increases the space complexity.

♦ for large dataset support computation will be more.

Due to these drawbacks Apriori should get improved which

we will study further in this paper.

2. 2. IMPROVED APRIORI ALGORITHMS

2.1 Improved Apriori based on matrix

First step in this improved Apriori is to make a Matrix

library. Prof. Dr. K. Rajeswari [3] had transformed the list of

items into a matrix library. The matrix library contains a

binary representation where „1‟ indicates item present in

transaction and „0‟ indicates it is absent. The third column in

the example dataset is binary representation of the items in

the transactions.

Improved Algorithm:

Pseudo code:

‘Ti’ Transaction in the database D, Ik: Candidate item set,

Amn: Matrix representation of transactions of size mxn,

m: No. of transaction, n: No. of items, MAT (Ij): single item

set support.

1) I/P: Database D, Minimum_support

2) O/P: Lk frequent item set

3) For (i=1; i<=m; i++) do begin

4) For each transaction Ti,

5) For (j=1; j<=n; j++) do begin

6) If (Ij present in Ti)

A[i] [j] =1

Else

A[i] [j] =0

7) End for

http://www.ijritcc.org/

International Conference on Recent Trends in Computer and Electronics Engineering (ICRTCEE 17) ISSN: 2321-8169
Volume: 5 Issue: 5 28 – 33

30
IJRITCC | May 2017, Available @ http://www.ijritcc.org (Special Issue)

8) End for

9) For (j=1; j<=; j++) do begin

10) For each item generate support matrix

11) For (i=1; i<=m; i++) do begin

12) MAT[j] [i] = A[i] [j]

//Arrange column value to get support of each item set

13) End for

14) End for

//For frequent itemset-2

15) MAT [Ij, Ik] = MAT [Ij] & MAT [Ik]

16) Support for frequent itemset-2 is calculated

Example:

 Table 8 Database D

TID List of Items

T1 I1,I2,I5

T2 I2,I4

T3 I2,I4

T4 I1,I2,I4

T5 I1,I3

T6 I2,I3

T7 I1,I3

T8 I1,I2,I3,I5

T9 I1,I2,I3

First step is to make matrix library.

 Table 9 Matrix library

TID
List of

Items
I1 I2 I3 I4 I5

T1 I1,I2,I5 1 1 0 0 1

T2 I2,I4 0 1 0 1 0

T3 I2,I4 0 1 0 1 0

T4 I1,I2,I4 1 1 0 1 0

T5 I1,I3 1 0 1 0 0

T6 I2,I3 0 1 1 0 0

T7 I1,I3 1 0 1 0 0

T8 I1,I2,I3,I5 1 1 1 0 1

T9 I1,I2,I3 1 1 1 0 0

For 1-itemset matrix represented is used (i.e.)

MAT (I1) =100110111

MAT (I2) =111101011

MAT (I3) =000011111

MAT (I4) =011100000

MAT (I5) =100000010

Minimum support is 3 so I5 is not considered.

For 2-itemset take logical “AND” of MAT (I1) and MAT (I2)

MAT (I1) = 100110111

MAT (I2) = 111101011

MAT (I1, I2) =100100011

Support can be calculated as:

Support (I1, I2) = Nos. of times appearing together/Total

Transaction) = 4/9.

Same procedure can be followed for all possible item set.

This algorithm needs to scan the database only once so

frequently scanning problem of basic Apriori is solved and

also this algorithm does not requires to find the candidate set

when searching for frequent item set ,so amount of memory

utilization is also less as compared to traditional Apriori.

Table 10 provides computational time of Apriori and

improved Apriori.

Table 10 Computation time for Apriori and Improved

Apriori

Record

no.

Apriori

computing

time(ms)

Improved

Apriori

Computing

time(ms)

500 1787 35

1000 8187 108

1500 44444 178

2000 46288 214

2500 97467 292

3000 199253 407

3500 226558 467

4000 310379 569

4500 155243 470

5000 208685 572

2.2 Improved Apriori based on Transaction

Reduction

This improved Apriori algorithm [2] is to reduce the time

consuming for candidate itemset generation. Original

Apriori scan all the transactions for candidate-2 itemset, this

proposed improved algorithm split the two items

and get the minimum support between them using L1 and the

item who is having less support count only those

transactions are scanned.

Steps for Ck generation:

1) Scan all transactions to generate L1 table L1 (items, their

support, their transaction IDs).

2) Construct Ck by self-join.

3) Use L1 to identify the target transactions for Ck.

4) Scan the target transactions to generate Ck.

Improved Algorithm:
//Generate items, items support, their transaction ID

1) L1=find _frequent_1_itemsets (T);

2) For (k=2; Lk-1 !=Ø; k++) {

//Generating the Ck from the Lk-1

3) Ck =candidates that are generated from Lk-1;

//getting the item with minimum support in Ck using L1,

(k>=1).

http://www.ijritcc.org/

International Conference on Recent Trends in Computer and Electronics Engineering (ICRTCEE 17) ISSN: 2321-8169
Volume: 5 Issue: 5 28 – 33

31
IJRITCC | May 2017, Available @ http://www.ijritcc.org (Special Issue)

4) x = Get_item_minimum_support (Ck, L1);

//getting the target transaction IDs that contain item x.

5) Target = get_Transaction_ID (x)

6) For each transaction t in Target Do

7) Increment the count of all the items in Ck that are found in

Target;

8) Lk = items in Ck >= minimum support;

9) End;

10)}

Example:

 Table 11 Database D

TID List of Items

T1 I1,I2,I5

T2 I2,I4

T3 I2,I4

T4 I1,I2,I4

T5 I1,I3

T6 I2,I3

T7 I1,I3

T8 I1,I2,I3,I5

T9 I1,I2,I3

 Table 12 Candidate-1 item-set

Items Support count

I1 6

I2 7

I3 5

I4 3

I5 2

Step 1: From the above database generate candidate-1 item set,

which contains items with their support count.

Step 2: Generate Frequent-1 item set (L1) which consists of

items with their support count and the transaction Ids that

contain these items. Eliminate the candidates which are not

frequent or whose support count < Minimum_support. Here

minimum support is 3 so item I5 is deleted in frequent-1 item

set. Which is shown in Table 13.

Table 13 L1: Frequent-1 item-set

Items Support T_IDs

I1 6 T1,T4,T5,T7,T8,T9

I2 7 T1,T2,T3,T4,T6,T8,T9

I3 5 T5,T6,T7,T8,T9

I4 3 T2,T3,T4

Step 3: Generate candidate-2 item set from L1. Min is the

minimum support count. I1 is having less support count than I2,

so only I1 transaction Ids are scanned by the algorithm.

Candidates I1, I4 and I3, I4 will be deleted from frequent-3

item set because it is not satisfying minimum support

condition.

Table 14 L2: Frequent-2 item-set

Items
Support

count
Min Found in

I1,I2 4 I1 T1,T4,T5,T7,T8,T9

I1,I3 4 I3 T5,T6,T7,T8,T9

I1,I4 1 I4 T2,T3,T4

I2,I3 3 I3 T5,T6,T7,T8,T9

I2,I4 3 I4 T2,T3,T4

I3,I4 0 I4 T2,T3,T4

Step 4: Same process is carried out to generate 3-itemset

depending on L1 table. For a given frequent item set Lk ,all

nonempty subsets that satisfy the minimum confidence are

found then all candidate association rules are generated.

Table 15 L3: Frequent -3 item set

Items Support Min Found in

I1,I2,I3 2 I3 T5,T6,T7,T8,T9

I1,I2,I4 1 I4 T2,T3,T4

I1,I3,I4 0 I4 T2,T3,T4

I2,I3,I4 0 I4 T2,T3,T4

In above example L3 is not satisfying minimum support

criteria so all candidates are deleted and association rules are

generated from L2.

1.3 Improved DC Apriori Algorithm

Prof. Jioling Du et.al [1] had proposed improved DC_Apriori

algorithm. This proposed algorithm uses the logical “And”

operation for reference and uses a map structure to store the

item sets table then takes the intersection to obtain the

corresponding support, avoiding frequently database

scanning.

Improved DC Algorithm:

Pseudocode description:

Input: Transaction database, Minimum support min_sup

Output: Frequent item sets L

1. For each Transaction in D {

2. While (getline (strSreamItem, strItem, „ „)){

//get transaction t‟s Item

3. If (t.item==c1.item)

//Item already present

4. then c1.Item.Tid.insert(t);

//Add transaction Id

http://www.ijritcc.org/

International Conference on Recent Trends in Computer and Electronics Engineering (ICRTCEE 17) ISSN: 2321-8169
Volume: 5 Issue: 5 28 – 33

32
IJRITCC | May 2017, Available @ http://www.ijritcc.org (Special Issue)

5. Else //Item not present

6. Then c1.insert (Item & Tid);

//Insert new Item and Tid

7.}

8.}

9. For each c1 in C1 {

//Judge the support of each 1-candidate c1

10. L1= {c1є C1 lc1.sup>= min_sup};

//Generate frequent 1-item sets L1

11.}

12. for (k=2; L k-1 !=NULL; k++){

//If Lk-1 is empty, stop the circulation

13. Lk= apriori_gen (L k-1 ∞ L1);

//Generate frequent k-item sets Lk

14.}

15. Return L= L k-1;

 //The last frequent item sets

The process to generate frequent k-item sets Lk:

1. for all lk-1 є L k-1

// lk-1 containing (k-1) elements is subset of L k-1

2. for all l1 є L1

3. If (lk-1.Tid== l1.Tid) & (lk-1 l1.sup>=min_sup)

4. Then lk = lk-1 l1;

//Take the intersection of both lk-1 and l1‟s transactions list, then

add the item which is generated by

lk-1 ∞ l1 and which support is bigger than the min_sup into the

frequent k-item sets Lk.

5. Else

6. Then l1→next;

//otherwise l1 moves to the next frequent 1-item set

7. End if

8. End for

9. End for

10. Return Lk ;

Example:

 Table 16 Database D

TID List of Items

T1 I1,I2,I5

T2 I2,I4

T3 I2,I4

T4 I1,I2,I4

T5 I1,I3

T6 I2,I3

T7 I1,I3

T8 I1,I2,I3,I5

T9 I1,I2,I3

This algorithm scan the whole database and reorganized it with

Item, Tid structure. It is using vector to store each Item.

 Table 17 Frequent-1 item set table

Item Tid

I1 1 4 5 7 8 9

I2 1 2 3 4 6 8 9

I3 5 6 7 8 9

I4 2 3 4

I5 1 8

 Table 18 Frequent 2-Item sets table

Item Tid

I1I2 1 4 8 9

I1I3 5 7 8 9

I1I5 1 8

I2I3 6 8 9

I2I4 2 3 4

I2I5 1 8

3. COMPARISON OF IMPROVED APRIORI

Attribut

es

Improved

Algorithm

based on

matrix

Improvemen

t based on

transaction

reduction

Improved

DC

algorithm

New

Techniq

ue used

Binary

matrix

which to

reduce the

database

scan

Vertical data

format and

Min column

to reduce

database

scan

Vertical

data

format to

reduce

database

scan for

finding

support

Number

of scans

1 1 1

Storage

structure
2-D array

Normal

Database

Dynamic

array

http://www.ijritcc.org/

International Conference on Recent Trends in Computer and Electronics Engineering (ICRTCEE 17) ISSN: 2321-8169
Volume: 5 Issue: 5 28 – 33

33
IJRITCC | May 2017, Available @ http://www.ijritcc.org (Special Issue)

used vectors

4. CONCLUSION

In this paper we have studied drawbacks of Apriori Algorithm

and about 3 Improved Apriori algorithms which uses new

technique in generating rules. These algorithms are far better

than the traditional Apriori Algorithm and improves time

complexity. Comparison has been made which discusses

different attributes. These improved algorithms may be

implemented and tested against different datasets to find their

efficiencies.

REFERENCES

[1] Jiaoling Du, Xiangli Zhang, Hongmei Zhang and Lei Chen,

Research and Improvement of Apriori Algorithm, Sixth

International Conference on Information Science and

Technology, Dalian , China ;May16 IEEE, pp.117-121.

[2] Rucha Kale, Sharayu Fukey, An Improved Apriori

algorithm ,International Journal of Scientific Engineering

and Applied Science(IJSEAS)-Volume-2, Issue-5, May 16.

[3] K. Rajeswari, Improved Apriori Algorithm-A Comparative

study using different objective measures. International

Journal of Computer Science and Information Technologies

(IJCSIT), Vol.6 (3), 2015, 3185-3191.

[4] Jiawei Han, Micheline Kamber , Jian Pei, Data Mining

Concepts and Techniques, Third Edition, Morgan

Kaufmann Publisher, Elsevier.

[5] Akshita Bhandari, Ashutosh Gupta, Debasis Das, Improvised

Apriori algorithm using frequent pattern tree for real time

applications in data mining, Procedia Computer Science

46(2015)644-651,International Conference on Information

and Communication Technologies (ICICT 2014).

[6] X. Luo, W. Wang, ”Improved Algorithms Research for

Association Rule Based on Matrix”, 2010 International

Conference on Intelligent Computing and Cognitive

Informatics,pp.415-419,Jun2010 IEEE.

[7] Lingjuan Li, Min Zhang, “The Strategy of Mining

Association Rule Based on Cloud Computing”, 2011

International Conference on Business Computing and Global

Informatization, Sept2011 IEEE.

[8] Rao S, Gupta P, “Implementing Improved Algorithm over

Apriori Data Mining Association Rule Algorithm,

International Journal of Computer Science and

Technology, pp.489-493, Mar.2012.

[9] K. Vyas, S. Sherasiya, “Modified Apriori Algorithm using

Hash based Technique”, IJARIIE, Vol-2, Issue-3, pp.

1229-1234, 2016.

[10] Zhuang Chen, S. CAI, Q. Song and C. Zhu, “An Improved

Apriori based on Pruning Optimization and Transaction

Reduction”, IEEE conference, Jun 2011, pp.1908-1911.

[11] A. Mohammad, B. Arkok, “An Improved Apriori

algorithm‟‟, International Journal on Natural Language

Computing (IJNLC) vol.03, Feb 2014

http://www.ijritcc.org/

