
International Conference On Emanations in Modern Engineering Science and Management (ICEMESM-2017) ISSN: 2321-8169

Volume: 5 Issue: 3 20 - 24

__

20

IJRITCC | March 2017, Available @ http://www.ijritcc.org (Conference Issue)

A 2 Level Dynamic Scheduling Method for Real Time Tasks on Homogeneous

Distributed System

Lipika Datta
Computer Science and Engineering Deparment, College of Engineering and Management Kolaghat

Purba Medinipur, W. B., India

lipika.datta@cemk.ac.in

Abstract - A distributed system is a collection of independent computers that appears to its users as a single coherent system. Depending on job

arrival rate some of the computing nodes may become overloaded while some other nodes may sit idle. The imbalance in load distribution may

affect overall system performance. So proper task scheduling algorithm is needed. Real time task scheduling algorithm must take deadline of a

task in consideration. Task dependency is another parameter that is to be considered while scheduling. If arrival time of job is not known apriori,

runtime scheduling is needed. The centralized scheduling schemes are not scalable as the scheduling decision is taken by a central server. Fully

distributed schemes are scalable, but they lack global information. A hierarchical dynamic semi distributed scheduling model is proposed in this

paper, taking deadline and dependency of each task in consideration.

 Index Terms - Task scheduling, Clustered homogeneous distributed system, dynamic scheduling, real time task, DAG.

__*****___

I. INTRODUCTION

 Fundamental properties of a task are: arrival time and

approximate execution time. A real-time task also specifies a

deadline by which it must complete its execution. The

completion of a request after its deadline is considered of

degraded value, and could even lead to a failure of the whole

system. So, the real-time scheduler for distributed systems

must consider the deadline of each task along with the load

balancing issue while allocating tasks to processor.

Some real time tasks may execute on the regular basis. Those

are called periodic tasks. Aperiodic real time tasks are

activated randomly. Real time schedulers may be classified in

two categories.

In static scheduling algorithm the assignment of tasks to

processors is done before the program execution begins.

Current allocation information is used to determine the

availability of a processor by dynamic scheduler. So static

scheduling is workable only if all the processes are effectively

periodic. A distributed application may be represented by a

Directed Acyclic Graph (DAG), in which the node weights

represent task processing time and the edges represent data

dependencies.

A fully distributed system suffers from huge message passing

while taking a scheduling decision. This gives rise to huge

traffic. A semi distributed system model is discussed in this

paper. The nodes of the system are grouped in clusters. Each

cluster contains a subset of nodes in the system. Each cluster is

represented by a designated node called cluster master (CM).

Local or global scheduling decision is taken by the CM. Based

on the proposed model an algorithm is presented that is tested

by conducting experiments in simulated environment.

The work is organized as follows: The status of the

considered domain is presented in section II. Section III

describes the system model and the responsibilities of each

type of node. The 2-Level Dynamic Scheduling Policy (2LDP)

policy is discussed in Section IV. Section V analyses the

communication cost. Simulation results of experiments are

presented in Section VI. Section VII includes the conclusion.

II. RELATED WORK DONE

The theoretical foundation to all modern scheduling

algorithms for real-time systems was provided [1] for hard

real-time tasks executing on a single processor. According to

the authors that upper bound of processor utilization quickly

drops to approximately 70% as the number of tasks increases.

So, Liu and Layland suggested a new, deadline-driven

scheduling algorithm, which assigns dynamic priorities to tasks

according to their deadlines. Earliest Deadline First is too

complex to be implemented in real-time operating system [2].

These algorithms were developed for uniprocessor system.

They can be extended for centralized controlled distributed

system, and then they would have to suffer from all the

difficulties of centralized control. The RT-SADS [3] algorithm

is designed for scheduling aperiodic, non-preemptable,

independent, soft real-time tasks with deadlines on a set of

identical processors with distributed memory architecture. RT-

SADS self-adjusts the scheduling stage duration depending on

processor load, task arrival rate and slack. Epoch scheduling

[4] is a special type of scheduling for distributed processor. In

this scheme at the end of an epoch, the scheduler recalculates

the priority of each task in the queue using Shortest Task First

(STF) criteria. LLF [5] assigns priorities depending on the

laxity. In [6] authors present a novel list-based scheduling

algorithm called Predict Earliest Finish Time (PEFT) for

heterogeneous computing systems. In [7] authors have

presented a modified dynamic critical path algorithm (CBL) to

find the earliest possible start time and the latest possible finish

http://www.ijritcc.org/

International Conference On Emanations in Modern Engineering Science and Management (ICEMESM-2017) ISSN: 2321-8169

Volume: 5 Issue: 3 20 - 24

__

21

IJRITCC | March 2017, Available @ http://www.ijritcc.org (Conference Issue)

time of a task using the distributed nodes network structure.

Tasks are sorted by the ascending order of their loads and the

processors are sorted by the descending order of their current

loads in [8]. Tasks are assigned to processor to make the loads

assigned to each processor balanced as much as possible. Ant

colony based task scheduling for real time operating systems is

proposed in [9]. In [10] the authors have assigned weight to

nodes and edges of DAG to find the earliest finish time in

HEFT algorithm. In [11] the DAG is clustered and then HAFT

is applied for scheduling of tasks.

 III. SYSTEM MODEL

In this paper a network is considered consisting of N

homogeneous nodes P1, P2…, PN connected by a

communication network. Each node has the same

computational power and local memory. A distributed

application is represented as a DAG. The service time of the

tasks are exponentially distributed with mean of 1/μ. Each

node maintains a ready queue to store jobs which are assigned

to the node, but yet to be executed. The jobs are assumed to be

non-preemptive. Worker nodes schedule tasks in ready queue

according to First In First Out (FIFO) algorithm. In the

proposed model the whole system is divided into L clusters.

Each cluster has a specific node designated as the Cluster

Master (CM). This proposed model is semi-distributed and

decentralizes the load balancing process. It is scalable and it

minimizes communication overhead.

IV. 2 LEVEL DYNAMIC SCHEDULING POLICY

A DAG is submitted to the system. The algorithm makes

an effort to assign a task to a computing node, after its

predecessor completes its execution, such that the deadline

of the task can be met. The scheduler first tries to assign a

processor in its predecessor’s home cluster to reduce

communication cost. This is intra cluster scheduling. The

CM searches for an idle node in the cluster. On failure, CM

searches for a node whose remaining workload is less than

the slack time of new task. If such a node is found, the task

is assigned in that node. Otherwise, inter cluster task

scheduling is required. The CM broadcasts a message

containing the slack time to all other CMs. If the receiver

CM is able to find a suitable node, it sends response to the

initiating CM. The response message contains minimum

load information of that cluster. The initiating CM selects

the cluster with least minimum load. The new task is

transferred to the selected CM. If no response is received,

the task is assigned to the least loaded node in home cluster

and it misses deadline.

A. Scheduler Algorithm

Initial state of scheduler process is idle. When a task is

generated the scheduler checks its precedence. If precedence is

0 the task is independent. The scheduler searches for free

cluster. If free cluster is found the independent task is assigned

a processor in free cluster, otherwise it is assigned in the least

loaded node in the system. For dependent task it finds the

home cluster of the predecessor and assigns that cluster as the

home cluster of the task. If the task is independent, after

selection of node and for dependent task, after assigning home

cluster, the scheduler state changes to idle.

Process scheduler

1. Begin

2. While TRUE

3. Wait for task generation;

4. If precedence is 0

5. Search for free cluster

6. If free cluster is found

7. Assign a node

8. Else

9. Find least loaded node and assign it

10. Else

11. Sends query to CMs

12. Receives response from the CM where the

predecessor is assigned

13. Declares that CM as the home cluster

14. End

B. Cluster Master Algorithm

After receiving a query from scheduler process, CM checks

whether the predecessor task is assigned to its cluster. If match

is found it sends response to scheduler process. Upon task

arrival or CM poll the CM sends query to its worker nodes.

http://www.ijritcc.org/

International Conference On Emanations in Modern Engineering Science and Management (ICEMESM-2017) ISSN: 2321-8169

Volume: 5 Issue: 3 20 - 24

__

22

IJRITCC | March 2017, Available @ http://www.ijritcc.org (Conference Issue)

Each worker node calculates its remaining load (RL) and sends

it to CM. Accordingly CM updates its load table. If it finds any

idle node or a node with RL less than the slack time of the new

task it assigns the node for the task. On failure it sends CM

poll to other CMs mentioning the slack time. Other CMs

update their load table and if they find any idle node or nodes

with RL less than slack time, they send response with

minimum RL information. If the initiating CM receives more

than one response it selects the cluster with least RL and

transfers the task to that cluster.

Process CM

1. Begin

2. While TRUE

3. Wait for scheduler query;

4. If match is found response is sent;

5. Wait for Load_Receipt or CM_poll;

6. Send Load_query to all worker nodes in its cluster;

7. Receive RL from each worker node

8. Update load table

9. If CM_poll has occurred

10. Search for suitable node.

11. If suitable node is found

12. Send response to initiating CM

13. Else

14. Search for idle node in home cluster

15. If no idle node found

16. search for a node whose load is less than

slack time

17. If such a node found

18. Send New_Load to selected

node;

19. Else

20. Broadcast CM_Poll to all other CMs;

21. If response is received before time out

22. Select the response with

least RL;

23. Send New_Load to selected CM;

24. Else

25. Send New_Load to least

loaded node in home cluster

26. End

V. ANALYSIS

Let us assume k, m and d be the upper bounds on the

number of clusters, nodes in a cluster in the distributed system,

and the diameter of a cluster respectively [12]. A node can

communicate to its CM in maximum d steps. Two theorems

are proposed based on time and number of messages required.

Theorem 1. The total time to assign a task is between (2d +k)

T+L and (4d +2k)T +L where T is the average message

transfer time between adjacent nodes and L is the actual

average load transfer time.

Proof: Searching for free cluster or finding the least loaded

node requires k hops. Sending query and receiving load from

each node in home cluster requires 2d steps. So, total time to

load transfer is (2d+k) T+L. If intra cluster task scheduling is

not possible, CM polls to k-1 CMs and their responses require

maximum k hops. Query and response in each cluster requires

max 2d steps. So number of hops to load transfer is (2d + 2k +

2d) resulting in (4d + 2k) T + L time. If the diameter of cluster

decreases this approach produces better result than [12] in

inter cluster task scheduling.

Theorem 2. The total number of messages to assign a task is

between (k+1+2m) to (2km+3k-1)

Proof: Searching for free cluster or least loaded node requires

k+1 number of messages. Total number of messages in intra

cluster scheduling is (k+1+2m). In inter cluster load balancing

k-1 request messages are sent and at most k-1replies can be

received. Each CM sends and receives replies from each

worker node resulting (k -1)*2m messages. So, maximum

number of messages is (k+1+2m + 2(k-1) + (k -1)*2m). This is

much less than required in [13].

VI. RESULT

 Experiments were conducted in simulated environment to

evaluate the performance of the proposed 2LDP algorithm.

The experiments were performed by varying several

performance parameters in the system namely the number of

worker nodes and the number of jobs. It is assumed that DAG

nodes have single fan in and multiple fan out.

http://www.ijritcc.org/

International Conference On Emanations in Modern Engineering Science and Management (ICEMESM-2017) ISSN: 2321-8169

Volume: 5 Issue: 3 20 - 24

__

23

IJRITCC | March 2017, Available @ http://www.ijritcc.org (Conference Issue)

TABLE I

PARAMETER VALUES

Parameters Values

Number of processors 10 ~ 50

Number of tasks 100 ~ 1000

Service time
Exponentially distributed with

mean 20

ns

Fig. 4 No of tasks missed deadline among 1000 tasks vs varying no of nodes

Fig. 5. % of tasks missed deadline vs no of tasks per node

Fig. 6. % of tasks missed deadline vs varying no of nodes for varying no of

tasks

Fig. 7. Turnaround time for 500 tasks vs varying no of nodes

Figure 4 reveals that number of tasks missed deadline among

1000 tasks executed in varying number of nodes is less than

the existing algorithms. From figure 5, it is observed that

2LDP algorithm reduces percentage of deadline missed for

varying average no of tasks per node. From figure 6 it can be

seen that with increase system load % of tasks missed deadline

is not varying much. So with increase of system load the

performance is not degraded. Figure 7 shows the turnaround

time of an application with 500 tasks executed in varying no of

nodes for 3 different algorithms. In LL algorithm for assigning

each new task huge number of message passing is needed,

which takes some time and incur cost. That time is not

considered while calculating the TAT of each job here. Even

though, it is observed that 2LDP’s performance is the same as

LL. From the graphs it can be inferred that if the nodes are

heavily loaded, then the performance of the system is much

better in terms of missing deadline than existing algorithms.

VII. CONCLUSION

In this paper a semi-distributed task scheduling method for

real time tasks is proposed for clustered homogeneous

distributed system. A distributed application is represented as a

DAG. It is assumed that a task may have only one predecessor.

Upon generation of new task a node is assigned for its

execution considering the present load status of each node and

the slack time of the new task. The task assignment method is

scalable and has low message and time complexities. The

method of partitioning the system into clusters and the method

of load transfer are not addressed. Cluster Master may fail and

due to their important functionality in the proposed model, new

masters should be elected. Also, a mechanism to exclude faulty

nodes from a cluster and add a recovering or a new node to a

cluster is needed. These procedures can be implemented using

algorithms as in [14]. As a future work I will focus on

heterogeneous system and tasks with more than one

precedence relations. Scheduling algorithm of each worker

node may also

http://www.ijritcc.org/

International Conference On Emanations in Modern Engineering Science and Management (ICEMESM-2017) ISSN: 2321-8169

Volume: 5 Issue: 3 20 - 24

__

24

IJRITCC | March 2017, Available @ http://www.ijritcc.org (Conference Issue)

REFERENCES

[1] Liu C.L. and Layland J.W., “Scheduling Algorithms for

Multiprogramming in a Hard Real-Time Environment”, in Journal of

the ACM, vol. 20, no. 1, 1973, pp. 46-61

[2] Xin Li, Zhiping Jia, Li Ma, Ruihua Zhang and H. Wang, “Earliest

deadline scheduling for continuous queries over data streams”,

International Conferences on Embedded Software and Systems, 2009,

DOI: 10.1109/ICESS.2009.14

[3] Atif. Y and Hamidzadeh B , “A Scalable Scheduling Algorithm for

Real-Time Distributed Systems “, in Distributed Computing Systems,

1998, pp. 352-359, DOI: 10.1109/ICDCS.1998.679738

[4] Karatza H.D. and Hilzer R.C., “Epoch Load Sharing in a Network of

Workstations”, IEEE Simulation Symposium, Proceedings. 34th

Annual, 2001, 36-42

[5] Mok. A. and Dertouzos M., ”Multiprocessor scheduling in a hard real-

time environment”, 7th Texas Conference on Computing Systems, pp:

5.1-5.12, November 1978

[6] Arabnejad. H. and Barbosa J.G. , “List scheduling algorithm for

heterogeneous systems by an optimistic cost table”, 2014, IEEE

Transactions on Parallel and Distributed Systems, Vol 25, Issue 3

[7] Zeng. B., Wei. J. and Liu. H., “Research of Optimal Task Scheduling for

Distributed Real-time Embedded Systems”, in The 2008 International

Conference on Embedded Software and Systems (ICESS2008), pp 78 –

84, DOI 10.1109/ICESS.2008.29

[8] Zhang. K., Qi. B., Jiang. Q. and Tang. L., “Real-time periodic task

scheduling considering load-balance in multiprocessor environment”,

3rd IEEE International Conference on Network Infrastructure and

Digital Content, 2012, DOI: 10.1109/ICNIDC.2012.6418753

[9] Shah. A. and Kotecha. K., “Scheduling Algorithm for Real-Time

Operating Systems using ACO”, IEEE International Conference on

Computational Intelligence and Communication Networks, 2010, DOI:

10.1109/CICN.2010.122

[10] Zhao Rizos Henan and Sakellariou Rizos., “An investigation into rank

function of the heterogeneous earliest finish time (HEFT) algorithm”,

University of Manchester, UK: Department of Computer Science, 2003

[11] [12] Fatma Omara and Doaa M. Abdelkader, "Dynamic task scheduling

algorithm with load balancing for heterogeneous computing system",

2012, Egyptian Informatics Journal, vol. 13, no. 2, pp. 135-145

[12] Erciyes. K. and Payli R. U., “A Cluster-Based Dynamic Load Balancing

Middleware Protocol for Grids”, in Advances in Grid Computing - EGC,

LNCS 3470, Springer-Verlag, Berlin, 2005,PP 805-812

[13] Chatterjee M. and Setua, S.K., “A new clustered load balancing

approach for distributed systems”, IEEE Conference on Computer,

Communication, Control and Information Technology, 2015, DOI:

10.1109/3CIT.2015.7060188

[14] Tunali, T., Erciyes, K. and Soysert, Z., “A Hierarchical Fault-Tolerant

Ring Protocol For A Distributed Real-Time System”, in Special issue of

Parallel and Distributed Computing Practices on Parallel and

Distributed Real-Time Systems, 2(1), 2000, pp: 33-44

http://www.ijritcc.org/

