Design of Fast Integer Pipelined Multipliers for CMOS 64-bit Synchronous and Asynchronous Logic with Adaptable Latency

L. Malathi, M.E., (Ph.D), Dept of ECE, Sri Ramakrishna Institute of Technology, India, lmalathigraj@gmail.com
Dr. A. Bharahi, Ph.D, Dept of IT, Bannari Amman Institute of Technology, India, bharathi@bitsathy.ac.in
Dr. A. N. Jayanthi, Ph.D, Dept of ECE, Sri Ramakrishna Institute of Technology, India, jayanthi_an@rediffmail.com
S. Munaf, M.E., (Ph.D), Dept of ECE, Sri Ramakrishna Institute of Technology, India, munafece@gmail.com

Abstract—Adaptive latency multiplier architecture suited for implementation of multiplier. The architecture combines a second-order carry save and carry select with skipping of the row and split carry using pipelined architecture. The architecture and logic design of CMOS 32-bit synchronous implementation is 2.5 ns. The proposed architecture and VLSI design demonstrates that an adaptive latency multiplier, in either synchronous or asynchronous implementations. This architecture can be used in fast performance multipliers.

Index Terms—Arithmetic units, asynchronous systems, multipliers, VLSI design, Throughput.

I. INTRODUCTION

For the high speed multipliers which is used in DSP processors and advanced microcontrollers, the CMOS architectures are used in order to obtain such an accurate arithmetic manipulations. In micro architectures with CMOS implementation 2ns has proved. [15]. In full custom CMOS multiplier design < 3ns is possible [14]. Pipelined multipliers are impact on various factors like registers, propagation delay and it is limited by certain times and leads to slow down the performance of multiplier process.

In order to increase the throughput of pipelined arithmetic adaptive latency logic has been proposed [18]. The interfacing is the basic problem between the synchronous and asynchronous unit because of signal handoff. High speed VLSI adder has been proposed in previous work [16][13]. But still there is an issue on adaptive latency between synchronous and asynchronous interfacing. Asynchronous (i.e., unclocked) design but not adaptive latency [7], [11] to reduce power consumption was addressed earlier but not for high speed.

II. ARCHITECTURE AND LOGIC DESIGN OF THE PROPOSED MULTIPLIERS

Delay = Denc + Dsel + DHA + (n/4 – 2) DFA + D 4:2 + Depa

where the delay contributions are Denc: Booth encoding logic producing the encoding bits p,m,s,d;Dsel logic that selects the operation of each CSA row according to the encoding bits DHA: half-adder (CSA row); DFA: full-adder (CSA row); : 4 : 2 compressor; Depa: final CPA.

Fig. 1 Simple blocks of Array Multiplier

Fig. 2 Architecture split-array multiplier
III. SYNCHRONOUS VARIABLE-LATENCY DESIGN IMPLEMENTATION

Donecycle = Denc + Dsel + DHA + 2(DFA+DMUX) + 2 DMUX + DMUX + D4:2 + 7 DFA + Ddet

IV. VLSI DESIGN OF ADAPTIVE LATENCY IMPLEMENTATION

The adaptive latency asynchronous multiplier is based on the micropipeline architecture [17]. The multiplier is designed as two-stage micro pipelines interfaced with the external request/acknowledge 2-phase signals at the input and another pair at the output of the multiplier. Double edge triggered memory elements in order to reduce the micro pipeline interconnections and switching activity.

V. PERFORMANCE RESULTS

HSpice simulation of the synchronous multiplier with 0.35 μm CMOS process. Long metal line parasitic capacitances were manually coded into Spice netlists, based on a hypothetical layout of the circuits. The capacitance of...
the internal nodes that may cause charge redistribution effects are actually small, compared to the load capacitance and the parasitic capacitance of the output nodes. Data values are sampled by the registers on the falling edge of the clock. Register delay is overlapped with the subsequent precharge phase of the dynamic combinational circuits.

VI. SELF-TIMED IMPLEMENTATION

In Table I, self-timed implementation results are listed. While the average delays of the two micro pipeline stages referring to SPEC95 execution are

\[
\text{Delay}_{avg1} = \text{Dboothenc + Dboothsel + Dha + app. (Dfa + Dmux) + 2 Dmux}
\]

\[
\text{Delay}_{avg2} = D4:2 + E \{\text{Depa}\} - D4:2 + 7\text{Dfa + pncp .DMux} + (1 - \text{pncp}). 5\text{Dmux}
\]

Table. I Delay Characteristics Comparison

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Synchronous</th>
<th>Self-Timed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay I</td>
<td>1.65</td>
<td>1.65</td>
</tr>
<tr>
<td>Delay II</td>
<td>1.23</td>
<td>1.23</td>
</tr>
<tr>
<td>Pipe register</td>
<td>0.29</td>
<td>0.32</td>
</tr>
<tr>
<td>Pre charged hold time</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>Delay single cycle</td>
<td>1.83</td>
<td>0.76</td>
</tr>
</tbody>
</table>

VII. CONCLUSION

In this paper, the architecture, logic design, and circuit implementation of variable latency multiplier architecture, which can be exploited in a synchronous design scheme as well as in an asynchronous one.

The proposed architecture and VLSI design demonstrate that a variable latency multiplier, in either synchronous or asynchronous implementations, can overcome the performance offered by fast fixed-latency multipliers. The proposed design explained the use of edge-triggered registers, to reduce the complexity of the register-overriding logic design in the synchronous implementation and of the interconnection routing in the self-timed implementation.

REFERENCES

Authors

Ms. L. Malathi received her M.E. degree in Applied Electronics from Anna University. She received her B.E. degree in Electronics and Communication Engineering from Anna University. Pursuing Ph.D under Anna University in the area of VLSI. She is having 8 years of teaching experience.
Dr. A. Bharadhi did her Bachelor’s degree at Bharathiar University. She completed her Post Graduate Degree under Anna University. She finished her Doctoral degree in Information And Communication Engineering specializing in Data Mining. She has over 15 years of teaching experience.

Dr. A. N. Jayanthi received her Ph.D degree in Faculty of Information and Communication Engineering from Anna University. She received her M.E degree in VLSI Design from Anna University and her B.E degree in Electronics and Communication Engineering from Bharathiar University. She is having 18 years of teaching experience. Her area of specialization in Ph.D. is VLSI Design.

Mr. S. Munaf completed M.E in VLSI DESIGN from Anna University of Technology and he completed B.E in Electronics and Communication Engineering from Government College of Technology. Diploma in Electronics and Communication Engineering from NanjiahLingamal Polytechnic, Mettupalayam. Pursuing Ph.D under Anna University in the area of VLSI. She is having 7 years of teaching experience.