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Abstract— Rotating machinery is becoming faster and light weight due to the advanced technologies made in engineering and 

materials sciences. It is required to run them for longer periods of time. The detection, location and analysis of faults are highly 

recommended in highly reliable operations. The high speed rotor bearing system often shows unpredictable dynamic response due 

to manufacturing defects. As it is not possible to produce perfect surface or contour even with the best available machine tools so 

imperfection such as surface waviness in the rolling element and races developed during manufacturing process cannot be 

avoided. The radial and axial clearance provided in the design of bearings to compensate for thermal expansion, can also be a 

source of vibrations and introduce nonlinearity in the dynamic system. Using vibration analysis, the condition of a machine can be 

periodically monitored. In this study, dynamic behaviour of rotor roller bearing system with bearing defects, like radial clearance, 

declining of roller and localized inner race defect. The nonlinear bearing forces of a roller bearing under two dimensional loads 

and develops 2-DOF dynamics equation of a rotor-roller bearing system. The contacts between the rolling elements and the races 

are considered as non-linear springs, whose stiffness is obtained by using Hertzian elastic contact deformation theory. The system 

shows the nonlinear characteristics under dynamic condition. The equation of motion in radial and axial condition is obtained for 

shaft and rolling elements and they are solving by numerical integration technique Newmark-β method. Vibration of rolling 

element in the radial direction is analyzed time and frequency domain. Characteristics defects frequency and their components can 

be seen in the frequency spectrum of roller element vibration. As the clearance increases the dynamic behaviour becomes 

complicated with the number and the scale of instable region becoming larger. 

 
Keywords- Nonlinear dynamic analysis, Chose,Poincare map,Newmark- β, ball passage frequency,Stiffness 
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1.  INTRODUCTION  

Rotary machines are recognized as crucial equipment in 

power stations, petrochemical plants, and automotive industry 

that require precise and efficient performance. Bearings are the 

most widely used mechanical parts in rotational equipment and 

are primary cause of breakdowns in machines. Such 

malfunctions can lead to costly shutdowns, lapses in production, 

and even human casualties. To minimize machine downtimes, a 

sensitive and robust monitoring system is needed to detect faults 

in their early stages and to provide warnings of possible 

malfunctions. Such a monitoring system can reduce maintenance 

costs, avoid catastrophic failures and increase machine 

availability. To develop an effective diagnostic and prognostic 

system, a comprehensive understanding of the bearing behavior 

is required. 
[18] 

Bearing vibrations play an important role in the 

dynamics of machines. As the demand for high speed rolling 

element bearings increases, it is important the bearings run 

smoothly, with long life. Because of the non linear behavior of 

the bearings, vibrations are hard to predict. A major source of 

non linear behavior in a bearing is attributed to the Hertzian 

contact. The analysis of vibrations caused by rolling element 

bearing gives important information to analyze the rotor 

dynamics of the system. The non linear behavior of the bearing 

makes the system extremely sensitive to initial conditions. The 

sources of vibrations in a bearing are due to varying compliance 

of the structure, external disturbances, and internal excitations. 

Internal excitations stem from geometric deviations of the 

interacting surfaces from their idle geometry. These deviations 

in turn are the results of either manufacturing limitations or 

normal wear of the bearing surface.
[18]  

Typically, a rolling element bearing consists of two rings with 

a set of elements running in the tracks between the rings. The 

standard shapes of a rolling element include ball, cylindrical 

roller, tapered roller, needle, and barrel roller, encased in a cage 

that provides equal spacing and prevents internal strikes.
[16] 

Even 

a normally loaded, properly lubricated, and correctly assembled 

bearing fails due to material fatigue after a certain running time. 

The typical fatigue life of a bearing can be significantly 

shortened due to manufacturing defects, improper handling and 

installation, or lack of lubrication. The result is either a localized 

or a distributed defect in the components of the bearings. 

 

2.    Dynamic model of roller bearing  

2.1 Geometric parameter of the bearing 
Bearing Considered: NJ 305 

𝐷1 Outer diameter  62 mm  

𝐷2 Inner diameter  25 mm 

𝐷𝑟1 Outer race diameter 54 mm 

𝐷𝑟2 Inner race diameter 34 mm   

l length of roller  11 mm 

d Diameter of roller 9.25 mm 

Z  No. of rollers  11 

𝐷𝑚   Pitch Diameter 
(𝐷1+𝐷2)

2
 =  43.5 mm 

𝑃𝑑   Internal clearance 0.25 mm  

m  Mass of the bearing 0.29 kg 
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Figure no: 1 cross section of a roller bearing model 

2.2 Spring force 

       According to the definition of the stiffness, the spring fore 

can be defined as bellow Spring force or contact force = 

(Stiffness) × (Deflection or Deformation) Palmgren [15] 

developed empirical relation from laboratory test data which 

define relationship between contact force and deformation for 

line contact for roller bearing as bellow.  

𝛿 =  3.84 × 10−5 ×  
𝑄0.9

𝑙0.8
 

Where, Q = Contact force or spring force ,l = Contact length  

δ= Deformation, Take,   𝑞 =
𝑄
𝑙  

Where, 𝑞 = Contact force per length 

Above equation reduced to, 

𝛿 =  3.84 × 10−5 ×  
𝑄0.9×𝑙0.1

𝑙0.8×𝑙0.1  =  3.84 × 10−5 × 𝑞0.9 × 𝑙0.1   

(Eq.1) 

Contact length = l = kW ,  Equation 1.1 becomes, 

 𝛿 =  3.84 × 10−5 × 𝑞0.9 × (𝑘𝑤)0.1 

Rearranging the above equation to define q yields, 

𝑞 =  
𝛿 

3.84×10−5× 𝑘𝑤 0.1 
1.11

=  
𝛿1.11

1.24×10−5× 𝑘𝑤 0.11  (Eq.2) 

2.3 Contact Model          

 The behaviour of a single rolling bearing contact, i.e. 

between a rolling element and the race way of the inner ring or 

outer ring is represented spring-mass- damper. The model 

describes the nonlinear stiffness of the dry contact (Hertz) 

whereas due to the lubrication of constant damping value is 

introduced. As a result the contact force is given by 

𝐹𝑐 = 𝑘. 𝛿1.11 + 𝑐. ġ 

Where δ is the contact indentation. The deflection co-efficient is 

k is determined by the material properties and geometric 

properties of the elastic bodies.  The viscous damping c is 

determined by lubricant properties. 

2.4 Contact Deformation (δ) 

The elastic deformations (δ) in two bodies in contact, having 

radius of curvature 𝑅1  and 𝑅2  is given by, change in distance 

between the centres of curvature of the contacting bodies. In the 

case of an unloaded contact δ = 0, the corresponding initial 

distance between the two centres of curvature is given by𝑅1 +
 𝑅2. 

 

 

 

 

3.4.1 Component of Contact deformation (δ) 

 
Figure No: 2 Definition of the contact deformation by means 

of an unloaded contact (a) and a contact loaded with an 

external force F (b). 

When roller bearing subjected to radial and axial load, contact 

deformation become function of the following component to be 

considered in this work for localized defect. 

(1) Contact deformation due to ideal normal loading  

(2) Radial defection due to thrust loading 

(3) Radial internal clearance 

(4) Localized defect 

3.4.1.1 Contact deformation due to ideal normal loading (𝜟𝒋) 

The loads applied to roller bearings are transmitted through the 

rolling elements from the inner ring to the outer ring or vice 

versa. The magnitude of the load carried by the individual roller 

depends on the internal geometry of the bearing. 

 
Figure N0:3 cylindrical rollers under simple applied radial 

load and uniformly load distribution along the effective 

contact length 
It is apparent from this radial normal load distribution that 

rolling element raceway contact load is,   
𝑄 =  𝑞 × 𝑙𝑒𝑓𝑓  

3.4.2 Radial defection due to thrust loading 

When radial cylindrical roller bearings have fixed 

flanges on both inner and outer rings, they can carry some thrust 

load in addition to radial load. To accommodate the axial load, 

the roller will tilt due to moment couple Qah  caused by the 

opposing axial loads. For a straight–raceway contact, this results 

in the non uniform load distribution illustrated in Figure 4. It is 

apparent from this axial load distribution, that rolling element 

raceway contact load is, 
 

𝑄 =   𝑞 𝑑𝑥
𝑙𝑒𝑓𝑓

0

 

3.4.2.1 Equation of the Radial defection 

The relative radial movement of the bearing rings 

caused the thrust loading as well as to radial loading. Figure 5 

shows schematically a thrust loaded roller–ring assembly. 
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Figure No: 4 loading of cylindrical roller bearing under 

applied combined radial and axial loads 

.  

Figure No: 5 thrust loaded roller–ring assembly 

Radial deflection due to roller tilting for j
th

 roller 

 

δTj = 𝑤(𝑘 − 0.5) × 𝜁𝑗  

For  𝜆𝑡𝑕  laminae above equation can be written as, 

δTjλ = 𝑤(𝜆 − 0.5) × 𝜁𝑗  

Same, Axial deflection due to roller tilting for j
th

roller 

is given by, 

δaj = 𝐷 × ζ
j
    (Eq.3) 

3.4.3 Radial internal clearance: 
Clearance is provided in the design of bearing to compensate the 

thermal expansion, Clearance is considered as negative 

deformation, and that is, no roller raceway loading can occur at a 

lamina until clearance is overcome by the radial deformation.  

3.4.5 Localized defect 

Waves are described in terms of two parameters: the wavelength 

(l), which is the distance taken by a single cycle of the wave and 

its amplitude (A). It is assumed that the wave geometry is to be 

unaffected by contact distortion. The amplitude of the sinusoidal 

wave at contact angle as shown in Figure 6 is given by [10] 

 
Figure No: 6 Defect model 

 

 
Figure No: 7 Roller defect model 

For outer race the contact angle for j
th

 roller is given by,  
𝛹𝑗  =   𝜔𝑟𝑡   

And corresponding amplitude of roller defect at contact angle 

due to interaction with outer race is given by, 

𝑃𝑟𝑜 = 𝐴1 +   𝐷𝑕 ×  sin  π ×
𝑅𝑟

𝐷𝐿
×   𝜔𝑟𝑡        (Eq.4) 

for inner race 𝛹𝑗   is given by, 

𝛹𝑗  =   𝜔𝑟𝑡 + 𝜋  

And corresponding amplitude of roller defect at contact angle 

due to interaction with inner race is given by, 

𝑃𝑟𝑖 = 𝐴1 +   𝐷𝑕 ×  sin  π ×
𝑅𝑟

𝐷𝐿
×   𝜔𝑟𝑡 + 𝜋     (Eq.5) 

 

3.5 Total roller raceway deformation 

The total roller raceway deformation is given by, 

Total roller raceway deformation =  

[Contact deformation due to ideal normal loading]  +   

[Radial defection due to thrust loading]-  [Radial internal  

Clearance]-   [roller Declining] – [localised Defects] 

𝛿2𝑗𝑘   =  Y2sinΦj + Z2cosΦj−𝛥𝑗  + 𝑤  𝜆 −  
1

2
 𝜁𝑗 − 

𝛿

4
− 𝑃2𝑗

− 𝑤2𝑗 − 𝑐𝑘 

The above equation contain two unknowns [𝛥𝑗 ,𝜁𝑗 ], to find these 

unknowns we formulate the following equilibrium equations. 

𝑄𝑗 =  
 Y2sin Φj+Z2cos Φj−𝛥𝑗  + 𝑤  𝜆 − 

1

2
 𝜁𝑗  − 

𝛿

4
 −𝑃2𝑗−𝑤2𝑗−𝑐𝑘   

1.11

1.24×10−5× 𝑘 0.11
𝜆=𝑘
𝜆=1    × 𝑤0.89  

(Eq.6) 

Radial load Equilibrium 

0.62×10−5𝐹𝑟

𝑤0.89  –  
𝜏𝑗 𝑐𝑜𝑠𝛹 𝑗

𝑘0.11

𝑗=
𝑧

2
+1

𝑗=1
  Y2sinΦj + Z2cosΦj−𝛥𝑗  +𝜆=𝑘
𝜆=1

𝑤 𝜆 − 12𝜁𝑗− 𝛿4−𝑃2𝑗−𝑤2𝑗−𝑐𝑘1.11              (Eq.7) 

 Thrust load Equilibrium 

0.31×10−5𝐹𝑎×𝑕

𝑤0.89  –  
𝜏𝑗

𝑘0.11

𝑗=
𝑧

2
+1

𝑗=1    𝛿2𝑗  
1.11𝜆=𝑘

𝜆=1  𝜆 −
1

2
 𝑤 −

  𝑙2𝜆=1𝜆=𝑘𝛿2𝑗1.11       

(Eq.8) 
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Figure No: 8 Displacement of inner ring centre relative to 

Outer ring centre cause by the radial loading. 
 

Now, Sum of the radial deflection due to radial loading 

and radial interference cause by the axial deflection due to thrust 

loading minus the radial clearance is equal to the sum of the 

inner and outer raceway maximum contact deformations. 

 δa ×
l

D
 +  𝛿𝑟𝑐𝑜𝑠𝛹𝑗  − 

𝛿

2
 – 2  [Y2sinΦj + Z2cosΦj − 𝛥𝑗  +𝜆=𝑘

𝜆=1

 𝑤 𝜆 – 12𝜁𝑗−𝑃𝑑2−𝛿4−𝑃2𝑗−𝑤2𝑗−𝑐𝑘 ] = 0               (Eq.9) 

Now considering the centrifugal force of the roller the 

equilibrium of the j
th 

 roller in the z direction is represented by as 

under. 

 𝛿𝑟𝑐𝑜𝑠𝛷𝑗 −
𝛿

2
− 𝛿2𝑗 

1.11

−  𝛿2𝑗 1.11 − 𝐹𝑐/𝐾 = 0          (Eq.10) 

Equation 6, 7, 8, 9 and 10 are set of nonlinear simultaneous 

equation which can be solved for unknown. [𝑟𝑗, 𝛥𝑗 ,𝜁𝑗 ,𝛿𝑎 ,𝛿𝑟 ] to 

find out total roller raceway deformation. Above set of nonlinear 

simultaneous equations solved by MATLAB software with the 

help of FSOLVE function. This function is used to solve the 

nonlinear simultaneous equations. Nonlinear bearing force can 

be expressed as under 

Qry = 1/𝑛 Q2jk sinΦj𝑛
𝑗=1    Qrz = 1/𝑛 Q2jk cosΦj𝑛

𝑗=1  

Where  

Qry = Bearing force in y direction  

Qrz = Bearing force in z direction 

3.5 Dynamics model of a rigid rotor system 

The general form of the equations of motion for a multi-degree 

of freedom system is written as 

 𝑀 𝑋 +  𝐶 𝑋 + [𝐾]𝑋 =  𝑓(𝑋, 𝑡) 
Where, 

M = Mass vector of the rotor and inner ring of bearing 

C = Damping vector of the system 

K = stiffness vector of the system 

X = Displacement vector of the rotor 

f= it include the nonlinear bearing force, external load, gravity 

load and unbalance load  

For a 2- degree of freedom (DOF) system the equation of motion 

can be expressed as under. 

𝑚𝑌 2 + 𝑐𝑌 2 + 𝑄𝑟𝑦 = 𝐹𝑦 +𝑚𝑒𝜔2𝑐𝑜𝑠𝜔𝑡 
𝑚𝑍 2 + 𝑐𝑍 2 + 𝑄𝑟𝑧 = 𝐹𝑧 − 𝑚𝑔 −𝑚𝑒𝜔2𝑠𝑖𝑛𝜔𝑡 
Using the Newmark- β method the deferential equations of the 

motions can be solved and the transient response at every time 

obtained. 

3.6 Result of mathematical modeling  

Taking the rigid rotor supported by roller bearing as an 

example. The mass of the rotor roller bearing system is 1 kg. 
Damping factor of the bearing is 200 N.s/m. the rotor mass 

eccentricity e is 20 * 10
-6

m. Shaft speed is 2000 rpm. Unbalance 

mass is 50g. Defect height is 0.5mm. Defect length is 0.5mm. 

The dynamic Behaviour is as under. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure No 9:  Response at 2000 rpm speed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure No 10:  Response at 1500 rpm speed   

Figure No 11:  Response at 1500 rpm speed 

 

 

 

 

 

 

 

 

 

 

Figure No 11:  Response at 900 rpm speed 

 

4. Experimental-setup 

Experimental work is carried out for the validation of the 

theoretical model. For validation number of simulated results 
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compared with the experimental work. The experimental set-up 

used for this study is shown in figure 12. 

 

 
Figure no: 12 Experimental set-up of bearing rotor system 

1–roller bearing; 2–rotor;  3–Defective bearing;   4–flexible 

coupling; 5–motor and  6– FFT Analyzer 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure no: 13 bearing defect at inner race 

4.1 Experimental result 

` 

 

 

 

 

 

 

 

 

 

 

Figure No 14: Response at 1500 rpm, Frequency vs. vertical 

displacement 

 

Figure No 15: Response at 900 rpm, Frequency vs. Vertical 

displacement 

 
Figure No 16: Response at 600 rpm, Frequency vs. Vertical 

displacement 
 

 

 
Figure No 17: Response at 500 rpm, Frequency vs. Vertical 

displacement  

  

5. Results and Discussion 

 Vibration signature monitoring and analysis in one of 

the main techniques used to predict and diagnose various defects 

in antifriction bearings [5]. Vibration signature analysis provides 

early information about progressing malfunctions and forms the 

basic reference or base line signature for future monitoring 

purpose. Signature Defective rolling elements in roller bearings 

generate vibration frequencies at rotational speed of each 

bearing component and rotational frequencies are related to the 

motion of rolling elements, cage and races. Components flaws 

(inner race, outer race and rolling elements) generate a specific 

defect frequencies calculated from equations, mentioned by 

Chaudhary and Tandon [20] Inner face varying compliance 

frequency 

𝑓𝑖 =
𝑛

2
𝑓𝑟[1 +  

𝐵𝐷

𝑃𝐷
 𝑐𝑜𝑠𝛽]   Hz 

Inner race varying compliance frequencies are different at 

different speeds. 

At 1500 rpm speed, 𝑓𝑖 = 166.73 Hz 

At 900 rpm speed 𝑓𝑖 = 100.04 Hz 

At 600 rpm speed 𝑓𝑖 = 66.69 Hz 

At 500 rpm speed 𝑓𝑖 = 55.55 Hz 
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5.1Result table 

 
 Experimental Result Theoretical Result 

Shaft 

Speed 

(Rpm) 

Amplitu

de 

(μm) 

Inner race 

varying 

complianc

e 

frequency, 

Hz 

Amplitud

e 

(μm) 

Inner race 

varying 

complianc

e 

frequency, 

Hz 

1500 3.5 167.75 4 166.7 

900 2.5 101.75 1.67 99.43 

600 1.5 67 2 65.6 

500 0.7 56.25 1.3 55 

 

6.  Conclusions 

 A rotor-roller bearing system may have chaos, period 

doubling bifurcation and quasi periodic nature as rotational 

speed increase. 

 Close attention should be paid to the effective chose of 

structural and operational parameter of the bearing in 

design a rotor roller bearing system. 

 The model predicts the frequency spectrum having peaks at 

characteristics defect frequencies and the amplitudes at 

these frequencies emanating for the bearing. The frequency 

components obtained from the proposed model are similar 

to those appearing in the frequency spectra of the 

experimental data for defective bearing condition. These 

verify the validity of the theoretical model. 

 The theoretical model can be used for design, predictive 

maintenance and also condition monitoring of machines. 

 Trend, spectrum and waveform analyses effectively used in 

fault diagnosis for rotating mechanical systems, are able to 

guess the probable fault type. 

6.1 Future scope 

Roller skidding is the function of lubrication. Lubrication 

traction has dominant effect on the roller skidding. Slip arise 

when the moment due to the drag force on the roller ,which is 

created by viscous shearing resistance of the grease exceed the 

traction moment at the race way contact. 

Predict the dynamic behavior of the rotor roller bearing 

system having 4-DOF system with consideration of skewing, 

declining, thickness of lubrication film, waviness, internal 

clearance and the localized defect of bearing.  
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