
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 299 - 305

299
IJRITCC | February 2016, Available @ http://www.ijritcc.org

Application of Safety Verification Methodology Framework During Software

Development Phases

Prof. K. Amarendra

1

1
 Vice Principal, Department of CSE,

Dadi Institute of Engineering & Technology,

NH – 5, Anakapalle, Visakhapatnam – 531002, INDIA

viceprincipal@diet.edu.in

Abstract – In order to detect and prevent faults, researchers have developed safety standards, safety analysis techniques, and fault-tolerant

techniques; however, there are still no methodology frameworks for verifying safety-critical software systems. This research‟s methodology

combines software-safety methods into a comprehensive whole for the purpose of verifying safety-critical software systems. This research

concentrated on developing a methodology framework that combines static-verification, dynamic-verification, and fault-tolerant concepts for

verifying safety-critical software systems.

Keywords: Safety critical systems, Verification & Validation, SVVM, Software Development Life Cycle.

__*****___

1. INTRODUCTION

 Ensuring the correctness of computer systems is a complex

task of paramount importance, especially when such systems

control and monitor life-critical operations. The verification of

industrial computer systems is particularly difficult due to

their size and complexity. The most frequently used methods,

simulation and testing, are not exhaustive and can miss

important errors. While the use of both methods can increase

the reliability of the application, they cannot fulfill the

verification needs of modern complex safety-critical systems.

Formal methods are an additional methodology to tackle this

problem. Formal verification tools allow an exhaustive search

to be automatically performed on the state space of the

system, avoiding the shortcomings of both simulation and

testing.

The increase in software-controlled systems is due to many

factors such as cost, flexibility, and reliability. Research in

software safety falls into two categories: (1) improving

software safety before releasing the product by using

verification techniques and (2) improving software safety after

releasing the product by using fault-tolerant techniques. For

verification techniques, most researchers concentrate on static

methods, which analyze a software system‟s safety without

executing it, and ignore dynamic methods, which analyze a

system‟s safety by executing it. This research concentrated on

developing a methodology framework that combines static-

verification, dynamic-verification, and fault-tolerant concepts

for verifying safety-critical software systems.

This research‟s methodology combines software-safety

methods into a comprehensive whole for the purpose of

verifying safety-critical software systems. For clarification

purposes, this document treats the words approach, technique,

and method as having synonymous definitions. A

methodology brings structure, guidance, and specific

techniques all together in order to improve a given process - in

this case, the process is software-safety verification. This

research deals with Safety Verification and validation

Methodology (SVVM). Below diagram represents Standard

phases for System development showing general exit and

entry conditions.

Deficiencies within software safety: As normal for relatively

new fields, software-safety methods and practices have

deficiencies in many areas. Within software engineering,

researchers have been looking into safety-related issues for

approximately the past decade. Their research focused mainly

on techniques for statically verifying and modeling safety-

critical software systems and providing standards for

developing such systems. However, safety standards are often

too vague and have few and scattered guidelines.

This Safety Verification and Validation Methodology

(SVVM) Framework includes the following Activities:

1) Identify appropriate life-cycle phases

2) Define entry and exit criteria for each phase

3) Define activities to occur during each phase (inner-phase

activities)

4) Specify techniques for doing each inner-phase activity

5) Specify documentation approaches for each inner-phase

activity

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 299 - 305

300
IJRITCC | February 2016, Available @ http://www.ijritcc.org

2. PRELIMINARY SOFTWARE HAZARD ANALYSIS

Requirement Separation: The first activity that occurs during

the system-design phase is separating hardware- and software-

related requirements by using the system specification and

design since these documents specify which components are

software controlled. Requirement separation is necessary in

order to identify software components, divide up the work

load, and enable a systematic means for safety analysis -

analogous activities take place for hardware.

Software Hazard Analysis:As Figure shows, preliminary

software hazard analysis involves several activities. Before

introducing these activities, this paragraph examines the

safety problem (i.e., what developmental areas cause the most

hazards). The main causes for safety problems are

specification errors. In fact, many errors trace back to

specification documents according to current research.

Furthermore, Jaffe and Leveson point out that most software

failures are due to specification incompleteness.Therefore, in

order to improve system safety, preliminary software hazard

analysis attempts to insure a complete, precise, and correct

software-safety specification.

Identification: To reduce specification errors, hazard

identification becomes a crucial first step when developing

and analyzing safety-critical systems. Naturally, there are

other reasons for hazards occurring, but the fact remains that

engineers cannot protect a system against unidentified hazards

with any realistic confidence level. Some feel that hazard

identification is a "relatively easy" process;** however, this

categorization over simplifies the hazard-identification

process, which is an area that still needs further research.

In order to identify software hazards, engineers must consider

all informational sources relating to the individual software

components such as system specifications, historical data,

system-level hazard lists, hardware-interface specifications,

human experts, and system prototypes and models.

Categorization: After identifying a software hazard, the

developer must determine the hazard‟s categorization (i.e.,

severity). A hazard‟s categorization represents the worst-case

consequence that it can cause. A software hazard‟s

categorization along with other factors determines the rigor

necessary during development to insure that the event will not

occur.

Resolution: For each software hazard, the analysis team

determines if they can or should eliminate the hazard

altogether. Hazard elimination can occur in two ways: (1)

move the hazard or (2) remove the hazard‟s consequence.

Moving a software hazard involves making the hardware (or

other system component) solely responsible for the respective

system requirement and requires a specification change.

Reasons for moving a hazard can be due to cost issues, safety

issues, or both. Removing a hazard‟s consequence involves

eliminating system functionality and requires at least a

specification change. If hazard elimination is not appropriate,

then the developer must ensure that the likelihood of the

hazard occurring is sufficiently low.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 299 - 305

301
IJRITCC | February 2016, Available @ http://www.ijritcc.org

Documentation:For every hazard , the developer must

document all information relating to the hazard such as its

severity, consequences, and description. This documentation

provides necessary information for adjusting the system

design, preparing the software requirements, and verifying the

system. High-severity software hazards, without considering

other safety measures, require rigorous development and

verification in order to insure that they do not occur.

Review: After completing the preliminary software hazard

analysis, the developer must review the process and resulting

documentation in order to insure that the process was

complete, correct, and precise. The review process by nature

depends almost entirely on human skill; therefore, human

error and oversight is always a possibility.

Component Isolation:An issue related closely to partitioning

critical and non-critical components is physical isolation,

which should be a part of the hardware and software

requirements (i.e., the output from the system-design phase).

Physical isolation deals with separating critical and non-

critical components not in documentation terms, as

partitioning does, but in design terms. For example, keeping

critical software on a board by itself so that it has its own

processor, memory, etc.

3. HIGH LEVEL DESIGN HAZARD ANALYSIS

Developing the High-Level Design: After choosing a design

technique, the design team develops the high-level design.

Figure shows a process diagram for the high-level-design

activities, which may vary slightly depending on the actual

design technique that the team chose. The first activity

involves identifying all modules and data objects: A module,

for example, can be a subroutine, function, task, or ada

package. The second activity concentrates on developing

module specifications while the third activity analyzes the

safety considerations for each module and data object. Finally,

the last activity modifies the design in order to adjust it for the

safety considerations.

Module Identification: A main activity when developing a

high-level design is to identify all modules and data objects.

Each design technique has its own method for module

identification and classification, so this chapter does not cover

these details. Data objects can be external inputs or outputs as

well as internal data items such as flags, structures,

parameters, etc. For large systems, module and object

identification can become a difficult task, so the design team

should break up large systems into individual components or

sub-systems. Then, the design team can proceed with the

module identification process. Remember that design is

usually an iterative process (i.e., most design teams will not

identify all modules correctly on the first pass).

Module Specification: During or after module identification,

the design team must specify each module and data object.

For modules, these specifications describe their functionality

(purpose), input and output parameters, returned values for

functions, and all preconditions and postconditions. For data

objects, the specification describes their meaning, type, range,

constraints, and other relevant information that the specific

design technique might require. Module parameters are data

objects that require extra information such as their position in

the parameter list; whether they are input, output, or input and

output parameters; and whether or not they are optional

parameters. Once again, due to iterative development, these

specifications may require multiple passes before they are

complete, correct, and precise.

If the software specification document does not stipulate the

method for module and object specification, then the design

team must adopt a specification method. There are two broad

methods for specifying modules and their objects: (1)

informal and (2) formal. An informal module-specification

method might use natural-language text, diagrams, pseudo

code, or a combination of these items. Formal methods,

however, use mathematical notations such as algebraic or

lambda-calculus equations: two such methods, which are

common in Europe, are VDM and z A Furthermore, formal

methods should contain informal descriptions too in order to

help support their meaning. Natural-language descriptions are

also useful for those individuals who are not familiar with

formal methods. Whatever technique the design team chooses,

it should allow for correct and precise module specifications

so that no ambiguities arise.

Safety Considerations: After identifying all the modules and

developing their specifications, the design team should

analyze the safety considerations for each module. Figure

outlines the safety-consideration process, which involves (1)

refining the safety-verification documents, (2) identifying

modules that should have fault tolerance, (3) determining and

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 299 - 305

302
IJRITCC | February 2016, Available @ http://www.ijritcc.org

assigning specific fault-tolerant techniques to these modules,

and (4) determining and assigning other safety design issues

to these modules. For this section, a module may be an Ada

package, task, subroutine, or function. In addition to modules,

data objects require safety analysis as well in order to insure

system safety.

Refine safety documents: Before the design team can

recommend specific modules for fault-tolerant designs and

before they can effectively assign dynamic-verification

requirements, the safety documentation must be up to date.

Updating the safety documentation involves identifying

modules that can cause software hazards, describing the

causes, identifying the relationships between causes,

identifying the phases for which a cause is relevant,

describing the consequences for each cause, and determining

the severity for each cause. In order to determine the modules

that can cause software hazards, safety engineers can identify

critical data objects in the high-level design and then those

modules that create, reference, or transform the data objects.

Selecting module fault tolerance: After identifying the safety-

critical modules in the high-level design, the design team must

determine and assign appropriate fault-tolerant techniques. If

the specification document does not outline the procedure for

doing this activity, then the design team must determine the

procedure. Currently, there is little research relating fault-

tolerant techniques to problem classes. Furthermore, there is

no research that says one fault-tolerant technique is better than

another.

Adjust High-Level Design: After determining the different

safety considerations, the design team must update any

affected parts o f the high-level design. The various safety

considerations might require changes in parameters, module

specifications, and pre- and post-conditions. These

considerations might also result in more modules and

adjustments to the safety-verification documents.

4. DETAILED DESIGN

Detailed-design and code-level hazard analysis involves five

activities: (1) generating the detailed design and code, (2)

adjusting the design and code for safety considerations, (3)

design and code hazard analysis, (4) adjusting the design and

code for dynamic verification, and (5) a design and code

review. Developing the detailed design is just a further

refinement of the high-level design and involves applying the

selected design technique at the next level of detail. For

object-oriented designs, this refinement means expanding

objects to include more detail (i.e., more objects and

transformations). For functional-oriented designs, this

refinement means expanding actions to include more detail

(sub-functions and their data). The refinement process

continues until the detailed design is at a low enough level to

facilitate coding. While developing the detailed design, the

designer may need to create additional modules that are not

present in the high-level design.

 5. DYNAMIC SAFETY VERIFICATION

After static safety verification and general reliability testing,

software engineers must dynamically verify the software‟s

safety (i.e., safety testing). As previous chapters mentioned,

dynamic safety verification tests the software‟s safety features

by executing the software.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 299 - 305

303
IJRITCC | February 2016, Available @ http://www.ijritcc.org

Even if the developer uses rigorous formal techniques to show

the software‟s safety, safety faults may still exist in the system

since these techniques do not 1 9 produce 100% reliable

software. ‟ For these reasons, safety testing is important and

attempts to show that the software conforms to the safety

documentation (e.g., fault trees, event trees, failure modes and

effects, etc.), which represent the input-output oracles for the

safety-testing process.

6. CASE STUDY DESIGN PROCESS

Railroad Crossing Control System (RCCS)

Crossing gates on a full-size railroads are controlled by a

complex control system that causes the gates to be lowered to

prevent access to the crossing shortly before a train arrives

and to be raised to allow access to resume after the train has

departed. This requires the detection of approaching trains or

the manual actuation of the crossing gates by an operator.

RCCS is a prototype, real-time, safety-critical railroad

crossing control system of limited complexity. It is composed

of several software-controlled hardware components.

RCCS System Functions:

• Control the overall operation of train on the track circuit.

• Control the opening and closing of Gate 1 and 2 at the

railroad intersections

• Control the track lever to change the track route from the

outer to the inner loop

• Check the internal health of all the subsystems

• Control the train operation at the Signal Lights

• Monitor all the sensors on the track circuit

RCCS System Operations:

When RCCS is first switched on, the controller does a

preliminary check of the normal working status of all the

subsystems involved – the driver circuitry, the sensors, the

gate assemblies, and the train signals. If all the components

are found to be in normal working condition, it executes the

code related to normal operation. Initially, the train starts from

the platform location and is programmed to run on the outer

track. After it completes this cycle, it changes direction and

runs on the inner track. This change is facilitated by the track-

change level which is present at the intersection of the outer

track and inner track. Along the track, the two gates Gate 1

and Gate 2 are automatically lowered when the train nears the

railroad intersection and raised when the train leaves the

intersection. Whenever the signal lights display Red, the train

comes to a halt and resumes running only after a Green signal

is given. Whenever the train detects any physical obstacle on

the track, the train comes to a halt.

train passes Sensor2 positioned prior to gate, a signal is sent to

the controller indicating the approaching train. The controller

then sends a signal to the gates assembly, causing the gate

arms on either side of the road to close. When the train finally

has passed Sensor3, which is positioned just beyond the gate

crossing section, a corresponding signal is sent to the

controller, which in turn triggers both the gate arms to open

simultaneously.

7. SAFETY ANALYSIS AND RESULTS

The safety analysis of RCCS software functions takes place in

three sequential steps.

• Software Failure Mode and Effects Analysis (SFMEA):

This analysis is performed in order to determine the top events

for lower level analysis. SFMEA analysis will be performed

following the list of failure types. SFMEA will be used to

identify critical functions based on the applicable software

specification. The severity consequences of a failure, as well

as the observability requirements and the effects of the failure

will be used to define the criticality level of the function and

thus whether this function will be considered in further deeper

criticality analysis. The formulation of recommendations of

fault related techniques that may help reduce failure criticality

is included as part of this analysis step.

• Software Fault Tree Analysis (SFTA)

After determining the top-level failure events, a complete

Software Fault Tree Analysis shall be performed to analyse

the faults that can cause those failures. This is a top down

technique that determines the origin of the critical failure. The

top-down technique is applied following the information

provided at the design level, descending to the code modules .

SFTA will be used to confirm the criticality of the functions

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 299 - 305

304
IJRITCC | February 2016, Available @ http://www.ijritcc.org

(as output from SFMEA) when analyzing the design and code

(from the software requirements phase, through the design and

implementation phases) and to help:

- Reduce the criticality level of the functions due to software

design and / or coding fault-related techniques used (or

recommended to be used)

 - Detail the test-case definition for the set of validation test

cases to be executed.

 • Evaluation of Results :The evaluation of the results will be

performed after the above two steps in order to highlight the

potential discrepancies and prepare the recommended

corrective measures. Recommendation can be given to design

and coding rules.

SFMEA Analysis of RCCS

The SFMEA, a sample of which is shown in the Table 2

below presents some software failure modes defined for

RCCS. The origin and effects of each failure mode are

analyzed identifying the top level events for further

refinement, when the consequence of this failure could be

catastrophic for this system. Three top events were singled out

for further analysis of failure mode Gate not closed as train is

passing through railroad intersection.

Failure

Mode

Possible

Causes

Effect Sever-

ity of

risk

Prevention

And

Compensati

on

Gate

not

closed

as train

is

passing

through

a) sensor

not

detected

by s/w

b) gate

motor

mechanis

m is

defective

c) s/w

gives

wrong

command

d) s/w

gives

right

command

at wrong

time

Train

collision

with passing

road traffic

leading to

accidents

Critica

l

Software first

checks the

working

status of

gates each

time the train

is about to

cross the

gates

Track

change

lever is

not

a) sensor

is not

detected

by s/w

Train fails

to change its

path from

the outer

Critica

l

Software first

checks the

working

status of the

acti-

vated

to

change

train

route

b) track

lever

motor

mechanis

m is

defective

c) s/w

gives

wrong

command

to lever

d) s/w

gives

right

command

at wrong

time

e) s/w

fails to

give a

command

to acti-

vate lever

track circuit

to the inner

track circuit

leading to

accident

track lever

each time the

train is about

to enter the

inner track

loop

Control

progra

m

softwar

e is

corru-

pted

a) logic

fault

b)

interface

fault

c) data

fault

d)

calculatio

n fault

e)

memory

fault

Unpredictab

le sequence

of opera-

tion leading

to accident

Critica

l

or

Catast

-

rophic

Algorithm

logic is

verified for

accuracy.

Data

Structures

and Memory

overflow is

checked.

SFTA Analysis of RCCS

The fault tree is a graphical representation of the conditions or

other factors causing or contributing to the occurrence of the

so-called top event, which normally is identified as an

undesirable event. A systematic construction of the fault tree

consists in defining the immediate cause of the top event.

These immediate cause events are the immediate cause or

immediate mechanism for the top event to occur. From here,

the immediate events should be considered as sub-top events

and the same process should be applied to them. All

applicable fault types should be considered for applicability as

the cause of a higher level fault. This process proceeds down

the tree until the limit of resolution of tree is reached, thereby

reaching the basic events, which are the terminal nodes of the

tree.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 299 - 305

305
IJRITCC | February 2016, Available @ http://www.ijritcc.org

8. CONCLUSION

Verifying safety-critical software is an important activity

during safety-related software development. Unfortunately,

there are no methodology frameworks for carrying out this

activity; therefore, this research developed a methodology

framework for statically and dynamically verifying safety-

critical software systems.

 The methodology follows a life-cycle approach to

verification by supplying methods and guidelines for

preliminary hazard analysis, high-level-design hazard

analysis, detailed-design hazard analysis, and code-level

hazard analysis. Furthermore, the methodology contains

several testing and coverage techniques along with guidelines

for dynamic verification, which is an area that research largely

ignores in spite of its importance.

References

[1] MIl-STD-1574A (USAF), “System Safety Program for Space

and Missile Systems,” Dept of Defense, US Govt. Printing

Office, 1979

[2] P. V. Bhansali, “Software Safety: Current Status and Future

Directions” ACM SIGSOFT Software Engineering Notes,

Volume 30 Number 1, page 1, January 2005

[3] John C. Knight, “Safety Critical Systems: Challenges and

Directions”, Proceedings of the 24
th

International Conference

on Software Engineering (ICSE), Orlando, Florida, 2002

[4] MIL-STD-882C, System Safety Program Requirements 1993,

http://eic.ipo.noaa.gov/IPOarchive/MAN /doc124.pdf

[5] N.G. Leveson, Safeware: System Safety and Computers,

Addison-Wesley, Reading, MA, USA, 1995.

[6] W.R. Dunn, Practical Design of Safety-Critical Computer

Systems, Reliability Press, 2002.

[7] M.S. Jaffe and N.G.Leveson, “Completeness, robustness, and

safety in real-time software requirements specification”, Proc.

of the 11th International Conference on Software engineering

(ICSE), Pittsburgh, USA, pp. 302-311, 1989

[8] Raghu Singh. “A Systematic Approach to Software Safety”.

Proceedings of Sixth Asia Pacific Software Engineering

Conference (APSEC), Takamatsu, Japan ,1999.

[9] T. Shimeall and N. Leveson, An Empirical Comparison of

Software Fault Tolerance and Fault Elimination, IEEE

Transactions On Software Engineering, vol. SE-17, no. 2, pp.

173-183, 1991.

[10] P. Rodríguez Dapena. „How are static fault removal techniques

verifying software safety and reliability?‟ Joint ESA-NASA

Space-FlightSafety Conference. ESA. 06-Nov-2001

[11] Software Safety. NASA-STD-8719.13A NASA Technical

Standard. September 15, 1997 Replaces NSS 1740.13 dated

February 1996. http://swg.jpl.nasa.gov/resources/index.shtml

[12] L. M. Ippolito, D. R. Wallace A Study on Hazard Analysis in

High Integrity Software Standards and Guidelines. National

Institute of Standards and Technology. NIST IR 5589. January

1995 .

http://www.ijritcc.org/

