Preparation and Properties of Macrocyclic Ligand and Its Complexes Derived From Trimethoprim and L-Tyrosine

Ms B.Mary Juliet1 Dr M.Amaladasan2
1Research Scholor Department of Chemistry,
St.Joseph’s college (Autonomous), Tiruchirappalli-620002(T.N), India
mjuliet1830@gmail.com

Abstract: Macrocyclic complexes of MnII,CoII,and CuII using a macrocyclic ligand derived by the condensation of Trimethoprim and L-Tyrosine and elemental analysis, molecular mass determination ,conductance and the spectral studies like IR, Eletralctronic spectra. The spectral data suggest that the complexes of metal chlorides have octahedral geometry and that of metal sulphates have tetrahedral geometry.

Key words: Trimethoprim, macrocyclic Schiff-base complexes, L-Tyrosine, MnII, CoII and CuII.

1. INTRODUCTION

Coordination Chemistry of macrocyclic ligand has been a fascinating area of current research in inorganic chemistry all over the world due to its wider applications and the unusual binding abilities1-4. From the literature survey, it is found that a great deal of interest has been shown in pyrimidine and its derivatives due to their biological importance as constituents of nucleic acids5. In this work, incorporation of pyrimidine moiety into the macrocyclic framework is found to enhance the rigidity and binding ability of the ligands towards the transition metal ions6. A Novel synthesis of N8-macrocyclic ligand of pyrimidine based trimethoprim has been reported. The present work also deals with the interaction of MnII, CoII and CuII metal ions with the ligand.

The study of stereochmistry and chemical reactivity of the Coordination compounds of the macrocycles will help us to understand the relationship between chemical structure and biological activity of macrocycle7.

2. MATERIALS AND METHODS

2.1 Macrocyclic ligands

All the reagents used in the preparation of macrocyclic Ligands and their metal complexes were of reagent grade(Merck). The solvents used for the synthesis of macrocyclic ligands and metal complexes were distilled before use.

All other chemicals were of AR grade and used without further purification. The microelemental analysis was carried out using Heraeus CHN-Rapid analyser.

IR spectra (KBr) on a bruker IFs-60-VFT-IR Spectrometer. The electronic spectra (methanol) were on the Beckman model 25 spectrometer. The conductivity was measured on a conductivity bridge at 25°C using dip type platinum electrode.

2.2 Synthesis of Macrocyclic Ligand

Trimethoprim and L-Alanine were condensed to give macrocyclic ligand by the reported method8. Trimethoprim (0.01m) was dissolved in methanol (50 ml) solvent. L-Tyrosine (0.01 m) was dissolved in methanol (50 ml) solvent. Both the solutions taken into round bottom flask. Then add two drops of Con.Hcl. The reaction mixture was allowed to reflux up to six hours at 60°C. It was then concentrated to half of the volume and set aside for two days. The resulting white crystals were washed with methanol and ether then dried. The crude recrystalised from methanol.

2.3 Synthesis of Macrocyclic complexes

A solution of the hydrated metal chloride and metal sulphate (0.01m) in methanol (50 ml) was added to a round bottom flask containing (0.01) solution of the macrocyclic ligand in methanol (50 ml) the mixture was reflux up to six hours. It was then concentrated to half of the volume and set aside for two days. The microcrystalline compound which separated out was filtered washed with methanol-ether mixture (1:1) and dried in vacuum over anhydrous calcium chloride9-10.
3. RESULTS AND DISCUSSION

All the complexes were soluble in water, acetonitrile, ethanol, methanol and DMSO. They were thermodynamically stable up to 290°C. From the analytical data (Table 1) the complexes can be represented [M(C$_{46}$H$_{50}$N$_{10}$O$_{8}$)Cl$_{2}$] and [M(C$_{46}$H$_{50}$N$_{10}$O$_{8}$)SO$_{4}$] Where M=MnII, CoII, CuII.

The molecular mass and the analytical results were in good agreement with the proposed compositions of the complexes.

3.1 Molar conductivities

The molar conductance of these macrocyclic complexes in acetonitrile were measured and then calculated molar conductance value are reported in Table 1. The conductivities of the complexes were in the range of 10–16 Ohm$^{-1}$ cm2 mol$^{-1}$ and 80–1200 Ohm$^{-1}$ cm2 mol$^{-1}$. Which is characteristics of 1:0 electrolytes, suggest that all of them are non-electrolytes. The presence of chloride ions & sulphate ions is evident only after decomposition of the complexes, probably due to their presence in the coordination sphere. Based on the conductance, metal chloride complexes have magnetic moments which suggest octahedral and tetrahedral configuration around metal ions. Manganese(II) chloride complex has magnetic moment 5.99 B.M. MnII high spin complexes show in general magnetic moment very close to the spin only value of 5.92 B.M. suggest octahedral geometry. Manganese(II) sulphate are 5.73B.M respectively suggesting tetrahedral coordination for the metalion.

The prepared cobalt(II) chloride complex has magnetic moment of 4.8 B.M. this value is very close to the spin only value of 3.25 B.M for octahedral complexes. Cobalt(II) sulphate it is higher than the spin only value of 3.98 B.M which indicates the tetrahedral geometry.

The magnetic moment of Cu(II) chloride complex was lower than the spin only value of 1.46 B.M. which may be due to distortion. The macrocyclic complex of Cu(II) chloride exhibit magnetic moment 1.40 B.M supported that the distorted octahedral geometry.

3.3 Electronic spectra

The electronic spectra of the MnII complex exhibits two
bands at 40,816 Cm\(^{-1}\), 37,1714 Cm\(^{-1}\) and which are assigned to \(^5\)A\(_{1g}\) \(\rightarrow\) \(^1\)T\(_{1g}\)(G), \(^5\)A\(_{1g}\) \(\rightarrow\) \(^3\)T\(_{2g}\)(G) transition respectively. These observations reveal that the stereochemistry of this complex is consistent with the six coordinated octahedral geometry. The electronic spectral of Co\(^{2+}\) complexes consist in general of three spin-allowed transition, although it will not always be possible to observe all the three bands. In the electronic spectra of high spin octahedral complexes of Co\(^{2+}\) one should expect three bands corresponding to the transitions; \(^4\)T\(_{1g}\)(F) \(\rightarrow\) \(^2\)T\(_{2g}\)(F), \(^4\)T\(_{1g}\)(F) \(\rightarrow\) \(^2\)T\(_{1g}\)(F) and \(^4\)T\(_{1g}\)(F) \(\rightarrow\) \(^4\)A\(_{2g}\)(F). The Co(II)chloride complex display a band at 19,342 Cm\(^{-1}\) which is assigned to \(^4\)T\(_{1g}\)(F) \(\rightarrow\) \(^4\)T\(_{2g}\)(F)transition of distorted octahedral geometry. The Co(II)sulphate complex and gave a bands 40,323 Cm\(^{-1}\) ,12,136 Cm\(^{-1}\) it was for the \(^4\)T\(_{1g}\)(F) \(\rightarrow\) \(^4\)A\(_{2g}\)(F) transition of tetrahedral geometry.

The electronic spectra of these complexes display bands corresponding to the transitions \(^2\)B\(_{1g}\) \(\rightarrow\) \(^2\)A\(_{1g}\) , \(^2\)B\(_{1g}\) \(\rightarrow\) \(^2\)B\(_{2g}\) , \(^2\)B\(_{1g}\) \(\rightarrow\) \(^2\)E\(_g\) Copper(II)chloride complexes displays a band at 11,792 Cm\(^{-1}\) due to \(^2\)E\(_g\) \(\rightarrow\) \(^2\)T\(_{2g}\) transition, characteristics of octahedral geometry\(^{20}\). The copper(II) sulphate complexe displays a band at 18,622 Cm\(^{-1}\),13,316 Cm\(^{-1}\) due to \(^2\)T\(_{2g}\) \(\rightarrow\) \(^2\)E\(_g\)transition, characteristics of tetrahedral geometry.

Table-1: Color, Conductance, Magnetic moment and analytical data of the complexes of Ligand

<table>
<thead>
<tr>
<th>S.N.O</th>
<th>Ligand/complexes</th>
<th>colour</th>
<th>M.W (Calcd.)</th>
<th>Molar Conductance Ohm(^{-1}) cm(^{2}) mol(^{-1})</th>
<th>Magnetic Moments (B.M.)</th>
<th>Analysis %Found(Calculated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Li[Cu(H$_2$N$_2$O$_2$)]</td>
<td>white</td>
<td>870</td>
<td>--</td>
<td>--</td>
<td>62.44, 5.50, 15.88, ---</td>
</tr>
<tr>
<td>2</td>
<td>[MnLiCl$_4$]</td>
<td>Pale brown</td>
<td>996</td>
<td>11.7</td>
<td>5.99</td>
<td>50.39, 5.9, 15.28, 5.25, 6.98</td>
</tr>
<tr>
<td>3</td>
<td>[Mn(Li)SO$_4$]</td>
<td>shine</td>
<td>1021</td>
<td>87.20</td>
<td>5.73</td>
<td>54.99, 5.46, 13.58, 5.32, 3.25</td>
</tr>
<tr>
<td>4</td>
<td>[Co(LiCl)$_4$]</td>
<td>pink</td>
<td>1000</td>
<td>15.9</td>
<td>4.8</td>
<td>53.06, 5.10, 13.71, 5.28, 3.14</td>
</tr>
<tr>
<td>5</td>
<td>[Co(Li)SO$_4$]</td>
<td>Sky blue</td>
<td>1025</td>
<td>99.30</td>
<td>3.98</td>
<td>51.49, 5.08, 12.93, 5.38, 2.69</td>
</tr>
<tr>
<td>6</td>
<td>[Cu(LiCl)$_4$]</td>
<td>green</td>
<td>1005</td>
<td>14.6</td>
<td>1.46</td>
<td>53.85, 4.91, 13.09, 5.74, 3.13</td>
</tr>
<tr>
<td>7</td>
<td>[Cu(Li)SO$_4$]</td>
<td>Light green</td>
<td>1027</td>
<td>118.00</td>
<td>1.76</td>
<td>54.96, 5.01, 13.93, 6.32, 7.04</td>
</tr>
</tbody>
</table>

3.4 IR Spectra

The Infra Red spectra of the macrocyclic complexes are very useful in determining the coordination groups of the ligand. The shifts in the peaks indicate the mode of linkage in the complexes.comparison of the IR spectra of macrocyclic ligand and the complexes confirmed the formation of the complexes. Spectra indicated that trimethoprim and L-Tyrosine moieties are present. The stretching and bending vibrations of the –NH$_2$ group of amino acid were observed at 3605 and 835 Cm\(^{-1}\) respectively in the IR spectrum of the free macrocyclic ligand as well as in the macrocyclic complexes of Mn\(^{11}\), Co\(^{12}\), Cu\(^{13}\) chlorides and sulphates. This clearly indicated that the amino group did not take part in coordination.

The band at 3320and1667 cm\(^{-1}\) observed for the N-H and C= N vibrations of the free ligand were found to have a negative shift of 40-60 cm\(^{-1}\) and 20-30 cm\(^{-1}\) respectively in all the complexes of Mn\(^{11}\), Co\(^{12}\), Cu\(^{13}\).The band 519-447 cm\(^{-1}\) was assigned to M-N stretching in the complexes as there was a coordination through nitrogen. The M-Cl vibration were identified through the bands appear around 380-300 cm\(^{-1}\) for those complexes that were involved in the chloride coordination\(^{19}\).In the sulphate complexes a very strong and broad band appeared near 1104cm\(^{-1}\) which was indicative of the non-coordinating sulphate species\(^{19}\).

The bands at 615 and 766 cm\(^{-1}\) were assigned to the in-plane and out-of plane bending motions of aromatic ring indicating the non-coordination of the nitrogens in the pyrimidine ring.Thus, it might be quadridentate and macroyclic compound the macrocyclic ring, not involving the nitrogen atoms of the pyrimidine.It was in accordance with the fact that quadridentate macrocycles could be formed more readily than the hexa- or quinquidentate ligands\(^{21}\).It was very interesting to note that the imine and amine nitrogens were equally active and excluded the weak and less stable coordination by the pyrimidine nitrogen\(^{22}\).

CONCLUSION

Conductivity measurement indicates that the metal complexes are non-electrolytes in nature. The spectral data suggest that the complexes of metal chlorides have octahedral geometry and that of metal sulphate have tetrahedral geometry. No evidence is found for the participation of nitrogen atoms of pyrimidine and amino group of the amino acid in the co-ordination.

ACKNOWLEDGEMENT

The authors Dr M. Amaladasan and Ms. Mary Juliet thanks the authorities of St. Joseph’s college (Autonomous), Tiruchirappalli 620 002, for the facilities and to Mr. S. Dinesh, SRF, NIT, Trichy Department of Production.
She is doing ph.d part time in inorganic chemistry at Bharathidasan university, Trichy, Tamilnadu India. presently she is working as a Associate Professor in the Department of chemistry, Dhanalaksmi Srinivasan college of Engineering and Technology, Chennai.

REFERENCES