
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 7 1870 – 1874

1870
IJRITCC | July 2014, Available @ http://www.ijritcc.org

Improved Method to Solve the Client Server Assignment Problem In

Distributed System

Bharati Patil
1
, Prof. V.S. Wadne

2

1
Research Scholar, Computer Engineering Department, Pune University

JSPM’s Imperial college of Engg. & Research, Wagholi, Pune,India.
1
c2patil.s@gmail.com

2
Assistant Professor,Computer Engineering Department, Pune University

JSPM’s Imperial College of Engg& Research, Wagholi, Pune, India
2
vinods1111@gmail.com

Abstract:-In distributed system numbers of servers are connected to each other via an internet. These number of server are

communicate with each other that is inter server communication. All clients are communicating to each other with the help of

server. On the availability of the server client is assigned to that server. All nodes that is computers are connected to each other to

share resources and computation. To communication within inter server or clients there is interlatency and load balancing problem.

If one server fail then automatically that server load is assigned to next server. This increases performance problem. Due to

resuming load to another server load is increased on the network. For better performance one has to manage that load. There are

so many clustering algorithms to make an partition a group into object. But no clustering algorithm has knowledge of minimizing

total communication cost.

Keyterms: Load Balance, client assignment Problem, round robin, Load distance balancing problem, Round robin etc.

__*****___

I. Introduction

Internet is a network of several distributed systems that consists

of clients and servers communicating with each other directly

or indirectly. In order to improve the performance of such a

system, client-server assignment plays an important role.

Achieving optimal client-server assignment in internet

distributed systems is a great challenge. It is dependent on

various factors and can be achieved by various means. Our

approach is mainly dependent on two important factors, 1)

Total communication load and 2) Load balancing of the servers.

In our approach we propose an algorithm that is based on Pre-

emptive scheduling method to obtain an approximately optimal

solution for the client-server assignment problem.

1. The two groups have different number of servers, a

server within a group with fewer servers will likely to

have a higher load than a server in the group with more

servers. This reduces the load balance

2. We describe a number of emerging applications that

have the potential to benefit from the client-server

assignment problem.

The modern internet is a collection of interconnected networks

of various systems that share resources. A superlative

distributed system provides every node with equal

responsibility, and nodes are similar in terms of resource and

computational power. However in real world scenarios it is

difficult to achieve overhead of coordinating nodes, which

results in lower performance. Typical distributed system

consists of servers and clients. Servers are more computational

and provide powerful resources than clients. Examples of such

systems are e-mail, instant messaging, e-commerce, etc.

Communications between two nodes happen through

intermediate servers. When node A sends mail to another node

B, communication first flows from A to its email server. Email

server is responsible for receiving and sending emails, from

and for the clients assigned to it. Node A's email server sends

data to node B's email server, which in turn is responsible for

sending mail to node B. Email servers communicate with each

other on behalf of their client nodes. Clients are assigned to a

server based on various parameters like organizations, domains,

etc. In our paper we solve client-server assignment problem

based on total communication load and load balancing on

servers. If one server is overloaded, we need to add another

server to distribute the load, which is economically inefficient

and usually increases the overall communication load As a

heavily loaded server typically exhibits a low performance, we

would like to avoid the situation. To minimize the amount of

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 7 1870 – 1874

1871
IJRITCC | July 2014, Available @ http://www.ijritcc.org

total communication load, assigning all clients to one server is

optimal. However, it is impossible due to overloading and

completely loses the load balance. Simple load balancing does

not usually take account of reducing the overall communication

load.any interaction between two clients consists of both clients

to server latency and inter-server latency which is called an

interaction path.

II. Related Work

Load-Distance balancing Problem Scheduling is the method by

which threads, processes or data flows are given access to

system resources (e.g. processor time, communications

bandwidth). This is usually done to load balance and share

system resources effectively or achieve a target quality of

service. The need for a scheduling algorithm arises from the

requirement for most modern systems to perform multitasking

(executing more than one process at a time) and multiplexing

(transmit multiple data streams simultaneously across a single

physical channel).

The scheduler is concerned mainly with:

 Throughput - The total number of processes that

complete their execution per time unit.

 Latency, specifically: Turnaround time - total time

between submission of a process and its completion.

Response - amount of time it takes from when a

request was submitted until the first response is

produced.

 Fairness - Equal CPU time to each process (or more

generally appropriate times according to each process'

priority and workload).

 Waiting Time - The time the process remains in the

ready queue.

In practice, these goals often conflict (e.g. throughput versus

latency), thus a scheduler will implement a suitable

compromise. Preference is given to any one of the above

mentioned concerns depending upon the user's needs and

objectives.

System Architecture

Fig.1 Client server assignment in Networking

Clustering Algorithm

1. Input: Let {T1, T2,…,Tk} be the accepted tasks in the

ready queue and let ei be the expected execution time of Ti .

Let current time be t and let T0 be the task currently being

executed. Let the expected utility density threshold be µ.

2. If a new task, i.e., Tp arrives then

3. Check if Tp should pre-empt the current task or not;

4. If Pre-emption allowed then

5. Tppre-empts the current task and starts being executed;

6. End if

7. If Pre-emption not allowed then

8. Accept Tp if Up(e0) > µe;

e0

9. Reject Tp if Up(e0) >µe0;

e0 e0

10. end if

11. Remove Tj in the ready queue if Up(e0) > µ;

ej

12. End if

13. If at pre-emption check point then

14. PREEMPTION CHECKING;

15. End if

16. If T0 is completed then

17. Choose the highest expected utility density task ti to run.

18. Remove Tj in the ready queue if Uj(ei) > µ;

ej

19. End if

20. If t= the critical time of τ0 then

21. Abort τ0 immediately;

22. Choose the highest expected utility density task τi to run.

23. Remove τj in the ready queue if Uj(Cj) ≤ δ;

Cj

24. End if;

Cure Algorithm

CURE (Clustering Using Representatives) is an efficient

data clustering algorithm for large databases that is more

robust to outliers and identifies clusters having non-

spherical shapes and wide variances in size.To avoid the

problems with non-uniform sized or shaped clusters,

CURE employs a novel hierarchical clustering algorithm

that adopts a middle ground between the centroid based

and all point extremes. In CURE, a constant number c of

well scattered points of a cluster are chosen and they are

shrunk towards the centroid of the cluster by a fraction α.

The scattered points after shrinking are used as

representatives of the cluster. The clusters with the closest

pair of representatives are the clusters that are merged at

each step of CURE's hierarchical clustering algorithm.

This enables CURE to correctly identify the clusters and

makes it less sensitive to outliers

The algorithm is given below.

http://en.wikipedia.org/wiki/Thread_%28computer_science%29
http://en.wikipedia.org/wiki/Process_%28computing%29
http://en.wikipedia.org/wiki/Flow_%28computer_networking%29
http://en.wikipedia.org/wiki/Load_balancing_%28computing%29
http://en.wikipedia.org/wiki/Quality_of_service
http://en.wikipedia.org/wiki/Quality_of_service
http://en.wikipedia.org/wiki/Quality_of_service
http://en.wikipedia.org/wiki/Computer_multitasking
http://en.wikipedia.org/wiki/Multiplexing
http://en.wikipedia.org/wiki/Throughput
http://en.wikipedia.org/wiki/Latency_%28engineering%29
http://en.wikipedia.org/wiki/Data_clustering
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Robust_statistics
http://en.wikipedia.org/wiki/Outlier
http://en.wikipedia.org/wiki/Hierarchical_clustering
http://en.wikipedia.org/wiki/Middle_ground

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 7 1870 – 1874

1872
IJRITCC | July 2014, Available @ http://www.ijritcc.org

The running time of the algorithm is O(n
2
 log n) and space

complexity is O(n).The algorithm cannot be directly

applied to large databases. So for this purpose we do the

following enhancements

 Random sampling : To handle large data sets, we do

random sampling and draw a sample data set.

Generally the random sample fits in main memory.

Also because of the random sampling there is a

tradeoff between accuracy and efficiency.

 Partitioning for speed up : The basic idea is to

partition the sample space into p partitions. Each

partition contains n/p elements. Then in the first pass

partially cluster each partition until the final number

of clusters reduces to n/pq for some constant q ≥ 1.

Then run a second clustering pass on n/q partial

clusters for all the partitions. For the second pass we

only store the representative points since the merge

procedure only requires representative points of

previous clusters before computing the new

representative points for the merged cluster. The

advantage of partitioning the input is that we can

reduce the execution times.

 Labeling data on disk : Since we only have

representative points for k clusters, the remaining data

points should also be assigned to the clusters. For this

a fraction of randomly selected representative points

for each of the k clusters is chosen and data point is

assigned to the cluster containing the representative

point closest to it.

Steps of algorithm

CURE(no. of points)

Input : A set of points S

Output :k clusters

1. For every cluster u (each input point), in u.mean and

u.rep store the mean of the points in the cluster and a

set of c representative points of the cluster (initially c

= 1 since each cluster has one data point). Also

u.closest stores the cluster closest to u.

2. All the input points are inserted into a k-d tree T

3. Treat each input point as separate cluster, compute

u.closest for each u and then insert each cluster into

the heap Q. (clusters are arranged in increasing order

of distances between u and u.closest).

4. While size(Q) >k

5. Remove the top element of Q(say u) and merge it with

its closest cluster u.closest(say v) and compute the

new representative points for the merged cluster w.

6. Also remove u and v from T and Q.

7. Also for all the clusters x in Q, update x.closest and

relocate x

8. insert w into Q

9. repeat

Comparative Analysis of Algorithms

Parameter Clustering

Algorithm

Cure Algorithm

Start Time 155718 ms 155850 ms

End Time 155727 ms 155852 ms

Total

Execution

9 ms 2 ms

Table 1: Analysis of Algorithm

Fig.2 Comparative Study of Clustering and CURE Algorithm

III. Architectural Design

A typical distributed system consists of a mix of servers and

clients. The servers are more computational and resource

powerful than the clients. A classic example of such systems is

e-mail. When a client A sends an e-mail to another client B, A

does not send the e-mail directly to B. Instead, A sends its

message to its e-mail server which has been previously

assigned to handle all the e-mails to and from A. This server

relays A’s e-mail to another server which has been previously

assigned to handle e-mails for B. B then reads A’s e-mail by

downloading the e-mail from its server. Mainly, the e-mail

servers communicate with each other on behalf of their

clients[1]. The main advantage of this architecture is that the

powerful dedicated e-mail servers release their clients from the

responsibility associated with many tasks including processing

and storing e-mails, and thus making e-mail applications more

scalable. A more interesting scenario is the Instant Messaging

System (IMS). An IMS allows real time text-based

http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Sampling_%28statistics%29
http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/wiki/Random_sample
http://en.wikipedia.org/wiki/Primary_storage
http://en.wikipedia.org/wiki/Trade-off
http://en.wikipedia.org/wiki/Sample_space
http://en.wikipedia.org/wiki/Kd-tree

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 7 1870 – 1874

1873
IJRITCC | July 2014, Available @ http://www.ijritcc.org

communication between two or more participants over the

Internet. Each IMS client is associated with an IMS server

which handles all the instant messages for its clients. Similar to

e-mail servers, IMS servers relay instant messages to each

other on behalf on their clients. In an IMS that uses the XMPP

(Jabber) protocol such as Google Talk, clients can be assigned

to servers independent of their organizations.

Problems on existing system:

1. If one server is overloaded, we need to add another server

to distribute the load, which is economically inefficient

and usually increases the overall communication load

2. As a heavily loaded server typically exhibits a low

performance, we would like to avoid the situation.

3. To minimize the amount of total communication load,

assigning all clients to one server is optimal. However, it

is impossible due to overloading and completely loses the

load balance. Simple load balancing does not usually take

account of reducing the overall communication load.

Internet is a network of several distributed systems that consists

of clients and servers communicating with each other directly

or indirectly. In order to improve the performance of such a

system, client-server assignment plays an important role.

Achieving optimal client-server assignment in internet

distributed systems is a great challenge. It is dependent on

various factors and can be achieved by various means. Our

approach is mainly dependent on two important factors, 1)

Total communication load and 2) Load balancing of the servers.

In our approach we propose an algorithm that is based on Semi

definite programming, to obtain an approximately optimal

solution for the client-server assignment problem.

1. The two groups have different number of servers, a server

within a group with fewer servers will likely to have a

higher load than a server in the group with more servers.

This reduces the load balance

2. We describe a number of emerging applications that have

the potential to benefit from the client-server assignment

problem.

IV. CONCLUSION

To make a partition of an object for distributed system

clustering algorithms are used to make an partition. But it

fails in throughput. Round robin algorithm does not show

current status of the system. But pre-emptive algorithm

work on scheduling of process of client with respective to

time and performance. As compare to clustering algorithm

CURE algorithm has total execution cost is very low.

References

[1] Hiroshi Nishida, Member, IEEE, and Thinh Nguyen,

Member, IEEE-“Optimal Client-Server Assignment

for Internet Distributed Systems”-ieee transactions on

parallel and distributed systems, vol. 24, no.3, march

2013.

[2] “Finding good nearly balanced cuts in power law

graphs,” YahooResearch Labs, Tech. Rep., 2004.

[3] Nishida, H.; Thinh Nguyen; , "Optimal Client-Server

Assignment forInternet Distributed Systems,"

Computer Communications andNetworks (ICCCN),

2011 Proceedings of 20th International Conferenceon ,

vol., no., pp.1-6, July 31 2011-Aug. 4 2011

[4] Lu Zhang; Xueyan Tang; , "Client assignment for

improvinginteractivity in distributed interactive

applications," INFOCOM, 2011Proceedings IEEE ,

vol., no., pp.3227-3235, 10-15 April 2011doi:

10.1109/INFCOM.2011.5935173

[5] Zhang, L.; Tang, X.; , "Optimizing Client Assignment

for EnhancingInteractivity in Distributed Interactive

Applications," Networking,IEEE/ACM Transactions

on , vol.PP, no.99, pp.1, 0doi:

10.1109/TNET.2012.2187674

[6] Bortnikov, E., Khuller, S., Li, J., Mansour, Y. and

Naor, J. S. (2012),The load-distance balancing

problem. Networks, 59: 22–29. doi:10.1002/net.20477

[7] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and

VenkataramananBalakrishnan. Linear Matrix

Inequalities in System and Control Theory.SIAM,

1994.

[8] U. Feige and M. Langberg. The rpr2 rounding

technique forSemidefinite programs. J. Algorithms,

60(1):1–23, 2006.

[9] B. Scho¨lkopf, A. Smola, and K.-R. Mu¨ ller,

“Nonlinear ComponentAnalysis as a Kernel

Eigenvalue Problem,” Neural Computation,vol. 10,

pp. 1299-1319, July 1998.

[10] G. Karypis and V. Kumar, “A Fast and High Quality

MultilevelScheme for Partitioning Irregular Graphs,”

SIAM J. ScientificComputing, vol. 20, pp. 359-392,

Dec. 1998.

[11] M.L. Huang and Q.V. Nguyen, “A Fast Algorithm for

BalancedGraph Clustering,” Proc. 11th Int’l Conf.

Information Visualization,pp. 46-52, 2007.

[12] K. Andreev and H. Ra¨cke, “Balanced Graph

Partitioning,” Proc.16th Ann. ACM Symp.Parallelism

in Algorithms and Architectures,pp. 120-124, 2004.

[13] F. Nie, C. Ding, D. Luo, and H. Huang, “Improved

MinMaxCutGraph Clustering with Nonnegative

Relaxation,” Proc. EuropeanConf. Machine Learning

and Knowledge Discovery in Databases: PartII, pp.

451-466, 2010.

[14] P. Chan, M. Schlag, and J. Zien, “Spectral K-Way

Ratio-CutPartitioning and Clustering,” IEEE Trans.

Computer-Aided Design ofIntegrated Circuits and

Systems, vol. 13, no. 9, pp. 1088-1096, Sept.1994.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 7 1870 – 1874

1874
IJRITCC | July 2014, Available @ http://www.ijritcc.org

[15] C.H.Q. Ding, X. He, H. Zha, M. Gu, and H.D. Simon,

“A Min-MaxCut Algorithm for Graph Partitioning and

Data Clustering,” Proc.Int’l Conf. Data Mining

(ICDM ’01), pp. 107-114, 2001.

[16] H.S. Stone, “Multiprocessor Scheduling with the Aid

of NetworkFlow Algorithms,” IEEE Trans. Software

Eng., vol. 3, no. 1, pp. 85-93, Jan. 1977.

[17] P. Sinha, Distributed Operating Systems: Concepts

and Design. IEEEPress, 1997.

[18] J.C.S. Lui and M.F. Chan, “An Efficient Partitioning

Algorithmfor Distributed Virtual Environment

Systems,” IEEE Trans.Parallel and Distributed

Systems, vol. 13, no. 3, pp. 193-211, Mar.

